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Abstract

The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network
plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and
tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF con-
centration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of
BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular
BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release
have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as
well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further,
we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological
conditions.
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Introduction that imbalances in BDNF levels and downstream signaling via
its cognate TrkB tyrosine kinase receptor are associated with
neurodegenerative and psychiatric diseases, like Alzheimer’s

disease, major depressive disorder (Castren and Hen 2013), or

BDNF in health and disease

The neurotrophic factor BDNF plays an important role for the
development of brain circuits, the formation and maintenance
of neuronal morphology, brain architecture and for synaptic,
as well as neuronal network plasticity (Edelmann et al. 2014;
Gottmann et al. 2009; Huang and Reichardt 2001; Klein 1994,
Lessmann and Brigadski 2009; Park and Poo 2013).
Consequently, BDNF crucially regulates learning and memo-
ry processes in young and adult mammals (see, e.g., Boschen
and Klintsova 2017; Gomez-Pinilla and Vaynman 2005) such
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schizophrenia (Mohammadi et al. 2018). Moreover, BDNF
signaling also contributes to physiological functions of the
heart and the vasculature and is involved in disorders like
coronary artery disease (Ejiri et al. 2005; Jin et al. 2018;
Kaess et al. 2015), diabetes mellitus (Eyileten et al. 2017,
Suwa et al. 2006), inflammatory diseases such as asthma
(Prakash and Martin 2014), different types of cancer
(Chopin et al. 2016; Radin and Patel 2017), as well as pain
sensation (Deitos et al. 2015; Haas et al. 2010; Laske et al.
2007; Merighi et al. 2008; Sapio et al. 2019). Furthermore,
BDNF levels in preterm neonates differ from BDNF levels in
full-term neonates (Malamitsi-Puchner et al. 2004), thereby
affecting cognitive development in early postnatal life (Chau
et al. 2017) and potentially being associated with children’s
mental diseases such as autism spectrum disorders (Qin et al.
2016; Zheng et al. 2016).

Measurements of BDNF as a diagnostic marker

In human medical studies, ELISA or Western blot-based mea-
surements of BDNF protein levels in body fluids (e.g., blood
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or liquor) or tissue samples are considered as a potential proxy
of intact brain (or other organ) function and associated dis-
cases. As a result, great efforts are being made to utilize mea-
surements of the BDNF levels as a potential marker for health
status, diagnosis and prognosis of diseases and therapeutic
outcome (Balietti et al. 2018). Variations in BDNF genotype
(compare Intracellular sorting of BDNF in neurons section)
are considered to be covariate information in such approaches
(Shen et al. 2018). In the blood, the secretory protein BDNF is
mainly stored in platelets (Fujimura et al. 2002). However,
little is known about the original source of circulating
BDNF in blood plasma (Dawood et al. 2007; Klein et al.
2011; Krabbe et al. 2007; Rasmussen et al. 2009; Serra-
Millas 2016). BDNF is prominently expressed in the brain,
in hippocampus, cortex, amygdala and striatum but also in
hypothalamus (reviewed in Edelmann et al. 2014). It is also
expressed and released from endothelial cells (Cefis et al.
2020), cells of the immune system (lymphocytes, microglia),
megakaryocytes (Chacon-Fernandez et al. 2016; Tamura et al.
2012) and others, like smooth muscle cells (reviewed in
Edelmann et al. 2014). Activity-dependent release of BDNF
from hypothalamic neurons, which are not shielded from the
blood stream by the blood-brain barrier, likely contributes to
blood BDNF levels. Transport of BDNF across the blood
brain barrier was, although controversially discussed, also de-
scribed for neurotrophins like BDNF (Pan et al. 1998;
Rasmussen et al. 2009; Seifert et al. 2010). Therefore,
BDNEF released from neurons as a consequence of neural net-
work activity in the brain can act locally by tuning the strength
of the neural network but it may also act globally by affecting
the function of other organs distant from the brain after diffu-
sion into the bloodstream. Vascular endothelial cells as well as
cells of the immune system represent another natural source of
BDNF, which likely contribute to the regulation of BDNF
levels in the blood (Kerschensteiner et al. 1999; Marie et al.
2018; Nakahashi et al. 2000). However, stimuli-inducing re-
lease of BDNF from non-neuronal tissue like platelets and
vascular endothelial cells are not well understood.

In the human brain, analysis of post mortem tissue is cur-
rently almost the only way to estimate changes in BDNF
levels. Decreased levels of BDNF have been detected post
mortem in the cortex, hippocampus and nucleus basalis of
Meynert in patients suffering from Alzheimer’s disease
(Holsinger et al. 2000; Tapia-Arancibia et al. 2008), while
region-specific down but also upregulation of BDNF has been
shown in major depressive disorder patients (Krishnan et al.
2007; Pandey et al. 2008). However, to understand the rele-
vance of change in BDNF levels in the brain, non-neuronal
tissue and blood, a more detailed knowledge of the distinct
stimuli-regulating BDNF expression and release in the differ-
ent cell types is important. Most studies providing information
about the molecular and cellular mechanism regulating intra-
and extracellular BDNF levels have thus far been performed
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in cells originating from the brain. The role of distinct subcel-
lular BDNF release sites as well as release kinetics, e.g., for
cell survival or synaptic plasticity is best studied in neurons
(reviewed, e.g., in Edelmann et al. 2014). Therefore, this re-
view will discuss recent advancements in cell-type specific
activity-dependent release of BDNF, with a focus on BDNF
release from cells originating from the brain. We will summa-
rize the stimuli inducing or amplifying the release of BDNF as
well as the molecular regulation of BDNF secretion and dis-
cuss the role of BDNF secretion in the context of synaptic
plasticity and specific diseases.

Synthesis, processing and sorting of BDNF
General aspects of BDNF synthesis

The secretory protein BDNF is expressed in neuronal and
non-neuronal cells (Katoh-Semba et al. 1997; Maisonpierre
et al. 1990; Phillips et al. 1990). In neuronal cells, BDNF-
immunoreactivity was found in several regions of the central
nervous system as well as in the peripheral and enteric nervous
system (Barakat-Walter 1996; Conner et al. 1997; Ernfors
et al. 1990; Hoehner et al. 1996; Wetmore and Olson 1995;
Yan et al. 1997; Zhang et al. 2007; reviewed, e.g., in
Lessmann et al. 2003; Lewin and Barde 1996). In non-
neuronal tissue, BDNF is synthesized in cells of the immune
system, like T cells, B cell and monocytes (Kerschensteiner
et al. 1999; Nakahashi et al. 2000), muscle cells (Matthews
et al. 2009; Mousavi and Jasmin 2006), the heart (Donovan
etal. 2000; Maisonpierre et al. 1990), thymus, liver and spleen
(Katoh-Semba et al. 1997). The tissue-specific expression of
BDNF is developmentally regulated (Ernfors et al. 1990;
Katoh-Semba et al. 1997). Furthermore, physiological as well
as pathophysiological conditions and interventions such as
exercise, hypoxia, stress, epileptic seizures and ischemia in-
crease expression of BDNF in a tissue-specific manner
(Giannopoulou et al. 2018; Lippi et al. 2020; Thomas et al.
2016; Wetmore et al. 1994).

In humans, the BDNF gene is located on chromosome
11p14.1 consisting of 11 exons (I-XI) and nine promotors that
regulate the developmental and regional expression of multiple
alternatively spliced mRNA isoforms (Pruunsild et al. 2007,
Timmusk et al. 1993). Only exon IX at the 3’ end of the gene
locus contains the major coding sequence for the BDNF pre-
cursor protein (Pruunsild et al. 2007). This BDNF coding se-
quence is translated into a pre-pro-protein, with an N-terminal
pre-domain that guides the mRNA to the rough endoplasmic
reticulum (rER). The pre-sequence is cleaved of co-
translationally and the immature uncleaved pro-BDNF protein
is synthetized into the ER (compare Lessmann and Brigadski
2009). Importantly, transcription of the BDNF gene into a set of
distinctly spliced mRNA variants (Aid et al. 2007; Pruunsild
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et al. 2007) is tightly regulated by electrical activity-induced
Ca”* elevation in neurons (e.g., (Castrén et al. 1998). The dis-
tinct mRNA variants can be transported into dendrites (Baj
et al. 2013), where local translation and release of BDNF can
be confined to especially active dendritic stretches thereby pro-
moting synaptic plasticity in a BDNF-dependent fashion. This
makes BDNF ideally suited to shape developing and fine tune
mature synaptic circuits through activity-dependent local syn-
thesis and secretion (compare chapter “Physiological context of
regulated release of BDNF section” in this review, see also
Johnestone and Mobley 2020).

