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Abstract

Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and
maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple
signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer
metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that
ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As
one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process,
involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to
various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation
of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in
metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
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Background
Metabolic pathways are of vital importance in proliferat-
ing cells to meet their demands of various macromole-
cules and energy [1]. Compared with normal cells,
cancer cells own malignant properties, such as increased
proliferation rate, and reside in environments short of
oxygen and nutrient. Correspondingly, metabolic activ-
ities are altered in cancer cells to support their malig-
nant biological behaviors and to adapt to stressful
conditions, such as nutrient limitation and hypoxia [1].
Cancer metabolism is an old field of research. Warburg
effect observed in the 1920s provides a classical example
of metabolic reprogramming in cancer [2]. In the past
few decades, enhanced biosynthesis of macromolecules,
altered energy metabolism, and maintenance of redox
homeostasis have been observed to be essential features
of cancer metabolism. Altered metabolism in cancer

cells have aroused increasing attention and interest [3].
Because of the generality of metabolic alterations in can-
cer cells, metabolic reprogramming is thought as hall-
mark of cancer, providing basis for tumor diagnosis and
treatment [1]. For instance, the application of 18F-
deoxyglucose positron emission tomography is based on
tumor cells’ characteristic of increased glucose con-
sumption [4]. Inhibition of some metabolic enzymes,
such as L-lactate dehydrogenase A chain (LDH-A), have
been observed to regress established tumors [5, 6].
Therefore, research of metabolic reprogramming is of
critical importance, which might provide new opportun-
ities for cancer diagnosis and treatment.
Amongst multiple post-translational modification, pro-

tein ubiquitination is a common and important process in
cells [7, 8]. Ubiquitination and deubiquitination have been
observed to be dysregulated in various types of cancers.
Genetic and epigenetic aberrations, such as mutation,
amplification and deletion, can be the common causes of
dysregulated ubiquitination and deubiquitination in can-
cer cells [9]. Ubiquitination and deubiquitination can also
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be abnormally regulated by transcriptional, translational
or posttranslational mechanisms in cancer cells, exerting
oncogenic or anti-cancer roles in carcinogenesis [7, 8, 10].
In recent years, the involvement of ubiquitination and
deubiquitination in the regulation of metabolic repro-
gramming in cancer cells has received a growing body of
attention [11]. Given the complexity and importance of
both cancer metabolism and protein ubiquitination, the
exact roles of protein ubiquitination and deubiquitination
in metabolic reprogramming are worth further studies
and analyses. The present review will highlight the ubiqui-
tination and deubiquitination system as a regulator of can-
cer metabolism and discuss future directions focusing on
the strategies to improve cancer therapy.

Cancer metabolism
To satisfy nutrient and energy requirements for cells’
survival and growth, metabolic pathways are altered in
cancer cells, which is called metabolic reprogramming
[1]. Metabolic reprogramming is a highly regulated
process [12]. Aberrant activation of mechanistic target of
rapamycin complex 1 (mTORC1) is one of the most
common alterations in proliferating cancer cells, playing
a key role in metabolic reprogramming [12]. Under the
stimulation of amino acids, mTORC1 can be activated,
which subsequently exerts various biological effects by
activation of different downstream targets, such as
hypoxia-inducible factor 1 (HIF-1) and sterol regulatory
element-binding protein (SREBP) [12, 13]. Proliferating
cancer cells require elevated synthesis of protein, lipid
and nucleotide. Glycolysis can be upregulated by
mTORC1 activation, providing more glycolytic interme-
diates for biosynthesis of these macromolecules [14].
Moreover, mTORC1 activation promotes glutamine up-
take to maintain mitochondrial ATP production [15].
Fatty acids can also supply carbon to the tricarboxylic
acid (TCA) cycle to sustain mitochondrial function [16].
PI3K-AKT signaling is the most well-known mechanism
for activating mTORC1 [17]. Besides, mTORC1 can be
activated or inhibited by various signaling pathways dir-
ectly or indirectly. For instance, 5′-AMP-activated pro-
tein kinase (AMPK) activated by energy shortage is a
crucial inhibitor of mTORC1 [18]. What’s more, tran-
scription factor c-Myc and p53 also take part in meta-
bolic reprogramming through transcriptional regulation
of metabolism-related genes [19, 20]. Based on multiple
regulatory mechanisms, expression or activity of the en-
zymes involved in glucose, amino acids and fatty acids
metabolism are altered, directly contributing to meta-
bolic reprogramming [21]. What’s more, the up-
regulation of various metabolic processes in cancer cells
triggers accumulation of reactive oxygen species (ROS)
[22]. Transcription factors nuclear factor erythroid 2-
related factor 2 (NRF2) and HIF-1 play key roles in

maintenance of redox homeostasis, keeping ROS in an
appropriate level to promote tumor growth rather than
inducing damage [23, 24].
Under nutrient rich conditions, activation of mTORC1

supports cancer cells growth. In periods of cellular
stress, low levels of amino acids or absent ATP induces
mTORC1 inhibition, which subsequently activates a
compensatory mechanism named autophagy [25]. Au-
tophagy is a highly regulated pathway essential for cell
survival in nutrient-deprived conditions, complementing
the classical pathways like glycolysis. Autophagy supplies
amino acids by inducing degradation of macromolecules
and organelles in lysosome, thereby providing intracellu-
lar amino acids supply to fuel the TCA cycle, gluconeo-
genesis and protein synthesis [26]. However, the
interplay between autophagy and glycolysis seems to be
complex. Activation of autophagy has been observed to
enhance glycolysis [27]. Deficiency of mitophagy can in-
duce mitochondrial dysfunctions, enhancing glycolysis
and Warburg effect [28]. Additionally, studies have
found that oxidative stress induced by cancer cells can
promote aerobic glycolysis and autophagy in cancer as-
sociated fibroblasts to obtain recycled nutrients from
cancer associated fibroblasts. This phenomenon is called
“Reverse Warburg Effect” [29]. Therefore, both the ana-
bolic pathways, such as glycolysis, and the catabolic
pathways, such as autophagy, interplay with each other,
together contribute to cancer metabolism and support-
ing cellular growth. Taken together, abnormal alterations
of multiple signaling pathways, transcription factors and
metabolic pathways synergistically lead to metabolic re-
programming in cancer cells.

Ubiquitination and deubiquitination
Ubiquitination is an ATP-dependent cascade process li-
gating ubiquitin, a ubiquitously expressed protein con-
sisting of 76 amino acids, to a substrate protein [30].
Ubiquitin-activating enzymes (E1s) initially bind to ubi-
quitin for activation, and then transfer activated ubiqui-
tin to ubiquitin-conjugating enzymes (E2s). Ubiquitin
ligases (E3s) finally transfer ubiquitin from E2 to sub-
strates [30]. According to the number of ubiquitin
attaching to one lysine residue in protein, ubiquitination
is divided into monoubiquitination (single ubiquitin) and
polyubiquitination (a chain of ubiquitin) [31]. In the
polyubiquitination chain, ubiquitin can be attached via 7
lysine residues (K6, K11, K27, K29, K33, K48, and K63)
or the first methionine (M1) [32]. Different types of ubi-
quitination lead to disparate fates of substrate proteins.
K48-linked polyubiquitination is the most widely studied
type, which mainly labels proteins for 26S proteasome-
mediated recognition and degradation [32]. K48-linked
polyubiquitination also has proteasome independent
functions, including regulation of signaling events and
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transcription, which are possibly determined by the length of
the ubiquitin chain [33–35]. K11-linked polyubiquitination is
also associated with proteolysis [32]. Ubiquitin-proteasome
system is involved in the degradation of more than 80% of
proteins in cells [36]. K63-linked polyubiquitination is in-
volved in signaling assemblies [32]. E3 ligases play a key role
in the whole process of ubiquitination because of their speci-
ficity for substrates. In human genome, there are approxi-
mately 1000 E3 ligases, which can be divided into the
homology to E6AP C terminus (HECT) domain-containing
E3s, the RING-between-RING (RBR) family E3s and the
really interesting new gene (RING) finger domain-containing
E3s [37]. Deubiquitination is catalyzed by deubiquitinating
enzymes (DUBs) to remove ubiquitin from ubiquitinated
proteins, thus reversing the ubiquitination process [7]. About
100 DUBs fall into seven subgroups: the ubiquitin-specific
proteases (USPs), the ubiquitin C-terminal hydrolases
(UCHs), the ovarian tumor proteases (OTUs), the Machado-
Josephin domain proteases (MJDs), the JAB1/MPN+/
MOV34 (JAMM) domain proteases, the monocyte chemo-
tactic protein-induced proteins (MCPIPs), and the motif
interacting with ubiquitin-containing DUB family (MINDY)
[10]. Dynamic conversion between ubiquitination and deubi-
quitination is closely related to various cellular functions and
thus, its dysregulation results in multiple disease, such as
neurodegenerative diseases and cancer [38]. Understanding
of ubiquitination and deubiquitination may provide novel in-
sights into the treatment of these diseases.

