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Multiparametric MRI is a trusted method for detec-
tion and staging of prostate cancer (1,2). Diffusion-

weighted imaging (DWI) is a major component of the 
multiparametric MRI examinations. Diffusion-weighted 
(DW) images are acquired using at least two b values to 
calculate apparent diffusion coefficient (ADC) maps (2). 
To minimize susceptibility to bulk motion, DWI acquisi-
tion is performed using the single-shot echo-planar imag-
ing approach (3), which results in low signal-to-noise ratio 
(SNR) in the prostate. Low SNR of DWI is problematic 
not only because it affects image quality, but also because it 
leads to the noise-induced bias of the MRI magnitude sig-
nal (4,5), which subsequently affects the ADC calculation 
(6) and repeatability (7).

To compensate for the low SNR of prostate DWI, im-
age acquisition is repeated multiple times to obtain the 
average measurement with an improved SNR. For high b-
value DW (hb DW) images (b value  1000 sec/mm2), the 

number of averages can range from eight to 16 (8,9). For 
single-shot echo-planar DWI, acquisition time is a prod-
uct of repetition time, number of diffusion directions, and 
number of averages. Thus, a high number of averages leads 
to long scan time, increased susceptibility to unwanted pa-
tient movement, and compromised patient comfort.

Although reducing the number of averages could accel-
erate DWI, it would result in a lower SNR, greater noise-
induced signal intensity bias, and inaccurate ADC maps. 
We hypothesize that lower SNR of accelerated DWI ac-
quisition can be compensated for by denoising DW images 
using a convolutional neural network (CNN). The CNN 
is a class of artificial intelligence computing systems that 
can successfully improve image quality of noisy MR images 
(10,11). We propose to develop and train a CNN for de-
noising of hb DW prostate images acquired with only two 
averages and subsequently evaluate the effect of denoising 
on the quality of DW images and the ADC maps.
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Purpose:  To investigate the feasibility of accelerating prostate diffusion-weighted imaging (DWI) by reducing the number of acquired 
averages and denoising the resulting image using a proposed guided denoising convolutional neural network (DnCNN).

Materials and Methods:  Raw data from the prostate DWI scans were retrospectively gathered between July 2018 and July 2019 from 
six single-vendor MRI scanners. There were 103 datasets used for training (median age, 64 years; interquartile range [IQR], 11), 15 
for validation (median age, 68 years; IQR, 12), and 37 for testing (median age, 64 years; IQR, 12). High b-value diffusion-weighted 
(hb DW) data were reconstructed into noisy images using two averages and reference images using all 16 averages. A conventional 
DnCNN was modified into a guided DnCNN, which uses the low b-value DW image as a guidance input. Quantitative and qualita-
tive reader evaluations were performed on the denoised hb DW images. A cumulative link mixed regression model was used to com-
pare the readers’ scores. The agreement between the apparent diffusion coefficient (ADC) maps (denoised vs reference) was analyzed 
using Bland-Altman analysis.

Results:  Compared with the original DnCNN, the guided DnCNN produced denoised hb DW images with higher peak signal-to-
noise ratio (32.79 6 3.64 [standard deviation] vs 33.74 6 3.64), higher structural similarity index (0.92 6 0.05 vs 0.93 6 0.04), and 
lower normalized mean square error (3.9% 6 10 vs 1.6% 6 1.5) (P , .001 for all). Compared with the reference images, the denoised 
images received higher image quality scores from the readers (P , .0001). The ADC values based on the denoised hb DW images were 
in good agreement with the reference ADC values (mean ADC difference ranged from 20.04 to 0.02 3 10-3 mm2/sec).

Conclusion:  Accelerating prostate DWI by reducing the number of acquired averages and denoising the resulting image using the pro-
posed guided DnCNN is technically feasible.

Supplemental material is available for this article.
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corresponding averages (two or four). The not-accelerated hb 
DW images, which are referred to as reference images, were 
reconstructed using all available averages (average of 16). The 
accelerated hb DW images, which are referred to as noisy, were 
reconstructed using only two averages.