Posttranslational processing of BDNF

Secretory proteins are posttranslationally processed by differ-
ent enzymes such as endo- or exopeptidases or glycosyltrans-
ferases (reviewed in Thomas 2002). The incidence of the di-
verse posttranslational modifications depends on the entire set
of modifying proteins expressed by a specific cell, as well as
on the intracellular ionic composition in cytoplasm, ER and
Golgi (Creemers 2002; Gidalevitz et al. 2013). Characteristic
features of secreted proteins, such as biological activity, half-
life time, or affinity to specific intracellular binding partners
are modified by these events. The best-known example for a
precursor protein (pro-protein) that undergoes multiple post-
translational modification steps is the hormone pro-
opiomelanocortin (POMC). POMC is the precursor of a vari-
ety of hormones like ACTH, MSH, or beta-endorphin. These
diverse peptides are generated after endoproteolytic cleavage
of the precursor protein POMC by subtilisin-like prohormone
convertases PC1 or PC2. The thereby generated new N- and
C-termini are further processed by exopeptidases, acetyltrans-
ferases and/or peptidyl-glycine alpha-amidating
monooxygenases (compare Lessmann and Brigadski 2009).
However, the corresponding processing of BDNF has not
been intensively investigated so far. It is known that the 32-
kDa precursor proBDNF can be processed
endoproteolytically within the pro-domain by the enzyme
subtilisin/kexin-isozyme 1 (SKI-1), generating a 28 kDa pro-
tein (Seidah et al. 1999). In addition to the 28-kDa cleavage
product of the BDNF precursor, the 14-kDa mature BDNF is
generated after cleavage of proBDNF by furin-like protein
convertases PACE4, PC1, or PC5 (Mowla et al. 2001;
Seidah et al. 1996). Inhibition of furin-like enzymes prevents
the synthesis of the 14 kDa mature BDNF without any effect
on the generation of the 28 kDa cleavage product (Mowla
et al. 2001). Furthermore, extracellular processing of
proBDNF to the 14 kDa mature BDNF isoform by the
tissue-type plasminogen activator (tPA)/plasmin proteolytic
system and by matrix metalloproteinases (MMP) 3, 7 and 9
has been described (Gray and Ellis 2008; Lee et al. 2001; Pang
et al. 2004). Further modifications like N-glycosylation and
glycosulfation within the prodomain of BDNF increase the

half-life time of the protein (Mowla et al. 2001). These post-
translational modifications may also be a prerequisite for in-
teractions of BDNF with chaperones or sorting receptors that
guide the secretory protein BDNF predominantly to vesicles
of the regulated secretory pathway (reviewed in Lemann and
Brigadski 2009).

Intracellular sorting of BDNF in neurons

Up to now, two sorting proteins have been identified for
BDNF. Both, the chaperone sortilin and the exoproteolytic
enzyme carboxypeptidase E, bind to the BDNF pro-domain
and play an important role in sorting of BDNF to vesicles of
the regulated pathway of secretion (Chen et al. 2005; Lou et al.
2005; Kojima et al. 2020). Interestingly, transfection of neu-
rons with a cDNA construct, in which the pre-pro-domain of
BDNF is fused to the mature part of the neurotrophin-4 (NT-
4) redirects this BDNF-NT-4 chimera efficiently into vesicles
of the regulated secretory pathway, whereas wildtype NT-4 is
predominantly located in vesicles of the constitutive secretory
pathway (Brigadski et al. 2005). This indicates the importance
of the BDNF pro-domain for sorting of the protein to the
regulated secretory pathway. The significance of the pro-
domain for correct sorting of BDNF to secretory granules is
also stressed by the commonly observed Val66Met single-
nucleotide polymorphism (SNP) located in the BDNF pro-
domain. This SNP (carriers in Europe: ~60% Val/Val (WT);
~35% Val/Met; ~5% Met/Met) is associated with reduced
sorting of Met-BDNF to vesicles of the regulated secretory
pathway, resulting in impaired activity-dependent secretion
of BDNF from neuronal cells (Egan et al. 2003). However,
this SNP-dependent reduced sorting to secretory granules
does not seem to affect all BDNF transcripts to the same
extent (Jiang et al. 2009). In addition to the major sorting of
BDNF to the regulated secretory pathway (Brigadski et al.
2005), BDNF is also directed to vesicles of the constitutive
secretory pathway. However, little is known about the molec-
ular composition of constitutively released vesicles as well as
the function of BDNF released in a constitutively manner.

Physiological context of regulated release
of BDNF

Just as there exist different cell types expressing and releasing
BDNF, diverse stimuli are known to induce regulated release
of BDNF. The best characterized stimuli are patterns of neu-
ronal electrical activity like prolonged depolarization, high-
frequency stimulation (HFS), or theta-burst stimulation
(TBS) that trigger BDNF release in developing and mature
neurons (Edelmann et al. 2014) (compare Stimuli-triggering
BDNEF release from neurons section) (Table 1). Release stim-
uli in electrically non-excitable cells differ, of course, from the

@ Springer
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major release stimuli in neuronal cells. Thus, binding of ex-
tracellular nucleotides (Coull et al. 2005; Trang et al. 2009;
Ulmann et al. 2008; Vignoli and Canossa 2017), pro-
inflammatory factors (Jornot et al. 2007), or neuropeptides
(Lopez-Benito et al. 2018) to their corresponding receptors
has been shown to induce release of BDNF from astrocytes
and microglia (compare BDNF release from astrocytes section
and BDNF release from microglia section) (Table 2). Next to
the different physiological BDNF-releasing stimuli, knowing
the subcellular sites where BDNF secretion can take place is
important to understand cell-type and release-site specific
functions of BDNF, e.g., during neuronal development, syn-
aptic plasticity processes, or in case of disease (e.g., Hartmann
et al. 2001; Matsuda et al. 2009; Xia et al. 2009; reviewed in
Edelmann et al. 2014; Lemann and Brigadski 2009; Park and
Poo 2013).

Stimuli-triggering BDNF release from neurons

In the central nervous system, BDNF is important for the
development of brain circuits and for synaptic as well as for
network plasticity processes in the adult brain. These process-
es require fine-tuning of synaptic activity and structural syn-
aptic rearrangements in an input specific manner. The spatial-
ly restricted release of BDNF is ideally suited for this purpose.
Since early neuronal networks of immature neurons differ
from functionally mature synaptic circuits, it is not surprising
that distinct electrical activity patterns are efficient to induce
release of BDNF and that the efficacy of releasing BDNF
depends on the developmental stage of the neurons as well
as on the specific brain area that is investigated.

Stimuli-triggering BDNF release from developing neurons

In developing hippocampus, a sequence of three different
electrical activity patterns was described to be important to
form synaptic circuitry (Crepel et al. 2007; Egorov and
Draguhn 2013; Luhmann and Khazipov 2018). First, intrinsi-
cally active neurons generate brief L-type voltage-gated Ca*-
channel (VGCC)-mediated spikes at embryonic stage E16-
E19, before an ensemble of neurons coupled by gap-
junctions generates synchronous non-synaptic, long lasting
calcium-plateaus, called synchronous plateau assemblies
(SPA). These SPAs are replaced by giant depolarizing poten-
tials (GDPs), which represent a spontaneous pattern of net-
work activity via chemical synaptic interactions. GDPs consist
of large depolarizations associated with a burst of action po-
tentials. These depolarizations last several hundreds of milli-
seconds, propagate by synaptic interactions as waves through
the developing hippocampus and occur at low-frequency
(0.003-0.06 Hz) in rodents during the first week of postnatal
life (Egorov and Draguhn 2013; Luhmann and Khazipov
2018). GDPs have also been described for other developing
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brain areas like the neocortex, thalamus, or spinal cord.
Development of cortical networks is known to progress in a
similar manner as in hippocampal networks (Egorov and
Draguhn 2013). However, the time course of onset of cortical
development is shifted to postnatal stages (Hanganu-Opatz
2010; Kilb et al. 2011). Interestingly, the onset of BDNF ex-
pression in the rodent hippocampus becomes apparent already
at E15.5 and differs from the onset of BDNF expression in
cortical neurons, which appears at P4 (Baquet et al. 2004;
Katoh-Semba et al. 1997). Furthermore, these electrically ac-
tivity patterns (intrinsically active neurons, SPAs and GDPs)
depend on activation of L-type VGCCs. Consistent with this,
the release of BDNF has been reported to depend on Ca*-
influx via L-type voltage-gated calcium channels (VGCC) in
primary cultures of hippocampal neurons from embryonic or
newborn rats and mice (Kolarow et al. 2007; Kuczewski et al.
2008; Matsuda et al. 2009; Kojima et al. 2020). Thus, it could
be speculated that BDNF release from intrinsically active neu-
rons, which display uncorrelated calcium transients, or BDNF
release from gap-junction-coupled neurons, which generate
non-synaptic calcium-plateaus might play a role in shaping
neuronal networks during embryonic and early postnatal de-
velopment. However, this has not been extensively investigat-
ed so far.