Ubiquitination and metabolic signaling pathways
Ubiquitination of mTOR
Aberrant activation of mTORC1 is considered as a key
feature of metabolic reprogramming. mTORC1 is a
complex consisting of mTOR, Raptor, mLST8, PRAS40
and DEPTOR [39]. mTOR is an evolutionarily conserved
serine/threonine protein kinase in the PI3K-related kin-
ase superfamily, responsible for the catalytic activity of
mTORC1 [40]. Translocation of mTORC1 to lysosome
is the premise for its subsequent activation, identified as
a critical step in the activation of mTORC1 signaling
[41]. Activated RagA is thought to be the main participa-
tor in the re-localization of mTORC1 to the lysosomes
in amino acid-stimulated cells [41]. Studies have found
that E3 ligase TRAF6, which is upregulated in cancer
cells, can mediate K63-linked polyubiquitination of
mTOR by interacting with p62 under the stimulation of
amino acids, promoting the translocation of mTORC1
to the lysosomes and subsequent activation (Fig. 1) [42].
In addition, decreased K48-linked ubiquitination of
mTOR by E3 ligase FBX8 and FBXW7 alleviates
proteasome-dependent degradation of mTOR, exerting
an oncogenic effect in cancer as well [43, 44]. Reduced
mTOR ubiquitination is also linked to therapy resistance
in cancer. Everolimus is a mTOR inhibitor used in

breast cancer patients. Following downregulated phos-
phorylation of mTOR induced by depletion of dual spe-
cificity tyrosine-phosphorylation-regulated kinase 2
(DYRK2), ubiquitination and degradation of mTOR di-
minish, resulting in everolimus resistance [45]. Non-
thermal plasma exerts anti-tumor effect by inducing
RNF126 mediated K48-linked polyubiquitination and
degradation of mTOR [46]. However, when faced with
mitochondrial stress, E3 ligase PARKIN targets mTOR
for ubiquitination, which maintains mTORC1 activity in-
stead of affecting mTOR stability, thereby enhancing cell
survival [47]. DUB USP9X can negatively modulate
mTOR function and mTORC1 activity without changing
mTOR protein level [48]. Therefore, different types of
ubiquitination and deubiquitination play diverse roles in
the regulation of mTOR function.

Ubiquitination of raptor
Raptor is the regulatory protein of mTORC1, maintain-
ing the correct subcellular localization of mTORC1 and
allowing the binding of mTORC1 with substrates [49].
DDB1-CUL4 E3 ligase complex is essential for maintain-
ing mTORC1 stability by ubiquitinating Raptor. Dis-
placement of DDB1-CUL4 complex by DUB UCH-L1
can remove K63-linked poly-ubiquitin chains on Raptor,
bringing about reduced mTORC1 [49].

Ubiquitination of mLST8
mLST8, also called GβL, is a component of both
mTORC1 and mTORC2. mLST8 is associated with the
catalytic domain of mTOR and stabilizes its kinase acti-
vation loop [50]. mLST8 can be ubiquitinated by TRAF2
through K63-mediated linkage, which breaks the inter-
action between mLST8 and SIN1 in mTORC2, giving
rise to elevated formation of mTORC1. This process can
be reversed by DUB OTUD7B, leading to increased
mTORC2 formation [50]. The study highlighted the role
of ubiquitination and deubiquitination in the balance
and competence between mTORC1 and mTORC2 sig-
naling under various conditions.

Ubiquitination of DEPTOR
DEPTOR is an inhibitor of both mTORC1 and
mTORC2. mTOR activation can phosphorylate DEP-
TOR and promote its recognition by SCFβ-TrCP ubiquitin
ligase, targeting DEPTOR for polyubiquitination and
proteolytic degradation [51, 52]. In tumors with isoci-
trate dehydrogenase1/2 (IDH1/2) mutations, oncometa-
bolite 2-hydroxyglutarate indirectly promotes DEPTOR
polyubiquitination by SCFβ-TrCP, thus activating mTOR
[51]. E3 ligase RNF7 exerts oncogenic effect in prostate
tumorigenesis by promoting ubiquitination and degrad-
ation of DEPTOR [53]. DUB OTUB1 specifically stabi-
lizes DEPTOR via deubiquitination, thereby playing an
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anticancer role [54]. CUL5 also targets DEPTOR for
degradation, which is inhibited during autophagy activa-
tion [55]. Autophagy triggered by decreased ubiquitina-
tion and degradation of DEPTOR is related to drug
resistance in cancer. Anticancer agent MLN4924 causes
protective autophagy via inactivation of the CUL E3 lig-
ase and accumulation of DEPTOR, which suppresses its
effectiveness [56]. Enhancement of DEPTOR degrad-
ation can attenuate autophagy, which has been found to
be an effective target in Temozolomide-resistant glio-
blastoma cells [57].

Ubiquitination of RagA
As we mentioned above, activated RagA plays a key role
in the re-localization of mTORC1 to the lysosomes and
subsequent activation of mTORC1 [41]. Study found
that downregulation of lysosomal E3 ligase RNF152 pro-
tected cells from autophagy [58]. RNF152 modifies RagA
by K63-linked polyubiquitination and promotes recruit-
ment of RagA inhibitor GATOR1, thus inducing RagA
inactivation. Then mTORC1 is released from the lyso-
somal surface, giving rise to blockade of mTORC1 sig-
naling pathway [58]. Moreover, K63-linked

polyubiquitination of RagA can also be mediated by E3
ligase SKP2, which exerts a similar effect with RNF152
[59].

Ubiquitination of GATORs
GATOR1 is a complex consisting of DEPDC5, NPRL2
and NPRL3, while GATOR2 consists of Mios, WDR24,
WDR59, Seh1L and sec13. GATOR2 negatively regulates
DEPDC5 in GATOR1, which acts as an inhibitor of
RagA. Thus, GATOR2 exerts a promoting effect on
RagA. Oncogenic E3 ligase CUL3-KLHL22 was observed
to mediate K48-linked polyubiquitination of DEPDC5
and target DEPDC5 for degradation under the stimula-
tion of amino acids and promote mTORC1 activation in
tumor [60].

