Table 2. The four-fold cross-validation results identify GLM as the least powerful and RF as the most powerful.
All models produce an AUC, an optimal threshold (Opt Thresh.), and are capable of identifying the variable that contributes most to prediction (CV), but the machine learning methods often lack standard regression measures.
Model | K-fold | AUC | Opt Thresh. | CV |
---|---|---|---|---|
GLM | 1 | 0.78 | 0.149 | GDD |
GLM | 2 | 0.779 | 0.168 | GDD |
GLM | 3 | 0.778 | 0.134 | GDD |
GLM | 4 | 0.768 | 0.144 | GDD |
GAM | 1 | 0.878 | 0.175 | Mean Temp |
GAM | 2 | 0.867 | 0.146 | Mean Temp |
GAM | 3 | 0.861 | 0.099 | Mean Temp |
GAM | 4 | 0.853 | 0.177 | Mean Temp |
MaxEnt | 1 | 0.891 | 0.315 | Mean Temp |
MaxEnt | 2 | 0.874 | 0.402 | Mean Temp |
MaxEnt | 3 | 0.884 | 0.289 | Mean Temp |
MaxEnt | 4 | 0.88 | 0.336 | Mean Temp |
RF | 1 | 0.938 | 0.157 | Mean Temp |
RF | 2 | 0.924 | 0.197 | Mean Temp |
RF | 3 | 0.928 | 0.15 | Mean Temp |
RF | 4 | 0.919 | 0.169 | Mean Temp |