To date, only GDPs were shown to represent robust activity
patterns to induce release of BDNF in this context (Kuczewski
et al. 2008; Mohajerani et al. 2007). Kuczewski et al. (2008)
combined whole-cell recordings and time-lapse fluorescence
imaging of transfected hippocampal neurons and demonstrat-
ed BDNF-GFP release after repeated depolarization steps that
were strongly reminiscent of GDPs (Kuczewski et al. 2008).
Furthermore, Mohajerani et al. reported plasticity of CA3-
CAL synapses after pairing of GDPs with Schaffer collateral
stimulation in hippocampal slices during the first postnatal
week of development (Mohajerani et al. 2007). They de-
scribed that the depolarizing action of GABA during GDPs
induced calcium influx through L-type VGCC, thereby trig-
gering plasticity of CA3-CALl synapses by endogenously re-
leased BDNF (Gubellini et al. 2005; Mohajerani et al. 2007).
The depolarizing effects of GABAergic transmission fade out
with ongoing postnatal development and this maturation of
hippocampal networks requires a shift in the expression of
chloride transporters in neurons from K*-CI -cotransporter
(KCC2) to Na*-K*-chloride™ -cotransporter (NKCC1), which
switches GABA transmission to be hyperpolarizing. Since
regulation of KCC2 expression is also mediated by BDNF
(Rivera et al. 2002, 2005; reviewed in Fiumelli and Woodin
2007), depolarization-induced release of BDNF is important
for proper shaping of hippocampal synaptic circuits.
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Stimuli-triggering BDNF release from mature neurons

Depolarizing waves propagating through cortical networks
represent on the one hand physiological activity patterns dur-
ing neural circuit development but on the other hand, they
have also been implicated in the pathophysiology of stroke,
head trauma, or migraine aura (Hartings et al. 2017; Shen et al.
2016). Transient depolarizations of neurons induced by ele-
vated extracellular K*-concentration have been described as a
phenomenon called cortical spreading depression (CSD) or
spreading depolarizations. CSD is characterized by waves of
depolarizations that spread across the cortical surface at a low
velocity of 2—5 mm/min. Consistent with activity-dependent
regulation of BDNF, increases in BDNF mRNA and protein
levels have been observed in response to CSD in rodents
(Kawahara et al. 1997; Kokaia et al. 1993). Therefore, a pro-
tective role of CSD-induced BDNF expression and release
enhancing the tolerance of further injury has been postulated
(Kawahara et al. 1997; Shen et al. 2016). Interestingly, a very
potent protocol to induce robust neuronal BDNF release is to
elevate the extracellular K*-concentration, which in turn leads
to depolarization and intracellular Ca**-clevation. Such an
elevated K*-induced release of BDNF was observed, e.g., in
embryonic as well as postnatal neuronal cultures, neurons de-
rived from embryonic stem cells and acute and organotypic
hippocampal slices (Canossa et al. 1997; Goodman et al.
1996; Griesbeck et al. 1999; Hartmann et al. 2001; Kojima
et al. 2001; Leschik et al. 2013; Leschik et al. 2019).

Stimuli-triggering BDNF release in synaptic plasticity

In addition to the development of brain circuits, BDNF is also
involved in synaptic and network plasticity processes in ma-
ture circuits. Synaptic plasticity (i.e., LTP and LTD) is thought
to be a cellular model of learning and memory processes.
However, analyzing the activity patterns forming a memory
together with the related structural changes of single synapses
in a neuronal circuit in vivo is a challenging task. Although it
is widely accepted that synaptic changes tune neural circuitry,
the contribution of synaptic changes to memory encoding or
memory consolidation is not resolved. Furthermore, the phys-
iological correlates of the different activity patterns known to
modulate synaptic efficacy, like high or low frequency stim-
ulation, need to be identified. To date, several activity patterns
shaping glutamatergic and GABAergic synapses either at pre-
and/or postsynaptic sites have been investigated. The efficacy
of the different patterns, of course, depends on diverse factors
such as the developmental stage of the investigated neuronal
circuit. The best-known patterns to induce long-term potenti-
ation (LTP) of synaptic transmission in the hippocampus are
high-frequency stimulation (HFS; e.g., repeated 1-s trains at
100 Hz), theta-burst stimulation (TBS; repeated bursts of 4-5
APs at ~ 100 Hz with inter-burst intervals of 0.2 s) or pairing

protocols like spike timing-dependent plasticity (STDP;
compare, e.g., Gottmann et al. 2009). Protocols that elicit
long-term depression (LTD) of synaptic efficacy are charac-
terized by low-frequency synaptic stimulation (LFS at 1 Hz).
Both, LTP and LTD, are known to shape synapses at the
functional, molecular and structural level. Activity-
dependent release of endogenous BDNF or of fluorescently
labeled BDNF has been intensively investigated as a cellular
mechanism of LTP in brain slices and in neuronal cultures
from different brain regions. Release of BDNF induced by
HFS was shown, e.g., in PNS-cultured neurons (Balkowiec
and Katz 2000), in hippocampal cultures (Balkowiec and Katz
2002; Hartmann et al. 2001; Kojima et al. 2001; Matsuda et al.
2009), amygdala (Meis et al. 2012) and cortico-striatal synap-
ses (Jia et al. 2010), using either BDNF ELISA measurements
or live cell imaging of fluorescently labeled BDNF. In con-
trast, similar patterns of high-frequency stimulation failed to
induce efficient release of BDNF in dorsal horn slices from
lumbal spinal cord (Lever et al. 2001). However, these authors
were among the first to reveal TBS (300 bursts in 75 trains at
100 Hz with an interburst intervals of 0.2 s) as an effective
means to induce release of BDNF (compare Balkowiec and
Katz 2002). In addition to theta-burst discharges, BDNF re-
lease in spinal cord slices could also be elicited by injection of
capsaicin, which in turn produces bursting activity reminis-
cent of theta bursts in the investigated nociceptors (Lever et al.
2001).

Bursting activity, which is repeated at a frequency of the
theta rhythm, mimics also electrical activity patterns during
hippocampal learning. Accordingly, TBS of Schaffer collater-
al CA1 synapses in acute brain slices was shown to efficiently
release endogenous BDNF, thereby mediating postsynaptical-
ly expressed STDP (Edelmann et al. 2015). Correspondingly,
TBS was also reported to release fluorescently labeled BDNF
from either pre- or from postsynaptic sites in dissociated hip-
pocampal cultures (Bergami et al. 2008; Matsuda et al. 2009)
and from cortico-striatal presynaptic terminals (Park 2018). In
addition to TBS-induced release of BDNF in hippocampal
preparations, many other studies have analyzed the role of
endogenously released BDNF in TBS-induced LTP, by either
scavenging extracellular BDNF with superfusion of cells with
selective BDNF antibodies, or by quantifying released BDNF
by ELISA measurements in other brain regions. In this way,
BDNF was shown to mediate TBS-LTP, e.g., at glutamatergic
inputs to the amygdala (Li et al. 2011) or at retino-optical
synapses (Du et al. 2009).