Ubiquitination of Rheb
GTP-bound Rheb is the activator of mTORC1 after
translocation of mTORC1 to the lysosome. Monoubiqui-
tination of Rheb by the lysosomal E3 ligase RNF152 can
enhance its interaction with the tuberous sclerosis com-
plex (TSC) complex, the major inhibitor of Rheb, and
can decrease mTORC1 activation [61]. Following

Fig. 1 Regulation of signaling pathways and transcription factors associated with cancer metabolism by ubiquitination and deubiquitination.
Aberrant activation of signaling pathways like PI3K-AKT-mTORC1, loss of tumor suppressive transcription factors like p53 and activation of
oncogenic transcription factors like c-Myc control cancer metabolism. Ubiquitination and deubiquitination indirectly regulate cancer metabolism
by modulating these signaling molecules and transcription factors. The ubiquitin ligases and deubiquitinating enzymes in red font positively
regulate the activity or expression level of substrate proteins. The ubiquitin ligases and deubiquitinating enzymes in blue font negatively regulate
the activity or expression level of substrate proteins. AMP, adenosine monophosphate; ATP, adenosine triphosphate; mTORC1, mTOR complex 1;
PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; ROS, reactive oxygen species; RTK, receptor tyrosine
kinase; TSC, tuberous sclerosis complex
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phosphorylation by AKT, USP4 can deubiquitinate Rheb
to reverse the action of RNF152. Therefore, the dynamic
change of ubiquitinating state of Rheb is associated with
mTORC1 activation and tumor growth [61].

Ubiquitination of TSC complex
TSC complex, composed of TSC1, TSC2, and TBC1D7,
is identified as a major upstream regulator of Rheb, con-
verting GTP-bound Rheb to GDP-bound Rheb, thus
inhibiting mTORC1 activation. TRIM31 mediated K48-
linked ubiquitination of TSC1-TSC2 complex induces its
degradation and promotes growth of hepatocellular car-
cinoma cells [62]. FBXW5 recruits TSC2 protein to
DDB1-CUL4-ROC1 E3 ligase complex, promoting its
ubiquitination and degradation [63]. Moreover, E3 ligase
Pam, HERC1 and UBE3A were also observed to mediate
TSC2 protein ubiquitination and to enhance its degrad-
ation [64–66]. Interaction of TSC2 with TSC1 can pre-
vent TSC2 from HERC1 ubiquitin ligase mediated
degradation [66], while VPS34 can competitively bind to
TSC1, resulting in TSC2 degradation [67]. E3 ubiquitin
ligase SCFβ-TrCP can ubiquitinate free TBC1D7 for deg-
radation. Binding to TSC or AKT dependent phosphor-
ylation of free TBC1D7 can prevent TBC1D7 from
interaction with SCFβ-TrCP, stabilizing the pool of
TBC1D7 [68].

Ubiquitination of PI3K
PI3K-mTORC1 signaling is the crucial signaling path-
way that governs metabolic reprogramming and
tumor cell growth. PI3K can be activated under the
stimulation of growth factors. Activated PI3K phos-
phorylates PIP2, converting PIP2 to PIP3, which re-
cruits 3-phosphoinositide-dependent protein kinase 1
(PDK1) and Akt to the membrane. PDK1 subse-
quently activates AKT, a negative regulator of TSC
complex, and subsequently activating mTORC1 [69].
Activation of PI3K-mTORC1 signaling can exert vari-
ous effects on metabolic process and play a key role
in the regulation of tumor metabolism [69]. PI3K is a
dimeric enzyme composed of a catalytic subunit
(p110α, p110β, or p110γ) and a regulatory subunit
(p85α, p85β, p55α, p55γ, or p50α) [70]. A dynamic
cycle of proteasome-dependent degradation and re-
synthesis of PI3Kp110α were observed in activation of
PI3K signaling. NEDD4L E3 ligase catalyzes free
PI3Kp110α for ubiquitination, leading to its
proteasome-dependent degradation and maintenance
of PI3K signaling [70]. TRAF6 E3 ligase promotes ac-
tivation of PI3K pathway in cancer by nonproteolytic
polyubiquitination of PI3K catalytic subunit p110α
[70]. TRAF6 also directs PI3K recruitment to TGF-β
receptor via K63-linked polyubiquitination of
PI3Kp85α, which is essential for TGF-β-induced

activation of PI3K signaling [71]. What’s more, PI3K
regulatory subunit p85α can be ubiquitinated by E3
ligase MKRN2 and E3 ligase complex HSP70-CHIP
through K48-mediated linkage, bringing about prote-
olysis of PI3Kp85α and downregulation of PI3K sig-
naling in cancer [72, 73]. Dephosphorylated free p85β
is ubiquitinated by FBXL2 for proteolysis. Decreased
free p85β reduces its competition with p85-p110 het-
erodimers for docking sites on cell membrane, thus
upregulating PI3K signaling [74]. Therefore, both the
catalytic subunit and the regulatory subunit can be
ubiquitinated, exerting various effects on PI3K
signaling.

Ubiquitination of PDK1
PDK1 phosphorylates and activates AKT, transducing
signal from activated PI3K to AKT. Attenuated ubiquiti-
nation and degradation of PDK1 are related to chemore-
sistance in ovarian cancer [75]. Monoubiquitination of
PDK1 in cancer cell lines can be reversed by USP4 cata-
lyzation, the function of which still remains unclear [76].

Ubiquitination of AKT
AKT, a negative regulator of TSC complex, can be acti-
vated by PI3K signaling, exerting oncogenic effect by
promoting mTORC1 signaling. K63-linked polyubiquiti-
nation of AKT catalyzed by TRAF6, NEDD4, SCF-SKP2,
FBXL18, RSP5 or TRAF4 E3 ligase is required for cell
membrane localization of AKT and is essential in activa-
tion of PI3K-AKT-mTOR pathway and subsequent up-
regulation of glycolysis [77–82]. SETDB1 catalyzed
methylation of AKT enhances its K63-linked ubiquitina-
tion and activation [83]. After interaction with KDM4B,
TRAF6 promotes its ubiquitination of AKT in colorectal
cancer, facilitating glucose metabolism and tumor
growth [84]. DUB CYLD, OTUD5 and USP1 can reverse
K63-linked polyubiquitination of AKT and inhibit its ac-
tivation [85–87]. Bisdemethoxycurcumin can inhibit he-
patocellular carcinoma cell growth by promoting CYLD-
mediated deubiquitination of AKT [88]. Enhanced AKT
ubiquitination and activation caused by downregulation
of DUB OTUD5 give rise to radioresistance in cervical
cancer [86]. pAKT ubiquitinated by NEDD4 can regulate
its nuclear trafficking to promote tumorigenesis [79].
What’s more, E3 ligases CHIP, BRCA1, TTC3, TRIM13,
ZNRF1, MUL1 can modify AKT by K48-linked ubiquiti-
nation and promote degradation of AKT to suppress its
activation [89–94]. Anticancer agents Rhus coriaria,
SC66 and Vitamin C can stimulate ubiquitination and
degradation of AKT in cancer cells [95, 96]. When pro-
teasome impairs in cellular stress, E3 ligase MUL1 cata-
lyzes K48-linked ubiquitination of AKT, which
subsequently undergoes lysosomal degradation, playing
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key roles in cellular survival [97]. This process can be re-
versed by DUB USP7 [97].