Guided DnCNN
The proposed denoising CNN was based on the deep de-
noising CNN (DnCNN), which uses residual learning to 
separate noise from a noisy observation (13). Training of 
DnCNN requires pairs of noisy and clean images. Here, 
the term noisy describes the hb DW images reconstructed 
using two averages. The reference hb DW images, defined 
previously, are used as clean images. The architecture of the 
DnCNN (13) was preserved with one modification to in-
corporate a guidance image (Appendix E3 [supplement]), 
a concept proposed for guided image filtering by He et al 
(14). In addition to the noisy hb DW image input, the guid-
ance image (lb DW image) was passed to the network via 
the second input channel (Fig 2). The output, unmodified, 
had a single channel containing the estimated residual im-
age. The denoised image was obtained by subtracting the re-
sidual image from the noisy image. The mean squared error 
(MSE) between the denoised and reference hb DW images 
was used as loss function. The proposed network is referred 
to as guided DnCNN. Several versions of the DnCNN and 
guided DnCNN were trained, and the model with optimal 
performance on the validation set was used on the test set 
(Appendix E3 [supplement]).

Evaluation of Guided DnCNN and Denoised DW Images
To quantify the effect of denoising DW images using the 
guided DnCNN, the peak SNR (PSNR) and structural sim-
ilarity index metrics and normalized MSE were computed 
for 949 noisy and denoised images relative to the corre-
sponding reference image. Qualitative evaluation was per-
formed by two diagnostic body radiologists with 6 (C.D.) 
and 4 (E.A.A.) years of experience. The readers were blinded 
to the project goals and any associated details. The read-
ers independently reviewed noisy, reference, and denoised 
hb DW images presented in a randomized order (scenarios 
where by chance one type of image would be immediately 
followed by another type of image for the same patient were 
avoided by manually adjusting the order). The correspond-
ing ADC maps were displayed side-by-side with the hb DW 
images. The ADC maps were calculated by pixelwise com-
putation of the slope of the logarithmized signals at the lb 
DW and hb DW images.

The scoring system was based on previous studies (9,15,16) 
(Table 2). In all 37 test patients, the readers ranked overall 
image quality, prostate margin and zonal anatomy demarca-
tion (MZD), noise suppression, and image sharpness of the 
prostate and other visible anatomic structures. In a subset of 
15 patients who were reported to have one or more lesions 
with a score of 4 or 5 per the Prostate Imaging Reporting 
and Data System version 2, the readers also ranked lesion 

Materials and Methods

Clinical Dataset
Approval from the institutional review board and waiver of the 
requirement for informed consent was obtained for this ret-
rospective study. Raw DWI data from 174 patient scans were 
acquired on separate nonconsecutive days between July 2018 
and July 2019. All cases, for which raw data were available, 
were included. On inspection of the images corresponding to 
the raw data, datasets from 19 patients were excluded because 
of severe geometric distortion (n = 5), motion artifacts (n = 
1), or an apparent SNR of less than 15 (n = 13). The apparent 
SNR of hb DW images was measured by dividing the average 
signal in a contour encompassing the prostate by the standard 
deviation in a contour placed in a region of no visible signal 
(12). One hundred fifty-five patients were included (Table 1). 
The dataset on a patient level was divided into three groups 
for training (103 patients [median age, 64 years; interquartile 
range {IQR}, 11], 2564 images, 66%), validation (15 patients 
[median age, 68 years; IQR, 12], 346 images, 10%), and test-
ing (37 patients [median age, 64 years; IQR, 12], 949 images, 
24%). All sets were kept separate. The data were not used in 
previously published studies.

MRI Scans
Images were acquired with six 3-T MRI scanners (Discovery 
MR750w and Signa Architect, GE Healthcare, Waukesha, 
Wis). Details on MRI acquisition are found in Appendix E1 
(supplement). The raw data were reconstructed offline (Ap-
pendix E2 [supplement]) to generate the images (Fig 1). The 
low b-value DW (lb DW) images were reconstructed using all 

Abbreviations
ADC = apparent diffusion coefficient, CI = confidence interval, 
CNN = convolutional neural network, DnCNN = denoising CNN, 
DW = diffusion weighted, DWI = diffusion-weighted imaging, hb 
DW = high b value DW, IQR = interquartile range, lb DW = low 
b value DW, MSE = mean squared error, MZD = prostate margin 
and zonal anatomy demarcation, PSNR = peak SNR, SNR = signal-
to-noise ratio

Summary
A convolutional neural network trained on the pairs of low and high 
signal-to-noise ratio diffusion-weighted (DW) images from 103 
prostate scans successfully denoised the DW images acquired with 
two averages, enabling acceleration of DW prostate MRI.