Although the BDNF-dependent LTP-inducing protocols
seem to be very similar, the release sites of BDNF as well as
the site of BDNF action depend on brain region and context
(reviewed in Edelmann et al. 2014; Zagrebelsky et al. 2020).
Moreover, even similar patterns of synaptic activity may in-
duce mechanistically distinct types of LTP in the same neuro-
nal circuit and subtle experimental details can determine in
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Table 2 BDNF release from astrocytes

Site Ref. Species/type of Method  Release stimulus Pharmacology/molecular mechanism/time course of BDNF release
preparation
Saha et al. 2006  Rat, astrocytic cultures ~ ELISA TNF-alpha
Jean et al. 2008 Rat, basal forebrain Western ~ Glutamate (100 uM for 10 min)
astrocytic culture blot, " ACPD (10 uM for  Reduced by: U73122 (PLC inhibitor); 2ABP (IP3 inhibitor);
iUS- 10 min) BAPTA-AM
Baumbauer et al. Rat TrkB Tailshock
2009 IgG
Hutchinson et al. Human Astrocytoma ELISA  Prostaglandin E, Reduced by: H-89 (PKA inhibitor)
2009 cells (>0.1 uM for 24 h)
butaprost (10 uM for Reduced by: H-89 (PKA inhibitor)
24 h-EP, selective
agonist)
Forskolin (10 uM for 24 h)
Giralt et al. 2010  Mouse, astrocytic ELISA  TNF-alpha
cultures
Hou et al. 2011 Mouse, astrocytic ELISA  AP42 oligomers (30 uM for 48 h)
cultures
Gimenez-Cassina  SH-SYSY ELISA  Inhibition of GSK3 (24 h)
etal. 2012 neuro-blastoma cell
Su et al. 2012 Rat, cortical primary ELISA  Progesterone (P4) Reduced after sSiRNA against progesterone receptor membrane
astrocytes (0.1 nM for 18 h) component 1 (Pgrme-1)
Zhang et al. 2012 Rat, primary astrocytes ELISA  Resveratrol (100 uM, 24 h)
Hong et al. 2016  HD mice, primary ELISA  Elevated K* Reduced BDNF release in htt expressing cultures
astrocytic cultures; Reduced amount of docked BDNF-containing vesicles in htt ex-
brain slices pressing cultures —> rescued after Rab3a overexpression
Increased BDNF release in Rab3a overexpressing cultures
Reduced association between Rab3-GAP1 and Rab3a by mHtt
Sun et al. 2016 Rat; C6 glioma cells; Western ~ Progesterone Increases the ratio of mature to pro-BDNF released from glia =
SH-SYS5Y neuro-- blot Reduced after siRNA against progesterone receptor membrane
blastoma cell component 1 (Pgrme-1)
Sen et al. 2017 Human primary Western ~ ApoE3 + cholesterol ~ Predominantly release of proBDNF
astrocytes blot (4 h)
ApoE2 + cholesterol ~ Predominantly release of mBDNF
(4h
Basal release Not affected by ApoE4 + cholesterol or cholesterol
Vignoli and Cortical astrocytic ELISA  Elevated K*
Canossa 2017 cultures Glutamate
ATP
Datta et al. 2018  Astrocytic culture from ELISA  OHDA Reduced by L-NAME (NO synthase inhibitor)
forebrain, midbrain,
hindbrain
Stahlberg et al. Astrocytic cultures BDNF-mRFP Neuronal BDNF-mRFP is endocytosed by astrocytes via
2018 TrkB-receptor and is sorted to rab7-positive late endosomal com-
partment and LAMP 1-positive lysosomal compartment
Suetal. 2019 Rat, primary culture of ELISA  TNF (3 h) Reduced by 5 BDBD (P2x4R antagonist); TNP-ATP (P2x1-4R an-
Schwann cells tagonist)
Not affected by PPADS (P2x1,2,3,5,7 antagonist)
Release from microglia
Ref. Species/type of Method  Release stimulus Pharmacology/molecular mechanism/time course
preparation
Nakajima et al. Rat, primary microglial Western C8-ceramide (16 h) or Reduced by bisindolylmaleimide (PKC inhibitor)
2002 culture blot LPS (16 h)
Coull et al. 2005  Rat, primary microglial ELISA ~ ATP (10 uM for 5 h) Reduced by TNP-ATP (P2X receptor inhibitor)

Hutchinson et al.
2009
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cultures

Human microglial cells; ELISA

Prostaglandin E,
(>0.1 uM for 24 h)

Reduced by H-89 (PKA inhibitor)

Reduced by H-89 (PKA inhibitor)
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Table 2 (continued)

Site Ref. Species/type of Method  Release stimulus Pharmacology/molecular mechanism/time course of BDNF release
preparation
Butaprost (10 uM for
24 h-EP, selective
agonist)
Forskolin (24 h)
Trang et al. 2009  Rat, primary microglial ELISA  ATP (50 uM for Reduced by: calcium-free solution; siRNA for P2X4A; TNP-ATP
culture 5-300 min) (P2x1-4R blocker); SB203580 (p38MAPK inhibitor)
Not affected by: thapsigargine; transcriptional inhibitor; translational
inhibitor
ATP (50 uM for Reduced by: calcium-free solution; siRNA for P2X4A; TNP-ATP
60 min) (P2x1-4R blocker); SB203580 (P38MAPK inhibitor); transcrip-
tional inhibitor, translational inhibitor
Not affected by: thapsigargine
Gomes et al. 2013 Murine N9 microglial ~ ELISA  Lipopolysaccharide Reduced by: SCH58261 (adenosine A, 4 receptor antagonist);
cells (LPS, 100 ng/mL adenosine deaminase; H-89 (PKA antagonist); forskolin;
for 6 h) 8-Br-cGMP
CGS21680 (30 nM Reduced by: SCH58261 (adenosine A2A receptor antagonist); LPS
for 6H-A2AR ago-
nist)
Forskolin (1 uM) Reduced by: LPS
8 Br-cAMP (5 uM)  Reduced by: LPS
Chelerythrine (PKC  Not affected by: LPS
inhibitor)
Ferrini et al. 2013  Rat, primary microglial ELISA ~ Morphine (100 nM Reduced by naloxone (opioid receptor antagonist)
culture every day for
5 days)
Zhou et al. 2019 Cultured spinal cord ELISA CSF1 (6 h) Reduced by SB 203580 (p38 MAPK antagonist)
slice
Long et al. 2020  BV2 microglial culture ELISA ~ ATP (120 min) Reduced by: 5 BDBD (P2x4A antagonist); SB203580 (p38 MAPK
antagonist)
Zhou et al. 2020  Mouse; primary ELISA IL4 (12 h) Reduced by HA-TPSO (fusion construct of translocator protein

microglial cultures

(TPSO); FGIN-1-27 (TPSO agonist)

List of references for astrocytic and microglial release of BDNF (abbreviations: please see table legend of Table 1)

which way BDNF is involved in this plasticity. For example,
spike timing-dependent long-term potentiation (t-LTP) is
characterized by nearly coincident pairing of presynaptically
induced excitatory postsynaptic potentials (EPSP) with post-
synaptic firing of an action potential (AP) (Bi and Poo 1998).
Such activity patterns were shown for the first time in the
cortex of tadpoles to elicit BDNF release-dependent t-LTP
(Mu and Poo 2006). However, slight changes in t-LTP proto-
cols can decide whether t-LTP is mediated by BDNF or other
modulators. In this respect, Edelmann et al. (2015) reported
that a burst t-LTP protocol with 4 bAP was mediated by en-
dogenously released BDNF, while t-LTP induced by stimula-
tion protocols including only 1 bAP, occurred independent
from BDNF release (Edelmann et al. 2015). These slightly
different protocols did not occlude each other, indicating the
differential physiological relevance of both protocols at the
identical synaptic sites. In another study, regional deletion of
BDNEF either in the CA1 or the CA3 region revealed a role of
presynaptically released BDNF in the induction of HFS-LTP,

while postsynaptically released BDNF contributed to the
maintenance of HFS-LTP (Lin et al. 2018). Complementary
to the above-mentioned in vitro studies, Messaoudi et al. in-
vestigated the role of released BDNF in HFS-induced LTP in
the hippocampus in vivo. Application of exogenous mature
BDNF induced LTP (BDNF-LTP) in perforant path-granule
cell synapses of the hippocampus, which occluded gene tran-
scription dependent late-LTP but not early-LTP at the same
synapses (Messaoudi et al. 2002). Future studies need to elu-
cidate the role of proBDNF- and BDNF-dependent LTP
in vivo in other synaptic circuits of the hippocampus and in
additional brain areas (see also Zagrebelsky et al. 2020)
Subsequently to the release of BDNF from BDNF-
expressing cells, the protein can also be released after endo-
cytosis of the released BDNF (Fig. 5). Interestingly, the
endocytosed BDNF can be further modified by the recipient
cell before the re-release event. Such a re-exocytosis or
recycling of BDNF has been reported for cultures of mature
neurons, astrocytes and platelets (Bergami et al. 2008; Huang
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et al. 2014; Santi et al. 2006; Vignoli and Canossa 2017). In
neurons, recycling of BDNF enables, on the one hand, the
replenishment of the BDNF pool of releasing cells and re-
use of BDNF after further processing steps. On the other hand,
it also enables long distance distribution of synthetized BDNF
across synaptically connected neuronal circuits and surround-
ing astrocytes after transcytosis of BDNF, a mechanism which
was previously described or postulated for different neuro-
trophic factors (Bartheld and Johnson 2001; Butowt and
Bartheld 2001; Wirth et al. 2005).