Ubiquitination of PTEN
As a negative regulator of PI3K/AKT signaling pathway,
phosphatase and tensin homolog (PTEN) converts PIP3
back to PIP2, playing tumor suppressive functions in
various cancers. Identified as the E3-ligase of PTEN,
NEDD4 not only contributes to monoubiquitination of
PTEN for its nuclear transport but also mediates polyu-
biquitination of PTEN for its proteasomal degradation
to activate AKT signaling transduction [98]. Up-
regulation of LINC00152 enhances NEDD4 mediated
ubiquitination and degradation of PTEN in breast cancer
[99]. E3 ligase WWP2, TRIM10, TRIM14, TRIM25,
TRIM27, TRIM59 and XIAP can target PTEN for ubi-
quitination and degradation as well [100–106]. AKT ac-
tivated MKRN1 E3 ligase also mediates ubiquitination
and degradation of PTEN, thus positively regulating
PI3K/AKT signaling axis [107]. The E3 ligase WWP1
mediated polyubiquitination can suppress the membrane
recruitment and function of PTEN [108]. Ubiquitination
via E3 ligase RFP can downregulate PTEN phosphatase
activity rather than altering its stability or localization
[109]. As for the deubiquitination of PTEN, USP10,
USP11, USP13, USP49, and OTUD3 catalyze removal of
K48-linked ubiquitin chain on PTEN to enhance protein
stability of PTEN and attenuate AKT signaling pathway
[110–114]. USP7-induced deubiquitination of PTEN re-
sults in its nuclear exclusion rather than regulating its
protein stability [115, 116]. DUB ATXN3 suppress
PTEN expression by reducing its transcription rather
than altering its protein level [117].

Ubiquitination of AMPK
AMPK is an inhibitor of mTORC1 by phosphorylating
Raptor and activating TSC2. As an energy sensor,
AMPK is crucial in maintenance of NADPH and ATP
level in response to reduced intracellular ATP. AMPK is
composed of catalytic α and regulatory β and γ subunits
[118]. E3 ligase complex MAGE-A3/6-TRIM28 and E3
ligase CRL4A catalyze ubiquitination of AMPKα and tar-
get it for degradation, thus reducing autophagy and al-
tering cancer metabolism [118, 119]. UBE2O, an atypical
ubiquitin enzyme with both E2 and E3 activities, ubiqui-
tinates AMPKα2 for degradation [120]. CRL4 catalyzed
ubiquitination also directs AMPKγ proteolysis [121].
GID ubiquitin ligase mediates ubiquitination and deg-
radation of AMPK as well, leading to decreased autoph-
agy and increased mTOR activity [122]. Ubiquitination
of AMPKα can be reversed by USP10 to remove the ubi-
quitin chain from AMPKα and promote AMPK activa-
tion [122].

Ubiquitination of KRAS
As a common mutated oncogene driving tumorigenicity
in pancreatic, colon and lung cancers, KRAS enhances
expression of glucose transporter type 1 (GLUT1) and
controls glycolysis and glutamine metabolism in cancer
cells, which is considered to be associated with meta-
bolic reprogramming in primary invasive cancers [123].
Monoubiquitination and diubiquitination of KRAS ele-
vate its GTP loading ability [124]. CUL3-based E3 ligase
complex can mediate polyubiquitination and degrad-
ation of KRAS [125]. KRAS4B, an alternative splicing of
KRAS gene, is targeted by E3 ligase NEDD4 for ubiquiti-
nation and proteolysis. However, activated KRAS signal-
ing upregulates NEDD4 expression and prevents
NEDD4-mediated KRAS ubiquitination. This in return
promotes NEDD4 catalyzed degradation of PTEN to
trigger tumor growth [126]. Therefore, modification of
signaling molecules by ubiquitination can exert various
effects in signaling pathways, thereby regulating meta-
bolic reprogramming in cancer cells.

Ubiquitination and transcription factors
Ubiquitination of HIF-1
HIF-1 is a metabolic-associated transcription factor
which can be activated by mTORC1, accumulation of
ROS and accumulation of TCA cycle metabolites. Acti-
vation of HIF-1 enhances expression of various glycolytic
genes including hexokinase 1 (HK1), HK2, LDHA, and
pyruvate dehydrogenase kinase isoform1 (PDK1),
strengthening glycolytic flux and maintaining redox
homeostasis [127]. HIF-1 consists of α and β subunits.
Compared with HIF-1β, HIF-1α is unstable and suscep-
tible to ubiquitination. E3 ligase VHL can mediate deg-
radation of HIF-1α under normoxic conditions. Loss of
VHL in cancer cells stabilizes HIF-1α, contributing to
aerobic glycolysis [128, 129]. E3 ligase MDM2, PARKIN
and HUWE1 can catalyze ubiquitination of HIF-1α and
targets it for degradation, thus exerting an anti-tumor ef-
fect [130–132]. Tumor suppressors PTEN and p53 can
enhance MDM2-mediated ubiquitination and degrad-
ation of HIF-1α to inhibit tumorigenesis [133–135]. Fol-
lowing phosphorylation by GSK3β, HIF-1α
ubiquitination via FBXW7 is increased, which promotes
proteolysis of HIF-1α and inhibits tumor growth [136].
Anticancer drug glyceollins and thymoquinone can in-
hibit tumor growth by elevating ubiquitination and deg-
radation of HIF-1α [137, 138]. E3 ligase FBX11 can
reduce the mRNA stability rather than protein stability
of HIF-1α [139]. DUB USP28 can antagonize the ubiqui-
tination of HIF-1α by FBXW7 [136]. TRIM44, USP20
and USP7 also stabilizes HIF-1α by deubiquitination,
leading to tumor progression under hypoxia [140–143].
DUB OTUD7B can suppress degradation of HIF-1α via
proteasome-independent manner [144]. USP8 mediated
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deubiquitination of HIF-1α was to maintain its expres-
sion level in normal conditions [145]. K63-linked polyu-
biquitination of HIF-1α catalyzed by TRAF6 can protect
it from degradation [146]. XIAP modifies HIF-1α by
K63-linked polyubiquitination to promote its nuclear re-
tention and enhance HIF-dependent gene expression
[147]. In conclusion, ubiquitination is an important
regulatory mechanism of HIF-1.

Ubiquitination of c-Myc
Transcription factor c-Myc contributes to metabolic re-
programming through transcriptional regulation of
genes participating in metabolism, such as LDHA [148].
c-Myc is an unstable protein susceptible to ubiquitina-
tion and proteolysis. E3 ligase SKP2, HUWE1, FBX29,
TRUSS, RCHY1, CHIP, FBXW7, VHL, SPOP, TRIM32,
NEDD4 and FBXL14 can target c-Myc for ubiquitination
and degradation [149–160]. Decreased ubiquitination of
c-Myc by VHL is observed to drive aerobic glycolysis in
breast cancer cells [159]. Mutation or deletion of these
E3 ligase genes induces carcinogenesis by attenuating c-
Myc degradation. Anticancer drugs, including lanatoside
C, diminish cancer cell growth by upregulating ubiquiti-
nation and degradation of c-Myc in cancer [161–163].
Ubiquitination of c-Myc can also be regulated by inter-
action with other molecules. FBXL16 can competitively
bind with c-Myc without inducing ubiquitination of c-
Myc, thereby rescuing c-Myc from FBXW7-mediated deg-
radation [164]. Interaction with Evi5 also antagonizes
FBXW7-mediated ubiquitination of c-Myc protein in la-
ryngeal squamous cell carcinoma [165]. Phosphorylated
ANXA2 interacts with MYC and inhibits ubiquitin-
dependent proteasomal degradation of MYC protein in
esophageal cancer [166]. LncRNA XLOC_006390, GLCC1
and LINC01638 also block ubiquitination of c-Myc [156,
167, 168]. What’s more, E3 ligase FBX28 mediated non-
proteolytic ubiquitination of c-Myc can enhance c-Myc
dependent transcription [169]. Ubiquitination of c-Myc by
E3 ligase SCFβ-TrCP in G2 phase can stabilize c-Myc to fa-
cilitate recovery from an S-phase arrest [170]. Moreover,
the DUB USP7, USP13, USP22, USP28, USP36 and
USP37 stabilize c-Myc, thereby stimulating tumor growth
[155, 157, 171–174].