Key Points
	n Substantial acceleration of high b-value diffusion-weighted images 

is technically feasible by reducing the number of acquired averages 
from 16 to two and applying a denoising convolutional neural 
network (DnCNN) to denoise the accelerated noisy images.

	n Using low b-value diffusion-weighted images as guidance images 
in the guided DnCNN leads to improved denoising performance 
compared with the conventional DnCNN without guidance im-
age input.

	n The probability of obtaining a higher score with denoised diffu-
sion-weighted images is significantly greater than the probability 
of obtaining a higher score with the reference images.
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Evaluation of the ADC Maps
The ADC maps, calculated using the noisy, reference, and de-
noised hb DW images, further referred to as noisy, reference, 
and denoised ADC maps, were analyzed. Normalized MSE 

was calculated relative to the ref-
erence ADC. The average ADC 
values were measured in the ob-
turator internus muscle and pe-
ripheral and transition zones of 
the prostate and prostate index 
lesion. Contours were drawn on 
the slices with clear representa-
tion of the anatomy, and average 
values of ADC for each contour 
were recorded.

Statistical Analysis
A cumulative link mixed model 
was used to compare the readers’ 
scores (17). The cluster effect of 
multiple measures from the same 
patient was modeled via random 
effects. The effect of the reader 
was tested. Weighted Cohen k 

conspicuity, defined as the ability to differentiate the index 
lesion from adjacent prostatic tissue. The cases that required 
ranking of lesion conspicuity were marked. The index lesions 
were not marked.

Table 1: Patient Characteristics

Characteristic Training Set (n = 103) Validation Set (n = 15) Test Set (n = 37)

Age (y) 64 (11) 68 (12) 64 (12)
Weight (kg) 81 (16) 79 (28) 85 (17)
Indication for MRI examination
  Prostate cancer 75 11 30
  Elevated PSA level 24 4 6
  Other 4 0 1
PI-RADS v2 status
  4 or 5 41 7 15
  3 24 5 14
  1 or 2 30 3 7
  No dominant lesion 4 0 1
  NA 4 0 0

Note.—Data for age and weight are median with interquartile range in parentheses. Data for indi-
cation for MRI examination, Prostate Imaging Reporting and Data System (PI-RADS) version 2, 
and no dominant lesion are the number of patients within the dataset. The normal reference range 
for prostate-specific antigen (PSA) level at our institution is 0–4.0 ng/mL. NA = not applicable.

Figure 1:  Schematic flow of image preprocessing steps (details are in Appendix E3 [supplement]). Raw k-space data from one diffusion-weighted 
(DW) scan is reconstructed to produce three types of images: guidance (low b-value DW image reconstructed with all available averages), noisy (high 
b-value DW image reconstructed using two averages), and reference (high b-value DW image, reconstructed using 16 averages).

Figure 2:  Denoising convolutional neural network (DnCNN) design. Guidance image is only used in the guided DnCNN. Residual image is estimation of noise, which is 
subtracted from the noisy image to produce the denoised image. Mean squared error (MSE), calculated between the denoised image and the reference image, is used as 
loss function. BN = batch normalization, Conv = convolutional, ReLU = rectified linear units.
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acquisition. Noisy and denoised hb DW images reconstructed 
from only two averages corresponded to an acquisition time of 
47 seconds. Using only two averages produced noisy images with 
a high level of noise and elevated signal intensity in the back-
ground tissue (the result of noise-induced signal bias) compared 
with the reference images. The denoised images showed that de-
noising with either DnCNN or guided DnCNN reduced the 
level of noise in the images. However, the guided DnCNN de-
sign enabled restoration of the anatomic structures, which were 
not visible on the images denoised using the original DnCNN 
but which were present in the reference DW images. In addi-
tion, denoising with either of the approaches compensated for 
the noise-induced signal intensity bias; this can be appreciated 
by examining the signal intensity level in the background tis-
sue. Figure 4 shows representative signal intensity profiles from 
the noisy, reference, and denoised images shown in Figure 3, A. 
The signal intensity profile of the denoised image demonstrated 
both reduction of the noise peak-to-peak fluctuations and noise-
induced signal bias, closely matching it to the level of signal in-
tensity seen in the reference image.

