Skip to main content
. 2020 Oct 1;16(10):e1008174. doi: 10.1371/journal.pcbi.1008174

Table 4. Performance and robustness scores for mlLGPR-EN with AB, RE and PE feature sets trained on both Synset-1 and Synset-2 training sets at 0 and ρ noise.

The best performance scores are highlighted in bold. The ‘↓’ indicates the lower score is better while ‘↑’ indicates the higher score is better.

Dataset Average F1 Score ↑ Robustness Score ↓
mlLGPR-EN0 mlLGPR-ENρ RLAρ s(M0) ELAρ
EcoCyc 0.7280 0.7275 0.0007 0.3736 0.3743
HumanCyc 0.7111 0.7468 −0.0502 0.4063 0.3561
AraCyc 0.7662 0.7343 0.0416 0.3051 0.3468
YeastCyc 0.7176 0.7392 −0.0301 0.3935 0.3634
LeishCyc 0.5559 0.6220 −0.1189 0.7989 0.6800
TrypanoCyc 0.6667 0.6768 −0.0151 0.4999 0.4848
SixDB 0.7448 0.7098 0.0470 0.3426 0.3896