Ubiquitination of p53
As a critical tumor suppressor participating in cell cycle
regulation and apoptosis, p53 was also clarified by recent
studies of its participation in metabolic reprogramming.
Loss of p53 induces enhancement of glycolysis and
maintenance of redox homeostasis in cancer cells [175].
Monoubiquitination, K48-linked and K63-linked polyu-
biquitination were observed to be common post-
translational modification of p53 protein. MDM2/
MDMX complex is the major E3 ligases and the main

negative regulator of p53, degrading p53 and decreasing
transcription of p53 target genes [176]. At the same
time, MDM2 is targeted by p53 to form a negative feed-
back loop for the dynamic regulation of p53 under
stressed and unstressed conditions [177]. RCHY1,
COP1, CHIP, HUWE1, RING1, FBXW7, Synoviolin,
MKRN1, TOPORS, CARP1/2, CUL4a-DDB1-ROC,
CUL5, RNF115, TRIM23, TRIM24, TRIM28, TRIM39,
TRIM69, TRIM71 can also target p53 for K48-linked
polyubiquitination and degradation [178–185]. K48-
linked polyubiquitination of p53 can be regulated by
various molecules. For instance, MAVS and ATF3 can
stabilize p53 by preventing p53 from MDM2-mediated
ubiquitination [186, 187]. ACP5 mediated p53 phos-
phorylation enhanced the ubiquitination and degrad-
ation of p53 [188]. p53 protein can be deubiquitinated
by DUB OTUD1, OTUD3, OTUD5, ATXN3, USP10,
USP11, USP15, USP24, USP29 and USP42 to enhance
its function as tumor suppressor under the conditions of
high carcinogenicity and genotoxicity [117, 189–198].
DUB USP7 can catalyze deubiquitination of p53 and up-
regulate level of p53 protein as well [199]. On the other
hand, USP7 mediates deubiquitination and stabilization
of MDM2 and MDMX, the major E3 ligase of p53 pro-
tein, thereby reducing the protein level of p53 [200,
201]. Studies have found that the binding of USP7 with
MDM2 is much stronger than that with p53 [200]. USP7
is highly expressed in most cancers, such as breast can-
cer and colorectal cancer, and plays carcinogenic role by
deubiquitinating MDM2 and MDMX [202, 203]. Appli-
cation of USP7 inhibitors can activate the p53 signaling
in cancer cells and play anti-cancer functions [204].
However, USP7 is downregulated in some tumors, such
as pulmonary adenocarcinoma, and plays a tumor sup-
pressive role in p53-dependent mechanism [205]. There-
fore, USP7 acts in a content-dependent manner and has
a paradoxical action on p53 according to different tis-
sues. What’s more, CUL7-mediated K63-linked polyubi-
quitination of p53 and MDM2 or MSL2-mediated
monoubiquitination of p53 are associated with its trans-
location to the cytoplasm [206]. Anticancer drug HLI98
inhibits p53 degradation via MDM2 to enhance its
tumor suppressive function [207]. Therefore, it’s likely
for p53 ubiquitination regulation to act as an effective
therapeutic method for cancers.

Ubiquitination of NRF2
Accumulation of ROS can also activate NRF2, another
essential transcriptional factor for the maintenance of
redox homeostasis. KEAP1, a substrate-specific adapter
of a CUL3-RBX1 E3 ligase complex, is the binding part-
ner of NRF2 and it negatively controls NRF2 stability.
Under normal conditions, the CUL3-RBX1 mediates
ubiquitination and degradation of NRF2. Electrophile
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metabolites formed in oxidative stress prevents CUL3-
RBX1-KEAP1 complex from ubiquitinating NRF2,
thereby stabilizing NRF2. NRF2 subsequently activates
transcription of antioxidant proteins, such as GPXs and
TXNs as well as enzymes involved in glutathione and
NADPH synthesis [208]. p62, RMP and CDK20 can
competitively bind with KEAP1 [209–211]. TRIM25 tar-
gets KEAP1 for ubiquitination and degradation [212].
DUB USP15 can stabilize KEAP1 [212]. These events
will change the level of NRF2 and affect the transcrip-
tional activity of NRF2 targeted genes. In non-small cell
lung cancer, phosphorylation by BMP8A or interaction
with PAQR4 can prevent ubiquitination of NRF2 by
KEAP1 and stabilize NRF2, resulting in chemotherapy
resistance [213, 214]. Besides CUL3-RBX1-KEAP1 com-
plex, E3 ligase SCFβ-TrCP, CUL4-DDB1-WDR23, HRD1
can also ubiquitinate NRF2 and regulate its stability
[215–217]. DUB DUB3 removes ubiquitin chain on
NRF2 and stabilize NRF2, leading to chemoresistance in
colorectal cancer [218].

Ubiquitination of SREBP1
SREBP1 is a transcription factor associated with lipo-
genic genes [219]. mTORC1 signaling induces enhanced
activity of SREBP1 to meet the requirements for fatty
acid in proliferating cancer cells [220]. Activation of
SREBP1 upregulates fatty acid synthesis as well as
lipid import from extracellular space [220]. After
phosphorylated by GSK-3, SREBP1 is prone to ubiqui-
tination by E3 ligase FBXW7 and degradation via the
ubiquitin-proteasome system [221, 222]. Deacetylation
of SREBP by SIRT1 also enhances its ubiquitination
and proteolysis [223]. RNF139 can ubiquitinate pre-
cursor forms of SREBP1, thereby preventing SREBP1
synthesis [224].

Ubiquitination and autophagy
Ubiquitination of ULK1
In nutrient-deprived conditions, inhibition of
mTORC1 subsequently activates autophagy, a highly
regulated pathway essential for cell survival [25]. Au-
tophagy complements amino acids by inducing deg-
radation of macromolecules and organelles in
lysosomes [26]. ULK1 complex, composed of the
ULK1, ATG13 and FIP200, is directly regulated by
mTORC1 and is required for autophagy induction.
TRAF6 catalyzed K63-linked polyubiquitination of
ULK1 can stabilize ULK1 to promote activation of
autophagy, which is related to drug resistance in
chronic myeloid leukemia patients [225]. Activating
molecule in BECN1-regulated autophagy protein 1
(AMBRA1) is a cofactor that interacts with Beclin-1
to regulate autophagy. Decreased phosphorylation of
AMBRA1 caused by mTORC1 inactivation will

promote its interaction with TRAF6 to upregulate
polyubiquitination of ULK1, thereby potentiating au-
tophagy initiation [226]. TRIM16 and TRIM32 also
target ULK1 for K63-linked polyubiquitination, which
stabilizes ULK1 and increases its phosphorylating ac-
tivity, respectively [227, 228]. DUB USP1 hydrolyzes
the K63-linked ubiquitin chain on ULK1 [229].
Downregulation of USP24 also enhances ULK1 ubi-
quitination, thereby increasing protein stability and
kinase activity of ULK1 [230]. These studies indicate
the shift between ubiquitinated ULK1 and deubiquiti-
nated ULK1 is essential for autophagy initiation.
Ubiquitination was also observed to be essential in the

regulation of autophagy threshold during autophagy pro-
gression. NEDD4L-mediated ULK1 ubiquitination via
K27 and K29-linkage assembly induces its proteolysis
[231]. Decreased level of ULK1 activates transcription of
ULK1 to maintain its basal protein level. Newly synthe-
sized ULK1 will be deactivated by mTOR to ensure a
safe threshold of autophagy [231]. CUL3-KLHL20 com-
plex can also downregulate autophagy by targeting acti-
vated ULK1 for ubiquitination and proteolysis [232].
ULK1 can be deubiquitinated by USP20, which prevents
it from degradation, maintaining its basal level required
for the initiation of autophagy [233]. In prolonged star-
vation, the interaction between USP20 and ULK1 re-
duces to terminate autophagy [233]. In conclusion,
ubiquitination and deubiquitination play essential func-
tions in both autophagy initiation and autophagy pro-
gression. Modulating ubiquitination might be an
effective treatment for chemoresistant patients with en-
hanced autophagy in cancer cells.