The results of the reader study, carried out on the images 
denoised using the guided DnCNN, are shown in Table 3. 
In the overall image quality category, the denoised images re-
ceived the median score of 4 (IQR, 1) from reader 1, and the 
median score of 4 (IQR, 1) from reader 2. The reference images 
received the median scores of 3 (IQR, 1) and 4 (IQR, 1) from 
the two readers, respectively. The cumulative link mixed model 
showed that the probability of obtaining a higher score for de-
noised images was greater than the probability of obtaining a 
higher score for the reference images for all scoring categories 
(for image quality, MZD, noise suppression: P , .0001, for 
image sharpness: P = .03, for lesion conspicuity: P = .0008). 
The difference between the readers was not significant for the 
image quality, MZD, image sharpness, and lesion conspicu-
ity categories, and was significant for the noise suppression 
category (P = .01). The agreement between the readers was 
moderately strong, k = 0.76 (95% CI: 0.67, 0.86), 0.74 (95% 
CI: 0.59, 0.89), and 0.75 (95% CI: 0.67, 0.82) for the image 

was used to examine the concordance between the readers, 
and  95% confidence intervals (CI) for each k were calculated. 
The agreement between the ADC values was examined using 
Bland-Altman analysis (18). The PSNR, structural similarity 
index, and normalized MSE, calculated for all 949 images in 
the test set, were compared using a Wilcoxon signed rank test.

R software with the package ordinal (version 3.6.0, R Foun-
dation for Statistical Computing, Vienna, Austria) and IBM 
SPSS Statistics software (version 25.0, IBM, Armonk, NY) were 
used. For small sample size, the data were reported as median 
and IQR. Averaged continuous data were reported as means 
with standard deviations. Statistical significance was defined as 
P , .05.

Results

Evaluation of Guided DnCNN and Denoised DW Images
Examining the performance of the networks on the validation 
set (Appendix E4 [supplement]) demonstrated that the guided 
DnCNN yielded lower MSE compared with the original 
DnCNN. The original DnCNN and guided DnCNN with a 
patch size of 60 3 60 and a depth of 20 were applied to the test 
set. Denoising significantly improved PSNR, structural simi-
larity index, and normalized MSE. The noisy hb DW images 
had a PSNR of 14.15 dB 6 2.58, structural similarity index of 
0.58 6 0.07, and the normalized MSE was 149.4% 6 29.5. 
The original DnCNN produced images with a PSNR of 32.79 
dB 6 3.64, structural similarity index of 0.92 6 0.05, and 
reduced normalized MSE to 3.9% 6 10. Compared with the 
original DnCNN, the guided DnCNN had a higher PSNR of 
33.74 dB 6 3.64, structural similarity index of 0.93 6 0.04 
(for both P , .001), and lower normalized MSE of 1.6% 6 
1.5 (P , .001).

Figure 3 shows representative noisy, reference, and denoised 
hb DW images obtained using original and guided DnCNNs. 
For this scan, the repetition time was 7833 msec, and diffu-
sion was acquired in three orthogonal directions separately, re-
sulting in a scan time of 376 seconds for the reference hb DW 

Table 2: Qualitative Image Evaluation Criteria and Scoring Definitions

Score
Overall Image 
Quality

Prostate Margin and 
Zonal Demarcation Noise Suppression Image Sharpness

Lesion  
Conspicuity

1 Nondiagnostic No visualization Substantial noise that 
hampers diagnostic 
capability of readers

Nondiagnostic, blurred, hampering 
diagnostic capability

No visualization

2 Poor Poorly visualized with 
inability to trace struc-
tures clearly

Substantial noise with sig-
nificant image quality 
degradation

Substantially blurred, not hampering 
diagnostic capability but signifi-
cantly decreased image quality

Poor

3 Fair Fair Moderate noise Mild blur with mild image quality 
degradation

Moderate

4 Good Nearly complete and 
clear demarcation

Minimal noise without 
image quality degrada-
tion

Minimal or no blur Good

5 Excellent Complete and clear 
demarcation

… … Excellent

http://radiology-ai.rsna.org
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maps, calculated as a sum of the scan times for the lb DW 
and hb DW images, was 160 seconds. The scan time for the 
noisy and denoised ADC maps was 48 seconds. Denoised 
ADC maps appear comparable to the reference ADC maps; 
however, they require 70% shorter scan time. The normalized 
MSE of the denoised ADC maps, 1.8% 6 3.5, was lower 
than the normalized MSE of the noisy ADC maps, 79.3% 6 
91.3 (P , .001).