Endocytosis or re-uptake of BDNF is also an important
mechanism to fill BDNF stores in platelets (Fujimura et al.
2002; Serra-Milas 2016). These stores may constitute the ma-
jor source of BDNF that can be released from platelets in
response to blood vessel injury. Of note, the expression of
BDNF not only in neurons but also in non-neuronal tissue
particularly in the immune system and the cardiovascular sys-
tem raises the interesting question how sorting and release of
BDNF is regulated in these cells. Physiological stimuli, like
shear stress in blood vessels but also pathophysiological and
oncogenic stimuli, might orchestrate BDNF expression and
release in these cell types as well as in cell types in which
BDNF expression is under debate or even not proven so far.
Future research addressing these important questions is criti-
cally needed.

BDNF release from astrocytes

Stimuli-triggering BDNF from astrocytes during plasticity
processes

BDNF can be secreted from neuronal cells but also from other
cells such as astrocytes. Quantifying BDNF release by ELISA
measurements during synaptic plasticity processes or analyz-
ing the contribution of BDNF during LTP by scavenging
BDNF from extracellular space (Shelton et al. 1995) do not
clarify the original release sites of BDNF. Moreover, a poten-
tial permissive function of BDNF for LTP, or acute early or
late instructive actions of BDNF during LTP, may depend on
BDNF release from different cellular sources. In the central
nervous system, astrocytes are closely associated with synap-
ses. One main function of astrocytes is the modulation of
synaptic function. It is known that proBDNF is endocytosed
by astrocytes in a p75-dependent manner during TBS-LTP in
hippocampal or perirhinal cortex slices (Bergami et al. 2008;
Vignoli et al. 2016). Extracellular cleavage of proBDNF by
plasmin or deletion of glial p75 receptors inhibits endocytosis
of proBDNF by astrocytes (Bergami et al. 2008; Vignoli et al.
2016). After recycling of endocytosed proBDNF and intracel-
lular cleavage, the re-released mature BDNF contributes to the
maintenance of TBS-LTP in a postsynaptic TrkB-dependent
manner (Vignoli et al. 2016). Furthermore, mice that were
unable to recycle BDNF failed to recognize familiar from
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novel objects. Therefore, astrocytic BDNF recycling was
shown to be essential for visual recognition memory
(Vignoli et al. 2016). Besides the astrocytic recycling of
BDNF, neuronal recycling of BDNF has also been shown to
contribute to TBS-LTP maintenance in hippocampal slices
(Santi et al. 2006). The role of astrocytic recycling has not
been addressed in this study. Whether neuronal and astrocytic
recyclings of BDNF coexist or whether they are successive
processes need to be clarified. In contrast to the endocytosis of
pro-BDNF, another study suggests that solely the mature form
of BDNF is endocytosed by astrocytes via truncated TrkB
receptors in dissociated cultures (Stahlberg et al. 2018).
Interestingly, inflammatory stimuli like released interferon-
gamma increased astrocytic expression of truncated TrkB,
which was associated with increased BDNF recycling capac-
ity of astrocytes (Rubio 1997). Additional studies are needed
to clarify whether astrocytic recycling of mature BDNF via
truncated TrkB-receptors contributes to astrocyte-dependent
synaptic plasticity underlying memory formation or whether
it is a part of inflammatory processes.

During plasticity processes, different stimuli might induce
release of recycled BDNF from astrocytes. Since glutamate is
known to induce the release of astrocytic BDNF (Jean et al.
2008; Santi et al. 2006; Vignoli et al. 2016), the prolonged
glutamate release from the presynaptic terminal may be im-
portant for the release of recycled BDNF from astrocytes dur-
ing TBS. These authors showed that the effect of glutamate
was mimicked by agonists of AMPA or mGIuRI/II receptors
(Bergami et al. 2008). Interestingly, TBS activity is likely to
induce elevated extracellular potassium levels. Consistent
with this, BDNF release from astrocytes was also shown to
be induced by elevated extracellular potassium concentration
(Stahlberg et al. 2018; Vignoli and Canossa 2017). However,
HFS was ineffective in releasing recycled BDNF from pure
astrocytic cultures (Bergami et al. 2008).

Another stimulus to induce BDNF release was described
by Canossa et al., in hippocampal slices and in neuronal cul-
tures (Canossa et al. 1997). There, BDNF-induced BDNF
release was observed (Canossa et al. 1997; Nakajima et al.
2008 but compare Kolarow et al. 2007). This mechanism
might also occur in astrocytes during synaptic function to refill
stores of BDNF and simultaneously to induce release of a
readily releasable pool of BDNF vesicles. Taken together,
processing and release of BDNF from astrocytes during syn-
aptic plasticity process and memory formation are factors that
should not be neglected.

Stimuli-triggering BDNF from astrocytes in inflammatory
or neuroprotective processes

In addition to synaptic functions, astrocytes have several other
functions in the CNS. They are important for the regulation of
energy supply and for the homeostasis of neurotransmitters
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and ions. They are involved in function and maintenance of
the blood brain barrier and they have immunoregulatory func-
tions. Different stimuli are known to activate one or the other
effect of astrocytes, respectively. One player that is associated
with inflammation, pain, or immune response in astrocytes is
prostaglandin E2 (PGE2). PGE2 has been shown to induce
release of BDNF from astrocytes (Hutchinson et al. 2009). In
addition to PGE2, the proinflammatory cytokine TNF-alpha
was also shown to induce BDNF release from astrocytes
(Giralt et al. 2010; Saha et al. 2006).

Furthermore, astrocytes are known to mediate neuroprotec-
tive functions, which involve BDNF release (Su et al. 2012).
However, neuroprotective functions of astrocyte-derived
BDNF were shown to be region-specific (Datta et al. 2018).
These authors showed that cultured astrocytes from different
brain regions exhibit distinct efficacy of BDNF release in
response to oxidative stress induced by 6-hydroxydopamine
(6-OHDA).

In line with the neuroprotective function, astrocytes are
also important in regulating the glymphatic system. This
waste clearance system of the brain has been described as a
tunnel system around blood vessels formed by astrocytes. It is
important for clearing the brain from toxic compounds like
Amyloid-3-, which is itself a stimulus to induce BDNF re-
lease from astrocytes (Hou et al. 2011). However, neuronal
release of BDNF was unaffected in transgenic Alzheimer
models although transport of BDNF was impaired already
after acute application of Amyloid-3 (Seifert et al. 2016). In
conclusion, regulation of the glymphatic system in response to
Amyloid-3 might be a BDNF-mediated neuroprotective ef-
fect of activated astrocytes in the brain.