Ubiquitination of class III PI3K complex
Class III PI3K complex is composed of Beclin-1, ATG14,
VPS34 and AMBRA1, essential for the nucleation of the
phagophore. Various factors interact with Beclin-1 to
regulate autophagy signaling. BCL2 can suppress au-
tophagy by inhibiting Beclin-1 [234]. Starvation induced
K63-linked ubiquitination of Beclin-1 by TRAF6 or
AMBRA1 can block its interaction with BCL2, thus acti-
vating autophagy [235, 236]. AMBRA1 targeted polyubi-
quitination of Beclin-1 can enhance its association with
VPS34 to activate of VPS34 [236]. TRIM50 mediated
K63-linked polyubiquitination of Beclin-1 promotes its
activation by ULK1 and induces autophagy in starvation
[237]. DUB A20 and USP14 limit autophagy by reversing
K63-linked ubiquitination of Beclin-1 [235, 238]. NEDD4
and RNF216 ubiquitinate Beclin-1 through K11- and
K48- mediated linkage, respectively, which promote its
degradation [239, 240]. DUB including USP19, ATXN3,
USP10 and USP13 can reverse K11- or K48-
ubiquitination of Beclin-1 to rescue it from degradation
[241–243]. Beclin-1 also increases deubiquitinating
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activities of USP10 and USP13, further enhancing au-
tophagy by positive feedback [241].
FBXL20 mediates ubiquitination and proteasome deg-

radation of VPS34 to inhibit autophagy [244]. ATG14
was observed to be ubiquitinated by ZBTB16-CUL3-
ROC1 E3 ubiquitin ligase complex for degradation [245].
AMBRA1 is degraded via the action of E3 ligase CUL4

under normal conditions. Activation of ULK1 disassoci-
ates CUL4 from AMBRA1, causing stabilization of
AMBRA1 to promote autophagy. Disassociation of
AMBRA1 with CUL4 can promote AMBRA1 binding to
CUL5 to inhibit CUL5-mediated DEPTOR degradation,
thereby inducing autophagy [55]. CUL4 can re-associate
with AMBRA1 to promote its proteolysis when autoph-
agy terminates, thus regulating autophagy response [55].
What’s more, E3 ligase RNF2 can also catalyze K48-
linked ubiquitination and proteolysis of AMBRA1, thus
downregulating autophagy [246]. Therefore, all the com-
ponents of the Class III PI3K complex can be regulated
by ubiquitination, which exerts important effects on
autophagy.

Ubiquitination of WIPI2
WIPI2 is involved in an early step of the formation of
preautophagosomal structures. mTORC1 can mediate
phosphorylation of WIPI2. E3 ligase HUWE1 interacts
with phosphorylated WIPI2 and catalyzes ubiquitination
of phosphorylated WIPI2, which is subsequently targeted
for proteolysis, thus inhibiting autophagy flux [247].

Ubiquitination of ATG4
ATG4 contributes to LC3 processing, playing an essen-
tial role in the phagophore expansion and autophago-
some completion. E3 ligase RNF5 targets ubiquitination
and degradation of ATG4B, thus limiting autophagy flux.
When cell starves, RNF5 de-associates with ATG4B to
induce autophagy [248].

Ubiquitination and metabolic enzymes
Ubiquitination and glucose metabolism
Increased glucose uptake and enhanced glycolytic flux
are metabolic characteristics of cancer cells, supplying
subsidiary pathways to provide precursors for macro-
molecule synthesis. Activated AKT was observed to in-
hibit ubiquitination of HK1, the first rate-limiting
enzyme in the glucose metabolism pathway, promoting
glycolysis and glioblastoma progression [249]. HUWE1
mediated K63-linked ubiquitination of HK2 promotes its
re-localization and activation, enhancing glycolysis and
tumor growth (Fig. 2) [250]. TRAF6 mediated K63-
linked ubiquitination of HK2 directs HK2 degradation
by autophagy, thereby negatively regulating glycolysis
[251]. Deubiquitination of HK2 catalyzed by CSN5 can
rescue it from degradation and enhance glycolytic flux

during hepatocellular cancer metastasis [252]. Mito-
chondrial HK can also be ubiquitinated by PARKIN, in-
ducing its proteasomal degradation [253].
Phosphofructokinase (PFK), the second rate-limiting

enzyme in glycolysis, is a key regulator of glycolytic flux
in cancer cells. Decreased A20 mediated ubiquitination
and degradation of PFK liver type (PFKL) are related to
increased glycolysis during hepatocellular carcinoma
progression [254]. Phosphorylation of PFK1 platelet iso-
form (PFKP) by AKT can prevent it from TRIM21-
mediated ubiquitination and degradation, promoting
aerobic glycolysis in glioblastoma cells [255].
Pyruvate kinase M2 (PKM2) is the third rate-limiting

enzyme of glycolysis. Decreased CHIP catalyzed ubiqui-
tination and degradation of PKM2 are associated with
Warburg effect in ovarian cancer cells [256]. Downregu-
lated ubiquitination of PKM2 by TRIM58 is related to
progression of osteosarcoma [257]. E3 ligase PARKIN
modifies PKM2 by ubiquitination to decrease its enzym-
atic activity without affecting its stability [258]. PKM2
deubiquitinated by USP7 can strengthen the protein sta-
bility of PKM2 [259]. USP20 can also hydrolyze the ubi-
quitin chain on PKM2, but the detailed function of this
deubiquitination is unclear [260].
Other enzymes in glucose metabolism can be also

modified by ubiquitination. Glucose-6-phosphate isom-
erase (GPI), which catalyzes the conversion of glucose-6-
phosphate to fructose-6-phosphate, can be ubiquitinated
and degraded by E3 ligase RNF45 and TRIM25 [261]. 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3
(PFKFB3) is a glycolysis-promoting enzyme catalyzing
the conversion between fructose 2,6-bisphosphate and
fructose 6-phosphate. ROCK2 interacts with PFKFB3
and attenuates its ubiquitination and degradation in
osteosarcoma cells [262]. What’s more, glycolysis during
different stages of cell cycle in Hela cells is regulated by
E3 ligases. Decreased E3 ligase APC/C-CDH1 can at-
tenuate proteasomal degradation of PFKFB3, promoting
glycolysis and transition of late G1 phase into S phase.
E3 ligase SCFβ-TrCP activated during S phase can target
PFKFB3 for degradation [263]. Similarly, decreased ubi-
quitination and increased stability of glutaminase 1
(GLS1) were also observed to be mediated by decreased
APC/C-CDH1 in mid-to-late G1 [264]. Phosphoglycer-
ate kinase 1 (PGK1) catalyzes the conversion of 1,3-
diphosphoglycerate to 3-phosphoglycerate. Decreased
ubiquitination of PGK1 leads to chemotherapy resistance
in gallbladder cancer cells [265]. Interaction between
MetaLnc9 and PGK1 blocks ubiquitin-mediated degrad-
ation of PGK1, promoting lung cancer metastasis [266].
Following phosphorylation, phosphoglycerate mutase
(PGAM), which converts 3-phosphoglycerate to 2-
phosphoglycerate, can be ubiquitinated by MDM2 for
degradation [267]. Decreased ubiquitination of PGAM
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by MDM2 contributes to neoplastic transformation
[267]. PDK can be ubiquitinated by RNF126, which tar-
gets them for proteasomal degradation, enhancing con-
version of pyruvate to acetyl-CoA by pyruvate
dehydrogenase (PDH) in cancer cells [268].
Ubiquitination of enzymes involved in the TCA cycle