The noisy ADC maps (Table 4) yielded much lower ADC 
values in all tissues compared with the reference values (P 
 .001). The denoised ADC values were comparable to the 
reference ADC values. In the muscle, the median denoised 
ADC value was 0.97 (IQR, 0.22) 3 10-3 mm2/sec, and the 
reference ADC value was 0.98 (IQR, 0.23) 3 10-3 mm2/
sec. In the peripheral zone, the median denoised ADC value 
was 1.62 (IQR, 0.41) 3 10-3 mm2/sec, and the reference 
ADC value was 1.64 (IQR, 0.42) 3 10-3 mm2/sec. In the 
transition zone, the median denoised ADC value was 1.24 
(IQR, 0.21) 3 10-3 mm2/sec, and the reference ADC value 
was 1.22 (IQR, 0.22) 3 10-3 mm2/sec. In the index lesion, 
the median denoised ADC value was 0.74 (IQR, 0.31) 3 
10-3 mm2/sec, and the reference value was 0.72 (IQR, 0.34) 
3 10-3 mm2/sec. Figure 6 shows the Bland-Altman plots be-
tween the denoised and reference ADC values. For muscle 
tissue ADC, a bias of 0.02 3 10-3 mm2/sec was observed 
with 95% limits of agreement of 20.07 and 0.12 3 10-3 
mm2/sec. For the peripheral zone, the bias was 0.004 3 10-3 
mm2/sec with 95% limits of agreement 20.14 and 0.15 3 
10-3 mm2/sec. For the transition zone, the bias was 20.008 
3 10-3 mm2/sec with the limits of agreement 20.14 and 
0.12 3 10-3 mm2/sec. In cancer lesions, the ADC bias was 
20.04 3 10-3 mm2/sec with the limits of agreement 20.09 
and 0.02 3 10-3 mm2/sec.

quality, MZD, and noise suppression categories, respectively. 
The agreement was moderate (k = 0.58 with 95% CI: 0.35, 
0.81) for the lesion conspicuity, and fairly weak for the image 
sharpness (k = 0.194 with 95% CI: 20.35, 0.74) categories.

Evaluation of the ADC Maps
Figure 5 shows the representative ADC maps derived from 
the noisy, denoised, and reference hb DW images for two 
patients. For these scans, repetition time was 8000 msec, and 
diffusion was acquired in one direction (“3-in-1”), resulting 
in a scan time of 128 seconds for the reference images. The 
denoised and noisy hb DW images corresponded to a scan 
time of 16 seconds because of an eightfold reduction in the 
number of averages. The acquisition time for reference ADC 

Figure 3:  Denoising using denoising convolutional neural network (DnCNN) and guided DnCNNs. A, B, Two separate slices from the same patient. C, D, Zoomed-in 
view of the boxed regions in A and B. Low b-value images were used in guided DnCNN only. The reference image is a high b-value diffusion-weighted (DW) image recon-
structed using 16 averages corresponding to an acquisition time of 376 seconds. Noisy image is a high b-value DW image reconstructed using two averages corresponding 
to an acquisition time of 47 seconds. DnCNN and guided DnCNN correspond to a noisy image denoised using either original DnCNN or guided DnCNN. Anatomic 
structures are better visualized on guided DnCCN images compared with DnCNN images; for example, the right hip joint (arrows in A and B), rectum (arrowheads in B), 
junction between the peripheral zone and transition zone (dashed arrows in C), and bladder wall (* in D). White dashed line in the noisy image in A shows the location of the 
intensity profiles plotted in Figure 4. Acquisition times are proportional to the repetition time of 7833 msec, three diffusion directions, and corresponding number of averages.