BDNF release from microglia

Similar to astrocytes, the primary immune cells of the brain, the
microglia, also mediate several functions in the CNS, such as
neuroprotection and shaping of synaptic spines (Dubbelaar
et al. 2018; Stratoulias et al. 2019). Different microglia pheno-
types exist, which can be transformed into one another by dif-
ferent chemokines and intercellular interactions, thereby
exerting distinct functions in the brain (Orecchioni et al. 2019;
Xue et al. 2014). One older simplifying in vitro classification of
microglia, the M1/M2 concept, groups the different overlap-
ping activated microglial phenotypes into two extremes: the
proinflammatory lipopolysaccharide-(LPS)-induced M1 phe-
notype and the neuroprotective IL-4-induced M2 phenotype
(Werry et al. 2019). BDNF expression and secretion from mi-
croglia have been shown for both activated M1 and M2 phe-
notypes but also for non-activated MO microglia (Coull et al.
2005; Nakajima et al. 2001; Nakajima et al. 2002; Zhou et al.
2020). For the neuroprotective phenotype, extracellular accu-
mulation of BDNF was shown after polarization of microglial
cultures with IL-4 (Zhou et al. 2020). Furthermore, Merlo et al.

demonstrated an Amyloid-f3 42-induced release of BDNF
thereby mediating a neuroprotective effect in cultures of a neu-
roblastoma cell line (Merlo et al. 2018).

LPS or 8-ceramide-induced polarization of microglia to the
proinflammatory phenotype leads to an increase in extracellu-
lar mature BDNF that was described to depend on surface
expression and activation of adenosine A,, receptor (Gomes
et al. 2013; Nakajima et al. 2002). Furthermore, surface ex-
pression of P2X4 adenosine receptors (P2X4R) drives mi-
croglia polarization towards the pro-inflammatory phenotype.
The surface expression of P2X4Rs in microglia was associat-
ed with central sensitization like pain hypersensitivity or
allodynia (Tsuda et al. 2013). Hypersensitivity in chronic pain
was also associated with release of BDNF from microglia
(Zhou et al. 2019). The uncovered molecular mechanism un-
derlying BDNF-dependent hypersensitivity in chronic pain
involved the small G protein MAPK p38 (Zhou et al. 2019).
Activation of this protein is known to be important in P2X4R-
mediated release of BDNF from microglia (Coull et al. 2005;
Ferrini et al. 2013; Long et al. 2020; Trang et al. 2009).
Activation of this purinergic ligand-gated cation channel
(P2X4R) by extracellular ATP leads to an increase in intracel-
lular calcium concentration, thereby triggering distinct molec-
ular mechanisms to induce BDNF release from microglia.

Molecular mechanisms underlying release
of BDNF

Calcium transients and BDNF secretion

Fusion of transmitter and peptide vesicles depends on calcium
ions, which are essential for triggering membrane fusion and
on ATP or GTP supply for energy consuming steps of exocy-
tosis such as priming of vesicles and disassembly of the
SNARE complex. In recent years, great efforts have been
made to uncover the molecular mechanisms regulating exo-
cytosis of BDNF-containing secretory granules. It is well
established that the essential calcium transients to trigger
membrane fusion may have extracellular and/or intracellular
origin. Activation of NMDA receptors (Hartmann et al. 2001),
AMPA receptors (Canossa et al. 2001; Hartmann et al. 2001),
L-type, N-Type or P/Q-type voltage-gated calcium channels
(Buldyrev et al. 2006; Kolarow et al. 2007), transient receptor
potential channels (TRPC) (Vohra et al. 2013), or ATP-gated
purinergic receptors (P2XR) (Long et al. 2020; Trang et al.
2009) have been shown to contribute to the calcium transients
in different BDNF-releasing cell types (see Tables 1, 2 3 and
Fig. 1). Moreover, calcium release from internal calcium
stores crucially contributes to BDNF release (Kolarow et al.
2007) and is of particular importance for BDNF release in
response to external stimuli acting on G protein-coupled re-
ceptors (GPCRs) or receptor tyrosine kinases (RTKs).

@ Springer



28

Cell Tissue Res (2020) 382:15-45

Table 3  Neuronal release—exact source of BDNF secretion is unknown, measurement of BDNF by, e.g., ELISA or scavenging of BDNF
Ref. Species/type of Method Release induction Pharmacology/molecular mechanism/time course
preparation protocol
Wetmore et al.  Rat Immuno-histochemical Kainat injection Increase in DNQX dependent transcription of
1994 staining BDNEF, irrespective of NMDA activation
Goodman et al.  Rat; E16, hippocampus ~ Western blot Potassium Blocked in At20 cells in calcium-free solution
1996
Figurov et al. Hippocampal slice TrkB-1gG HFS
1996
Kanget al. 1997 Hippocampal slice TrkB-1gG TBS TrkB-IgG application 0 min and 30 min after LTP
induction
pairing
Canossa et al.  Rat; hippocampal culture ELISA NT-4 Reduced by: K252; BAPTA-AM
1997 E17 Not affected by: CNQX; BAPTA
Hippocampal slice NT3 Reduced by: K252; BAPTA-AM
Not affected by: CNQX; BAPTA
Glutamate Reduced to CTRL-level in the presence of CNQX
One peak of BDNF release after 20 min
Investigated time window: 100 min
Not affected by K252a
Chen et al. 1999 Hippocampal slice TrkB IgG TBS
Griesbeck et al.  Hippocampal slice ELISA Potassium (up to 150%) Blocked to ctrl-level in the presence of BAPTA-AM
1999 Hippocampal cultures (intracellular calcium scavenging)
from E17 Blocked to ctrl level in the presence of
thapsigargin/caffeine
Not effected in the presence of BAPTA + calcium
free solution
Glutamate Blocked in the presence of BAPTA-AM (intracellu-
lar calcium scavenging)
Not effected in the presence of BAPTA +
calcium-free solution
Balkowiec and  Rat; cultures from nodose ELISA Potassium (72 h) Accumulation of BDNF
Katz 2000 and petrosal ganglia 20 or 50 Hz stimulation reduced by TTX
neurons No release after 5 Hz or 10 Hz stimulation
50 Hz TBS
Canossa et al. ~ Hippocampal slice ELISA glutamate No release after NMDA application
2001 AMPA Reduced by: CNQX; caffeine + thapsigargin
t-ACPD Reduced by: AIDA; caffeine + thapsigargin
Nnr5 cells NGF Depedendent on exogenous TrkA expression
Transfected with TrkA Blocked by mutatet trkA with mutated PLC-site
Reduced by BAPTA/AM; thapsigargin + caffeine
Patterson et al.  Mouse; hippocampal TrkB-1gG TBS Regulated by cAMP (reduction of forskolin-induced
2001 slice phosphorylation of TrkB in the presence of
TrkB-IgG)
Balkowiec and  Rat; hippocampal ELISA TBS Blocked by TTX; conotoxin; extracellular Ca-free;
Katz 2002 neurons dantrolene + thapsigargin;
Not affected by: CNQX + APV; mGluR inhibitor;
nimopidine
t-ACPD (activator of Blocked by dantrolene + thapsigargin;
mGIuR)
Canossa etal.  Rat, hippocampal ELISA Network activity Reduction up to 75% in the presence of glutamate

2002
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neurons; E17

receptor antagonists

Increase up to 140% 20 min after L-NAME appli-
cation

Reduced after application of SNP (NO-donor);
NOR3 (NO-donor); YCI (agonist of sGC); 8
Br-cGMP

Increased by KT5823 (inhibitor of PKG)
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Table 3 (continued)

Ref. Species/type of Method Release induction Pharmacology/molecular mechanism/time course
preparation protocol
Gartner and Rat; hippocampal ELISA 50 Hz train Reduced by: TTX; Thapsigargin +caffeine; IP3R
Staiger 2002 cultures from E19 antagonist
Not affected by: NMDAR antagonist; extracellular
calcium-free solution
Egan et al. 2003 Rat, hippocampal culture GFP-ELISA Potassium Reduced in neurons transfected with metBDNF-GFP
E20 transfected with
valBDNF or
metBDNF
Aicardi et al. Hippocampal slice ELISA TBS-100 Hz Release within 10 min after TBS

2004

Baetal. 2005  Brain stem spinal cord ELISA
preparations E16

Buldyrev et al. ~ Rat; Trigeminal neuronal ELISA
2006 culture

Guo et al. 2006 Rat; brainstem/rostral

slice

Santi et al. 2006 Hippocampal slice Live cell
imaging-release of
endo-cytosed BDNF

incubated with
BDNF-YFP

Nakajima et al.  Hippocampal E17 culture FRET

indicator for BDNF

2008 Cell-based fluorescent
Tanaka et al. Organotypic TrkB-1gG
2008 hippocampal slice
Babu et al. 2009 Mouse, hippocampal ELISA
culture PO
Duetal. 2009  Xenopus retinotectal Knockdown of
system with pre and
postsynaptic expression
knockdown
Jourdi et al. Neuronal cultures Western blot
2009
Fritsch et al. Motor cortex slice TrkB IgG
2010
Hsieh et al. Nodose ganglion ELISA
2010 neuronal culture