is also associated with cancer progression. Decreased
UBR5-mediated ubiquitination of citrate synthase leads
to citrate accumulation in hypoxia breast cancer cells,
promoting cell migration, invasion, and metastasis [269].
HIF-1 activation under hypoxia condition can promote
α-ketoglutarate dehydrogenase (α-KGDH) complex ubi-
quitination and proteolysis by SIAH2. Decreased α-
KGDH activity inhibits glutamine oxidation and pro-
motes glutamine-dependent lipid synthesis for tumor

growth [270]. USP13 promotes ovarian cancer progres-
sion by deubiquitinating and upregulating α-KGDH
[271].
Glucose-6-phosphate dehydrogenase (G6PD) catalyzes

the oxidative pentose phosphate pathway, an essential
process producing ribose-5-phosphate and NAPDH
from G6P. G6PD was observed to be ubiquitinated and
degraded by VHL E3 ubiquitin ligase in podocytes [272].
VHL is tumor-suppressor protein [273]. But whether
this regulation exists in cancer cells is unclear. Fructose-
1,6-biphosphatase (FBP1) is a rate-limiting enzyme of
gluconeogenesis. MAGE-TRIM28 mediated ubiquitina-
tion and degradation of FBP1 in hepatocellular carcin-
oma promotes Warburg effect and cancer progression
[274]. Phosphoenolpyruvate carboxykinase 1 (PEPCK1)

Fig. 2 Regulation of metabolic enzymes by ubiquitination and deubiquitination in cancer metabolism. Glycolysis is upregulated to provide more
glycolytic intermediates for biosynthesis of macromolecules. Glutamine uptake is enhanced to maintain mitochondrial ATP production. Fatty acids
synthesis is increased for membrane biosynthesis. Metabolic enzymes involved in the glucose, fatty acid and amino acid metabolic pathways are
under the regulation of ubiquitination and deubiquitination to control cancer metabolism. The ubiquitin ligases and deubiquitinating enzymes in
red font positively regulate the activity or expression level of substrate proteins. The ubiquitin ligases and deubiquitinating enzymes in blue font
negatively regulate the activity or expression level of substrate proteins. ACC, Acetyl-coenzyme A carboxylase; ACLY, ATP citrate lyase; ACO1/2,
Aconitate hydratase 1/2; ACS, Acyl-CoA synthetase; ADI, Arginine deiminase; ALDOA, Fructose-bisphosphate aldolase A; ARG, Arginase; ASCT2,
Neutral amino acid transporter B; ASL, Argininosuccinate lyase; ASS, Argininosuccinate synthase; CPT1, Carnitine O-palmitoyltransferase 1; CS,
Citrate synthase; ENO 1, Enolase 1; FASN, Fatty acid synthase; FH, Fumarate hydratase; G6PD, Glucose-6-phosphate dehydrogenase; GAPDH,
Glyceraldehyde-3-phosphate dehydrogenase; GLS1, Glutaminase 1; GLUD1, Glutamate dehydrogenase 1; GLUT1, Glucose transporter type 1; GOT,
Aspartate aminotransferase; HK1, Hexokinase 1; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; IDH1/2, Isocitrate dehydrogenase1/2;
LDHA, L-lactate dehydrogenase A chain; MDH, Malate dehydrogenase; ME, NADP-dependent malic enzyme; PDH, Pyruvate dehydrogenase; PDK,
Pyruvate dehydrogenase kinase; PFK, Phosphofructokinase; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; PFKL, PFK liver type;
PFKP, PFK1 platelet isoform; PGAM5, Phosphoglycerate mutase 5; PGK1, Phosphoglycerate kinase 1; PHGDH, D-3-phosphoglycerate
dehydrogenase; PKM2, Pyruvate kinase M2; PRODH, Proline dehydrogenase; PSAT1, Phosphoserine aminotransferase 1; PSPH, Phosphoserine
phosphatase; PYCR, Pyrroline-5-carboxylate reductase; SDH, Succinate dehydrogenase; SHMT1, Serine hydroxymethyltransferase 1; SQLE, Squalene
epoxidase; TCA, Tricarboxylic acid; α-KGDH, α-ketoglutarate dehydrogenase
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is another rate-limiting enzyme in gluconeogenesis. High
glucose in diabetes stimulates PEPCK1 acetylation,
which promotes UBR5 mediated ubiquitination and deg-
radation of PEPCK1 [275]. Studies have found that
GLUT1 can be ubiquitinated for degradation in diabetes
[276]. E3 ubiquitin ligase Malin mediated ubiquitination
of glycogen debranching enzyme (AGL) is associated
with Lafora and Cori’s disease [277]. But whether ubi-
quitination of GLUT1, PEPCK1 and AGL participates in
tumor progression is still unknown. What’s more, ubi-
quitination and deubiquitination of other cancer associ-
ated metabolic enzymes is still unknown, such as
enolase in glycolysis, isocitrate dehydrogenase in the
TCA cycle, glycogen phosphorylase in glycogen meta-
bolic process, and pyruvate carboxylase in gluconeogen-
esis. The relationship between their specific E3 ligases
and DUBs and oncogenesis still need exploration.

Ubiquitination and fatty acid metabolism
Fatty acids synthesis is necessary for membrane biosyn-
thesis in proliferating tumor cells. CUL3-KLHL25 E3 lig-
ase can inhibit lipid synthesis and tumor growth by
targeting ATP citrate lyase (ACLY) for ubiquitination
and proteolysis [278]. However, USP13 and USP30 can
mediate deubiquitination of ACLY, increasing the stabil-
ity of ACLY to promote development of ovarian cancer
and hepatocellular carcinoma, respectively [271, 279].
TRB3-COP1 mediates proteolysis of acetyl-coenzyme A
carboxylase (ACC) in ubiquitin-dependent manner, inhi-
biting fatty acid synthesis and stimulating lipolysis [280].
But in breast cancer cells, ACC-alpha (ACCA) interacts
with AKR1B10, which prevents ACCA from ubiquitina-
tion and proteolysis, thereby promoting de novo fatty
acid synthesis and enhancing tumor growth [281]. E3
ligase COP1 can ubiquitinate fatty acid synthase (FASN)
with SHP2 as an adapter [282]. E3 ligase SPOP muta-
tion, which is common in prostate cancer, inhibits its
ubiquitination of FASN. Increased FASN triggers lipid
accumulation and promotes prostate cancer progression
[283]. AKT activation promotes deubiquitination of
FASN by the USP2a and increased lipogenesis, which
promotes hepatocarcinogenesis [284, 285].
3-hydroxy-3-methylglutaryl-coenzyme A reductase

(HMGCR) is a rate-limiting enzyme in cholesterol bio-
synthesis. E3 ligases UBXD, RNF145 and RNF45 can
mediate sterol-induced ubiquitination and degradation
of HMGCR, attenuating cholesterol biosynthesis [286–
288]. Hypoxia triggered upregulation of insulin-induced
gene 2 can interact with HMGCR and promote its ubi-
quitination and degradation to avoid unnecessary oxygen
consumption [289]. Dysregulated cholesterol metabolism
is observed in multidrug resistant cancer cells (MDR), in
which decreased E3 ligase RNF139 upregulates HMGCR
and induces enhanced cholesterol synthesis [290].

Squalene epoxidase (SQLE), which catalyzes the first
oxygenation reaction of cholesterol biosynthesis, can be
ubiquitinated and degraded by E3 ligase MARCH6
under stimulation of sterol [291]. Additionally, E3 ligase
MYLIP can modulate cellular cholesterol uptake by ubi-
quitinating LDL receptor which is responsible for chol-
esterol import [292]. But whether ubiquitination of
SQLE and LDL receptor participate in cancer progres-
sion is unknown. In addition, ubiquitination and deubi-
quitination of other enzymes participating in fatty acid
metabolism, such as Carnitine O-palmitoyltransferase 1
(CPT1), and their relationship with cancer progression
have not been studied yet.