Figure 4:  Signal intensity profiles from the reference, denoised with guided 
denoising convolutional neural network, and noisy high b-value diffusion-weighted 
images shown in Figure 3, A. Denoising reduces the peak-to-peak noise fluctuations 
and noise-induced signal bias. AU = arbitrary units.

http://radiology-ai.rsna.org
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Discussion
This work showed that acceleration of prostate DWI was 
feasible using a reduced number of averages and CNN-
based denoising without loss of perceived image quality. The 
guided DnCNN was proposed by making a modification 
to a previously described denoising method, DnCNN (13). 
The network was trained and tested on the DW prostate 

images obtained at six single-vendor 3-T scanners. The ac-
celerated hb DW images, reconstructed with two averages 
and subsequently denoised, were evaluated with respect to 
the reference images and reconstructed with 16 averages. 
The resulting ADC maps were compared with the reference 
ADC maps, and the agreement between the ADC values 
was examined.

Table 3: Summary of Image Evaluation

Reader and Image Type Image Quality* Margin and Zonal Demarcation* Noise Suppression† Image Sharpness† Lesion Conspicuity*

Reader 1
  Noisy 2 (0) 2 (0) 2 (1) 3 (1) 2 (2)
  Reference 3 (1) 3 (1) 3 (0) 3 (0) 3 (3)
  Denoised 4 (1) 4 (1) 4 (0) 3 (0) 3 (1)
Reader 2
  Noisy 2 (1) 2 (1) 1 (1) 1 (1) 1 (1)
  Reference 4 (1) 4 (1) 3 (2) 3 (2) 2 (1)
  Denoised 4 (1) 5 (1) 4 (0) 4 (1) 4 (2)

Note.—Scores are reported as the median and interquartile ranges are shown in parentheses. Summary of the image evaluation scores for 37 
patients (lesion conspicuity was scored for a subset of 15 patients). Noisy image is high b-value diffusion-weighted (DW) images obtained 
using two averages. Reference is high b-value DW images obtained using 16 averages. Denoised is an image resulting from denoising of the 
noisy image using guided denoising convolutional neural network.
* Score range was 1–5.
† Score range was 1–4.

Figure 5:  Representative examples of diffusion-weighted (DW) images and derived apparent diffusion coefficient (ADC) maps. A and B show images from two separate 
patients (not used in Figure 3). DW image column contains low b-value image (four averages), noisy and/or denoised (two averages), and reference (16 averages) high 
b-value DW images. Low b-value image was used to compute the ADC maps. Noisy ADC maps strongly underestimate ADC values. Denoised ADC maps with an acquisition 
time of 48 seconds are comparable with the reference ADC maps with an acquisition time of 160 seconds. Zoomed-in view on the boxed regions from A and B are displayed 
in C and D. Acquisition times are based on a repetition time of 8000 msec, single diffusion direction, and corresponding number of averages.

http://radiology-ai.rsna.org
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Table 4: Average and Median ADC Values

Tissue Type

Noisy ADC Denoised ADC Reference ADC

Mean 6 SD Median (IQR) Mean 6 SD Median (IQR) Mean 6 SD Median (IQR)

Muscle −0.14 6 0.17 0.11 (0.31) 0.97 6 0.15 0.97 (0.22) 0.99 6 0.14 0.98 (0.23)
Peripheral zone 1.19 6 0.29 1.26 (0.35) 1.58 6 0.31 1.62 (0.41) 1.59 6 0.33 1.64 (0.42)
Transition zone 0.83 6 0.29 0.80 (0.32) 1.23 6 0.21 1.24 (0.21) 1.22 6 0.20 1.22 (0.22)
Cancer lesion 0.53 6 0.18 0.50 (0.25) 0.80 6 0.19 0.74 (0.31) 0.76 6 0.19 0.72 (0.34)

Note.—Apparent diffusion coefficient (ADC) values measured in different tissue types using ADC maps derived from noisy, denoised, and 
reference high b-value diffusion-weighted images. Muscle, peripheral, and transition zone ADC values were measured in 37 patients, and 
cancer lesion ADC was measured in 15 patients. IQR = interquartile range, SD = standard deviation.

Figure 6:  Bland-Altman plots show per-patient analysis between apparent diffusion coefficient (ADC) values measured using the 
reference ADC map and the denoised ADC map in, A, muscle, B, peripheral zone, C, transition zone, and, D, cancer lesion. The solid 
line represents the mean difference (bias), and the dotted lines represent the 95% limits of agreement.

