Table 2. Predictive performance of mlLGPR on T1 golden datasets.
Methods | Hamming Loss ↓ | ||||||
EcoCyc | HumanCyc | AraCyc | YeastCyc | LeishCyc | TrypanoCyc | SixDB | |
mlLGPR-L1 (+AB+RE+PE) | 0.0776 | 0.0645 | 0.1069 | 0.0487 | 0.0412 | 0.0602 | 0.1365 |
mlLGPR-L2 (+AB+RE+PE) | 0.0606 | 0.0515 | 0.1112 | 0.0412 | 0.0234 | 0.0344 | 0.1426 |
mlLGPR-EN (+AB+RE+PE) | 0.0804 | 0.0633 | 0.1069 | 0.0550 | 0.0380 | 0.0590 | 0.1281 |
Methods | Average Precision Score ↑ | ||||||
EcoCyc | HumanCyc | AraCyc | YeastCyc | LeishCyc | TrypanoCyc | SixDB | |
mlLGPR-L1 (+AB+RE+PE) | 0.6253 | 0.6686 | 0.7390 | 0.6815 | 0.4525 | 0.5395 | 0.7391 |
mlLGPR-L2 (+AB+RE+PE) | 0.7437 | 0.7945 | 0.8418 | 0.7934 | 0.6186 | 0.7268 | 0.8488 |
mlLGPR-EN (+AB+RE+PE) | 0.6187 | 0.6686 | 0.7372 | 0.6480 | 0.4731 | 0.5455 | 0.7561 |
Methods | Average Recall Score ↑ | ||||||
EcoCyc | HumanCyc | AraCyc | YeastCyc | LeishCyc | TrypanoCyc | SixDB | |
mlLGPR-L1 (+AB+RE+PE) | 0.9023 | 0.8244 | 0.7275 | 0.8690 | 0.9310 | 0.8971 | 0.6738 |
mlLGPR-L2 (+AB+RE+PE) | 0.7655 | 0.7204 | 0.5529 | 0.7380 | 0.8391 | 0.8057 | 0.5211 |
mlLGPR-EN (+AB+RE+PE) | 0.8827 | 0.8459 | 0.7314 | 0.8603 | 0.9080 | 0.8914 | 0.6904 |
Methods | Average F1 Score ↑ | ||||||
EcoCyc | HumanCyc | AraCyc | YeastCyc | LeishCyc | TrypanoCyc | SixDB | |
mlLGPR-L1 (+AB+RE+PE) | 0.7387 | 0.7384 | 0.7332 | 0.7639 | 0.6090 | 0.6738 | 0.6919 |
mlLGPR-L2 (+AB+RE+PE) | 0.7544 | 0.7556 | 0.6675 | 0.7647 | 0.7122 | 0.7642 | 0.6306 |
mlLGPR-EN (+AB+RE+PE) | 0.7275 | 0.7468 | 0.7343 | 0.7392 | 0.6220 | 0.6768 | 0.7098 |