Ubiquitination and amino acid metabolism
In cancer cells, glutamine serves as another important
carbon source for the TCA cycle to sustain mitochon-
drial ATP production [1]. Glutamine uptake increases
dramatically in cancer cells. NEDD4L-depleted cancer
cells have enhanced neutral amino acid transporter B
(ASCT2) stability and glutamine uptake to fuel the mito-
chondrial metabolism [293]. Promotion of RNF5-
targeted ubiquitination and degradation of glutamine
carrier proteins ASCT2 and SLC38A2 can improve re-
sponsiveness of breast cancer cells to Paclitaxel treat-
ment [294]. Glutamine can be converted via GLS to
glutamate, which can subsequently be converted to α-
ketoglutarate to fuel the TCA cycle. Succinylation of
GLS suppresses its K48-linked ubiquitination and deg-
radation, stabilizing GLS and promoting glutaminolysis
in cancer cells [295]. Study also found the function of
supranutritional dose of selenite in suppressing tumor
progression by promoting APC/C-CDH1 mediated
GLS1 ubiquitination and degradation [296]. Ubiquitina-
tion of other enzymes involved in glutamine metabolism,
such as glutamate dehydrogenase 1 (GLUD1), hasn’t
been studied.
3-phosphoglycerate, an intermediate product of gly-

colysis, can be converted to serine by D-3-
phosphoglycerate dehydrogenase (PHGDH). This con-
version is subsequently associated with formate produc-
tion for nucleotide synthesis. Downregulated PARKIN in
cancer suppresses ubiquitination of PHGDH and en-
hances its stability and protein level, thereby activating
serine synthesis and promoting cancer progression
[297]. Serine hydroxymethyltransferase 1 (SHMT1) is in-
volved in the conversion of serine to glycine. K48-linked
ubiquitination of SHMT1 mediates its degradation in
the cytoplasm. K63-linked ubiquitination of SHMT1 by
UBC13 in the nucleus promotes its nuclear export and
prevents it from degradation, promoting tumor progres-
sion [298]. What’s more, dysregulation of aspartate and
arginine metabolism is also associated with cancer
progression [299]. However, ubiquitination and
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deubiquitination of the enzymes participating in aspar-
tate and arginine metabolism haven’t been studied and
are worth attention in the future.

Conclusions
In the past decades, extensive efforts have been made to
clarify the molecular mechanisms associated with meta-
bolic reprogramming in cancer. In this review, we high-
light the roles of ubiquitination and deubiquitination as
modulators of cancer metabolism. Facing metabolic
stresses, such as hypoxia, ubiquitination and deubiquiti-
nation in cancer cells can be abnormally regulated [10,
270]. On the other hand, dysregulated ubiquitination
and deubiquitination play nonnegligible roles in cancer
metabolism by involving in the regulation of metabolic
reprogramming related signaling pathways, transcription
factors as well as metabolic enzymes. For instance, hyp-
oxia induces E3 ubiquitin ligase SIAH2 mediated ubiqui-
tination and proteolysis of α-KGDH, inhibiting
glutamine oxidation and promoting glutamine-
dependent lipid synthesis to promote tumor growth
[270]. Therefore, the interactions between ubiquitina-
tion/deubiquitination and cancer metabolism are com-
plex and require more studies. Most studies have
focused on the involvement of ubiquitination and deubi-
quitination in the regulation of signaling pathways and
transcription factors, while ubiquitination and deubiqui-
tination of the enzymes involved in glucose, fatty acid
and amino acid metabolism are worth more attention in
the future.
In the regulation of cancer metabolism and tumor pro-

gression, the E3 ubiquitin ligases/DUBs-substrates net-
work is of high complexity. Single E3 ubiquitin ligase or
DUB can target numerous substrates, and one molecule
can be regulated by multiple E3 ubiquitin ligases or
DUBs. For example, FBXW7 acts as a tumor suppressor
by targeting mTOR, HIF-1α, c-Myc and SREBP1 for
degradation [43, 136, 160, 222]. However, when facing
DNA damage, elevated FBXW7 mediates proteasomal
degradation of p53, leading to radiotherapy resistance
[300]. Amino acids can stimulate subcellular localization
of TRAF6 to lysosomes for subsequent K63-linked poly-
ubiquitination and activation of mTOR signaling [42].
However, in starvation induced autophagy, TRAF6 me-
diates K63-linked polyubiquitination of ULK1, which
leads to stabilization of ULK1 and activation of autoph-
agy [225]. Therefore, E3 ligases and DUBs act in a
context-dependent manner. Their exact roles in cancer
may vary according to their substrates, tissues types,
tumor stages, or different metabolic conditions. The
study of ubiquitination and deubiquitination in cancer
still has a long way to go. For example, whether metab-
olite levels within cancer cells act as modulators of ubi-
quitination is ambiguous. Importantly, development of

specific drugs that disrupt or enhance specific E3 li-
gases/DUBs-substrates interactions holds promise for
more efficient and less toxic therapeutics.
What’s more, we have observed that decreased ubiqui-

tination and increased stability of the metabolic related
molecules, such as PDK1, NRF2, ULK1 and phospho-
glycerate kinase 1, are associated with chemoresistance
in various cancers. Thereby, modulating the activity of
E3 ligases or DUBs could be exploited as a potential
strategy for controlling chemoresistance in cancer treat-
ment. Furthermore, various E3 ligases and DUBs have
been already identified as potential targets for cancer
therapy. Actually, many E3 ligases serve as tumor sup-
pressors by catalyzing ubiquitination and degradation of
metabolic related proteins which play oncogenic roles in
cancers, indicating that drugs enhancing activities or ex-
pression of these E3 ligases should also be emphasized
in further researches.
In conclusion, ubiquitination and deubiquitination are

suggested to be essential regulators of metabolic repro-
gramming in cancer cells, demanding more studies in
the future with the aim of improving cancer therapy.
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regulated kinase 2; IDH1/2: Isocitrate dehydrogenase1/2; TSC: Tuberous
sclerosis complex; PDK1: 3-phosphoinositide-dependent protein kinase 1;
PTEN: Phosphatase and tensin homolog; GLUT1: Glucose transporter type 1;
HK1: Hexokinase 1; PDK: Pyruvate dehydrogenase kinase; AMBRA1: Activating
molecule in BECN1-regulated autophagy protein 1;
PFK: Phosphofructokinase; PFKL: PFK liver type; PFKP: PFK1 platelet isoform;
PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3;
GLS1: Glutaminase 1; PKM2: Pyruvate kinase M2; PGK1: Phosphoglycerate
kinase 1; PGAM5: Phosphoglycerate mutase 5; α-KGDH: α-ketoglutarate
dehydrogenase; G6PD: Glucose-6-phosphate dehydrogenase; PEPC
K1: Phosphoenolpyruvate carboxykinase 1; PDH: Pyruvate dehydrogenase;
FBP1: Fructose-1,6-biphosphatase; AGL: Glycogen debranching enzyme;
ACLY: ATP citrate lyase; ACC: Acetyl-coenzyme A carboxylase; FASN: Fatty
acid synthase; HMGCR: 3-hydroxy-3-methylglutaryl-coenzyme A reductase;
SQLE: Squalene epoxidase; CPT1: Carnitine O-palmitoyltransferase 1;
MDR: Multidrug resistant; ASCT2: Neutral amino acid transporter B; PHGD
H: D-3-phosphoglycerate dehydrogenase; SHMT1: Serine
hydroxymethyltransferase 1
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