Skip to main content
. 2020 Oct 1;16(10):e1008174. doi: 10.1371/journal.pcbi.1008174

Table 2. Predictive performance of mlLGPR on T1 golden datasets.

mlLGPR-L1: the mlLGPR with L1 regularizer, mlLGPR-L2: the mlLGPR with L2 regularizer, mlLGPR-EN: the mlLGPR with elastic net penalty, L2: AB: abundance features, RE: reaction evidence features, and PE: pathway evidence features. For each performance metric, ‘↓’ indicates the lower score is better while ‘↑’ indicates the higher score is better.

Methods Hamming Loss ↓
EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.0776 0.0645 0.1069 0.0487 0.0412 0.0602 0.1365
mlLGPR-L2 (+AB+RE+PE) 0.0606 0.0515 0.1112 0.0412 0.0234 0.0344 0.1426
mlLGPR-EN (+AB+RE+PE) 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281
Methods Average Precision Score ↑
EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.6253 0.6686 0.7390 0.6815 0.4525 0.5395 0.7391
mlLGPR-L2 (+AB+RE+PE) 0.7437 0.7945 0.8418 0.7934 0.6186 0.7268 0.8488
mlLGPR-EN (+AB+RE+PE) 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561
Methods Average Recall Score ↑
EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.9023 0.8244 0.7275 0.8690 0.9310 0.8971 0.6738
mlLGPR-L2 (+AB+RE+PE) 0.7655 0.7204 0.5529 0.7380 0.8391 0.8057 0.5211
mlLGPR-EN (+AB+RE+PE) 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904
Methods Average F1 Score ↑
EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.7387 0.7384 0.7332 0.7639 0.6090 0.6738 0.6919
mlLGPR-L2 (+AB+RE+PE) 0.7544 0.7556 0.6675 0.7647 0.7122 0.7642 0.6306
mlLGPR-EN (+AB+RE+PE) 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098