TrkB-phosphorylation;
ventromedial medulla TrkB-IgG

site-specific TrkB

Basal level

Varying frequency

CGRP

TBS

Basal secretion

Potassium
Glutamate
AMPA
t-ACPD
caffeine
NT-4
NT-3

50 Hz

Reduced BDNF release after LFS (5 Hz or 1 Hz)

Reduced by TTX; receptor antagonists
Increased by elevated potassium

Reduced by: extracellular calcium-free solution;
N-Type VGCC blocker; L-type blocker; P/Q-type
VGCC blocker (reduction to 50% after inhibition
of one of the receptor)

Reduced by: thapsigargin; thapsigarin + dantrolen
Not affected by blocker of VGCC (N-, L-, P/Q-type)

Not induced by NMDA application
Not induced by NGF

Reduced by NO donor NOR3
Reduced by k252a

Recycling reduced by BAPTA-AM
Recycling reduced by CNQX
Recycling reduced by AIDA

Reduced by K252a
Reduced by K252a
Reduced by TTX

KT5823 (inhibitor of PKG)

BDNF 3.5 nm
Glutamate

Uncaging glutamate +

bAP
Glycine (60 min)

TBS

CX641 (Ampakine)

Not affected by TTX; APV + CNQX
Reduced by TTX; APV + CNQX

Not induced by unpaired stimulus

Glycine treatment do not induce NT-3 release

Reduced by: CNQX, Ca-free solution; nifedipin;
ryanodin

Direct current stimulation (DCS)-LTP

6-Hz stimulation

Reduced by NOR3 => Rescued by NEM (prevention
of s-Nitrosylation)

not affected by: YC1 (guanylyl cyclase agonist);
KT5823 (PKG antagonist); 8-Br-cGMP

Reduced by SNAP (NO donor) = rescued by
Tempol (radical scavenger, prevention of
S-nitrosylation)
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Table 3 (continued)

Ref. Species/type of Method Release induction Pharmacology/molecular mechanism/time course
preparation protocol

Lietal 2010 Hippocampal slice TrkB IgG TBS MF(IAmpl) reduced in the presence of (glutamate
Mossy fiber = CA3 and GABA receptor antagonists) + TTX

Lietal 2011 Rat; brain slice TrkB-Fc TBS LTP in BLA blocked by TrkB-Fc

Porcher et al. Cortical neurons BDNF-IR Muscimol (10 min) Reduced by: bicuculine (back to control level)

2011 Ctrl Reduced by: TTX: reduction to 50%
Meis et al. 2012 Coronal slices TrkB-1gG Pairing protocol: LTP blocked by APV

Chen and

5
HT + norepi-
nephrine
Schildt et al.
2013
Lepack et al.
2014

Briz et al. 2015

Edelmann et al.
2015
Zhao et al. 2015

Hedrick et al.
2016

Atasoy et al.
2017

Lao-Peregrin
etal. 2017

Kato et al. 2018

Lopez-Benito
etal. 2018

Yuetal. 2018

Zimbone et al.
2018
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Russo-Neustadt 2013
Significant increase after

120 min
5-HT

Significant increase after

5 min

Adult mouse;
hippocampal slice

Rat; cortical culture; E18

Neuronal cultures

Hippocampal slice

Mouse; somatosensory
cortex

Rodent hippocampal slice

Rat E16

Mouse, hippocampal
slice

Rat, primary cortical
culture

DRG and cortical
neurons, in vivo, in
HD mice

Cortical neurons of
zQ175 mice (HD
model)

Rat; E15

Rat; E18; hippocampal
cultures

TrkB-Fc

ELISA

TrkB-Fc; Western blot

TrkB-IgG

TrkB blocking; BDNf
rescue
TrkB-Fc

ELISA
ELISA

Western blot; ELISA

ELISA

BDNF-pHluorin; live
cell imaging

ELISA

presynaptic

100 Hz + postsynapt-

ic Depolarization
ELISA

50 Hz stimulation

Ketamine

Estradiol (1 h)
Gl (1h)

Burst t-LTP
TBS
Glutamate-uncaging

Okadaic acid (24 h)

Caffeine (5 min)

GLYX-13 (allosteric
modulator of
NMDAR)

Basal levels

Potassium

NT-3

NT-4

Physical activity

50 Hz

Basal release

Abetal-42 (100 nM,
24 h)

IGF (5 ng/ml, 24 h)

LTP blocked by Pepl-TGL

Norepinephrine

Significant increase after 10 min

Reduced MF LTP in the presence of TrkB-Fc

Reduced by verapamil (inhibitor of L-type VGCC)
blocked by NBQ (inhibitor of (AMPAR)

G1 = G-protein-coupled estrogen receptor 1 agonist
(GPERI)

Not affected by ERalpha or ERbeta agonists PPT and
DPN

NMDAR-dependent

Heterosynaptic fascilitation of structural LTP

No change in BDNF release after Okadaic acid (8 h)
Increase in BDNF level

Reduced by TTX; ryanodin

Reduced by verapamil

Increased by shRNA for ARMS

Increased by shRNA for ARMS

Increased by shRNA for ARMS

Increased by shRNA for ARMS

In vivo BDNF release in different regions at different
time points

Smaller proportion of BDNF-containing vesicles
undergoing full release

Not affected by oligoAbeta

Reduced by: selective inhibitor of IGF-IR
(picropodophyllin)

Not effected by: oligomeric Abetal-42

Transcription dependent increase in BDNF level;

increase in BDNF level to 150%

Transcription dependent increase in BDNF level,
increase in BDNF level to 190%
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Table 3 (continued)

Ref. Species/type of Method Release induction Pharmacology/molecular mechanism/time course
preparation protocol
Fogaca et al. Primary cortical culture ~ ELISA Methadone (60 min)
2019
Fukumoto et al. Cortical culture ELISA Hydroxynor-ketamine ~ Reduced by verapamil (inhibitor of L-type VGCC);
2019 (60 min) NBQX (inhibitor of (AMPAR)
Lee etal. 2019  Mouse, cortical neurons, ELISA Basal level Reduced in x/-muncl8 ko culture
Muncl8 ko mice
Liuetal. 2019  Rat ELISA Conditioned taste aversion memory extinction (12 h)

List of references analyzing molecular mechanisms of BDNF release or the contribution of BDNF during LTP in different neuronal preparations. The
exact cellular source of BDNF is unknown since BDNF was either quantified by, e.g., ELISA measurements or the significance of BDNF release was
shown by scavenging BDNF from extracellular space. (Abbreviations: please see table legend of Table 1)

Calcium transients and BDNF secretion in neurons

Calcium transients and BDNF secretion in response
to electrical stimulation

In neurons, calcium influx via pre- or postsynaptic NMDA
receptors contributes to electrically induced BDNF release at
the respective release site (Hartmann et al. 2001; Matsuda
et al. 2009; Park 2018). At least for presynaptic terminals of
cortico-striatal synapses, calcium influx from internal calcium
stores was shown to prevent presynaptic BDNF release medi-
ated via presynaptic NMDA receptors containing the GluN1
subunit (Park 2018) (Fig. 3). At postsynaptic release sites,
electrically evoked BDNF release was solely dependent on
extracellular calcium influx and not on calcium release from
internal calcium stores (Kuczewski et al. 2008) (Fig. 2a).
However, elevated potassium-induced BDNF release,
depolarization-induced BDNF release and electrically evoked
BDNF release in young cultures occur independent from
AMPAR and NMDAR activation (Balkowiec and Katz
2002; Hartmann et al. 2001; Kuczewski et al. 2008) (Fig.
2b). In these cases, calcium influx was mediated via L-type
VGCC (Balkowiec and Katz 2002; Buldyrev et al. 2006;
Hartmann et al. 2001; Kolarow et al. 2007; Kuczewski et al.
2008), although the specific type of VGCC contributing to
BDNF release might depend on the developmental stage and
the brain area of the investigated neuron (Fig. 2b). Furthermore,
dendritic elevated potassium-induced release of BDNF in hip-
pocampal cultures was—in contrast to bAP-induced dendritic
BDNF release—dependent on calcium efflux from internal cal-
cium stores (Griesbeck et al. 1999; Kolarow et al. 2007;
Kuczewski et al. 2008) (Fig. 2). This is in line with the role of
BDNF during development of neural networks (compare
Stimuli-triggering BDNF release from developing neurons sec-
tion). The maturation of functional synapses might depend on
BDNEF release triggered by calcium-influx via VGCC and cal-
cium release from internal calcium stores. In contrast, at more
mature synapses, the calcium nanodomains defined by calcium

influx via only NMDARs and VGCCs seem to be sufficient for
bAP-induced site-specific local BDNF release from dendrites.
Since calcium influx from internal stores was shown to be im-
portant for presynaptic AP-induced NMDAR-mediated BDNF
release (Park 2018), calcium nanodomains might differ be-
tween dendrites and axons.