The framework of training a DnCNN model (13), using noisy 
and reference MR images reconstructed from the same data set, 
was previously described to accelerate arterial spin labeling imag-
ing of the brain (19). The original DnCNN network was trained 
on pairs of noisy (10 averages) and reference (40 averages) im-
ages. In our study, the performance of original DnCNN was 
suboptimal when resolving small anatomic features of low signal 
intensity, motivating the development of the guided DnCNN. 
The guided DnCNN design was based on the previous studies 
demonstrating the benefits of the multicontrast input for im-
age denoising of brain arterial spin-labeling images and reduced 
contrast material dose contrast-enhanced brain images (11,20). 
Similar to the guided image-filtering methods (14,21) in which 
an additional image of the same structures is used to prevent 
oversmoothing of the edges, in guided DnCNN, the guidance lb 
DW prostate image improves the denoising performance.

Compared with the original denoising method, the guided 
DnCNN yielded the higher PSNR and structural similarity in-
dex and lower normalized MSE. It also enabled the restoration 
of features with a very low signal, comparable with what was 
visualized in the reference hb DW images. The reader study 
showed that the denoised hb DW images, which require much 
shorter scan time, had significantly higher scores compared 
with the reference images. Two considerations explain these re-
sults. First, in prostate DW reference images, the SNR increase 
is achieved by averaging repeated measurements. Such an ap-
proach is prone to image blurring because of involuntary ana-
tomic motion, such as peristalsis and rectal distention (22,23). 
Therefore, reducing the number of averages should reduce 
motion-related blurring, and thus may lead to the perceived 
higher image quality. Second, denoising suppresses noise and 
affects the overall perception of image quality, which may lead 
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to perceived improved image quality in the denoised images. 
Similarly, in a reader study of denoised digital subtraction angi-
ography images acquired with one-quarter of contrast material 
dose, the denoised images were ranked higher than the refer-
ence full-dose images (24).

Unlike the noisy natural images, often modeled by adding 
Gaussian noise, the noise in the magnitude MR images fol-
lows Rician distribution (5), and in the images with low signal 
intensity it introduces a bias. In this work, we showed that the 
guided DnCNN, trained on the pairs of the actual noisy and 
reference MR magnitude images, not only reduced the stan-
dard deviation of noise but also reduced the signal intensity 
bias to the level of bias seen in the reference DW images.

Deriving ADC maps from the denoised hb DW images re-
sulted in ADC values comparable with the reference ADC maps 
with normalized MSE lower than 5%. The ADC values mea-
sured using the denoised ADC maps demonstrated good agree-
ment with the ADC values measured from the reference ADC 
maps. Bias with an absolute value of 0.04 3 10-3 mm2/sec or 
smaller was observed on the Bland-Altman plots examining the 
ADC values in muscle, prostate index lesion, and peripheral or 
transition zones. The 95% limits of agreement between the de-
noised and reference ADC maps were acceptable and compa-
rable with the results of DWI repeatability studies. For example, 
in a repeatability study examining the agreement between the 
prostate ADC measurements acquired twice on the same day 
in 18 patients, the 95% limits of agreement between the two 
measurements of the median tumor ADC values were 20.27 
and 0.26 3 10-3 mm2/sec (25). The observed good agreement 
between the ADC values from the denoised and reference ADC 
maps indicated that guided DnCNN denoising of the acceler-
ated noisy hb DW images provided noninferior hb DW images 
and ADC maps.

The study had several limitations. First, the denoising 
model was trained on the data from six MRI scanners of a 
single vendor, and only the datasets for which SNR of the 
reference images was 15 or higher were used, which poten-
tially can affect the generalizability of the model. Second, 
because the noise-free ground truth DW images or ADC 
maps were not attainable, the network was trained on the 
available and clinically relevant highest quality estimates of 
the prostate hb DW images for a b value of 1000 sec/mm2. It 
would be of value to explore a “noise2noise” denoising para-
digm that does not require the ground truth “clean” images 
for model training (26). Its applicability to MRI magnitude 
image noise with nonzero mean may be limited (27). Other 
limitations were the relatively small size of the test set of 37 
patients, the small number of cases in which the lesion ap-
pearance was evaluated (15 patients), and the small number 
of the readers.

In conclusion, this retrospective study presented quantita-
tive and qualitative evidence for technical feasibility of acceler-
ating prostate DWI by reducing the number of acquired aver-
ages to two and denoising the resulting image. Future work will 
focus on establishing the effect of this acceleration framework 
on the diagnostic performance of the denoised DW images and 
ADC maps.
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