Calcium transients and BDNF secretion in response
to chemical stimulation

Increased bursting activity of neural networks driven by glu-
tamate or ketamine application or disinhibition of GABAergic
transmission by GABAAR inhibitors represent potent stimuli
for the induction of BDNF release (Canossa et al. 1997;
Griesbeck et al. 1999; Lepack et al. 2014; Nakajima et al.
2008; Porcher et al. 2011; Santi et al. 2006). Interestingly, in
contrast to bAP-induced BDNF release, glutamate-induced
BDNEF release from brain slices or primary neuronal cultures
has been shown to be independent from extracellular calcium
but dependent on calcium release from internal calcium stores
(Canossa et al. 2001; Griesbeck et al. 1999; Santi et al. 2006)
(Fig. 2b). This glutamate-induced BDNF release was also de-
pendent on AMPA receptor or mGluR activation, respectively
(Canossa et al. 1997; Canossa et al. 2001; Canossa et al. 2002;
Nakajima et al. 2008; Santi et al. 2006), as well as on IP3-
signaling that activates calcium release from internal calcium
stores (Canossa et al. 2002; Gartner and Staiger 2002) (Fig.
2b). In most of these studies, BDNF levels in the extracellular
medium was quantified by ELISA measurements. Therefore,
release of BDNF from non-neuronal cells could not be exclud-
ed. Ketamine-induced BDNF release was blocked in the pres-
ence of AMPA receptor inhibitors but also in the presence of
L-type VGCC inhibitors (Lepack et al. 2014). In this study,
increased glutamatergic transmission induced by ketamine ap-
plication was discussed as a reason for induction of BDNF
release (Duman et al. 2019; Lepack et al. 2014). However, the
molecular mechanisms underlying action of ketamine are not
well understood (Lester et al. 2012; Wei et al. 2020).
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<« Fig. 1 Schematic illustration of different release sites for BDNF. Release
of BDNF takes place from somatic and dendritic compartments (green:
D + ©®@) and from axonal structures (yellow: (3)) of glutamatergic neurons.
Presynaptic neuron (yellow) and the postsynaptic glutamatergic neuron
(green) are connected via glutamatergic synapses. The postsynaptic neuron
additionally receives input from GABAergic interneurons (red). Astrocytic
@ and microglial (5) BDNF release has also been described. Recycling of
BDNF () has been observed in neurons and in astrocytes. bAP back-
propagating action potential, ER endoplasmic reticulum, GABAgR
gamma-aminobutyric acid receptor B, IP3-R inositol trisphosphate recep-
tor, mGluR metabotropic glutamate receptor, NaV voltage-gated sodium
channel, NMDAR N-methyl d-aspartate receptor, P2XR P2X purinergic
receptor, PKC protein Kinase C., PLC phospholipase C, TRPC transient
receptor potential channel, VGCC voltage gated calcium channels. Adapted
from Brigadski and Leimann, Neuroforum, 2014.

Therefore, it is possible that the ketamine-induced BDNF re-
lease acts via different mechanisms than glutamate-induced
release. It is also conceivable that depolarization-induced con-
formational change of VGCC elicited by glutamate or
ketamine-induced increase in bursting activity of the neural
network is a prerequisite for BDNF release, which leads to
structural reorganization of release, sites (Marom et al. 2010)
irrespective of calcium influx from the extracellular medium.

Fig.2 Suggested mechanisms for a

Calcium transients and BDNF secretion in response
to activation of GPCRs and RTKs

In addition to calcium influx through VGCC or NMDA re-
ceptors, calcium release from internal calcium stores is medi-
ated by activation of G protein-coupled receptors (GPCRs) or
receptor tyrosine kinases (RTKSs). Different GPCRs and RTKs
are known to be important for BDNF release. Neurotrophin-
induced BDNF release was shown to depend on Trk receptor
activation (Lopez-Benito et al. 2018; Nakajima et al. 2008;
Santi et al. 2006). Furthermore, neurotrophin-induced BDNF
release was solely dependent on calcium release from internal
calcium stores (Canossa et al. 1997; Canossa et al. 2001;
Lopez-Benito et al. 2018; Nakajima et al. 2008; Santi et al.
2006) (Fig. 2b). Similarly, GPCR-mediated BDNF release
was also only dependent on calcium release from internal
calcium stores (Buldyrev et al. 2006; Canossa et al. 2001;
Lao-Peregrin et al. 2017; Santi et al. 2006). In addition, intra-
cellular application of the non-hydrolysable guanosine di-
phosphate (GDP) analog GDPf3-S inhibits giant depolariza-
tion (GDP)-induced BDNF release (Kuczewski et al. 2008). In
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neuronal preparations, GCPRs activated by caffeine, gluta-
mate via mGluR, GABA via GABAg receptors, or
calcitonin-gene-related protein (CGRP) receptor via CGRP
have been shown to induce release of BDNF (Balkowiec
and Katz 2002; Buldyrev et al. 2006; Canossa et al. 2001;
Lao-Peregrin et al. 2017; Santi et al. 2006). Nevertheless,
GPCR-mediated release seems to be even more prominent in
non-neuronal cells.

Intracellular calcium transients and BDNF secretion from glial
cells

Ligands for GPCRs such as prostaglandine E2 or adenosine
A2 (Aa5R) induce BDNF release via activation of PKA or
PLC in astrocytic and microglial cultures (Gomes et al.
2013; Hsieh et al. 2010; Hutchinson et al. 2009; Jean et al.
2008) (Fig. 4a). In addition to neuronal preparations,
glutamate-induced release of BDNF was also observed in as-
trocytic (Jean et al. 2008) but not in microglial cultures (Trang
et al. 2009). Glutamate-induced release of BDNF via mGIuR-
activation was observed within 10 min of stimulation, while
kainate or NMDA application failed to induce release of
BDNF in astrocytic cultures. The glutamate-induced release
was dependent on activation of phospholipase C (PLC) and
inositol-3-phosphate receptor (IP3-R) as well as on calcium
release from internal calcium stores (Jean et al. 2008) (Fig.
4a). Besides the glutamate-induced BDNF release, release
was also elicited after ATP treatment of astrocytic and
microglial cultures (Long et al. 2020; Trang et al. 2009)

Secretion from Axon ®

W ER W IP3R e BDNF vesicle
¢ NMDA-R. W RyR = release-site
Y VvGce

Fig. 3 Suggested mechanisms for axonal release of BDNF. BDNF
release is dependent on Ca**-influx from extracellular space via
presynaptic NMDAR and intracellular Ca**-release from internal Ca*-
stores. ER endoplasmic reticulum, IP3R inositol-3-phosphate receptor,
NMDAR N-methyl d-aspartate receptor, TBS theta burst stimulation
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(Fig. 4b). Trang et al. demonstrated a biphasic release of
BDNF with peaks at 5 and 60 min after stimulation with
ATP (Trang et al. 2009). SiRNA-mediated knockdown or
pharmacological inhibition of purinergic P2X4Rs prevented
the ATP-induced BDNF release (Long et al. 2020; Trang et al.
2009). Calcium influx from extracellular but not from internal
calcium stores was important for BDNF release after ATP
treatment (Fig. 4b). Application of TAT-NSF700, which pre-
vents the disassembly activity of NSF, as well as inhibition of
p38MAPK phosphorylation, reduced BDNF release from mi-
croglia (Long et al. 2020; Trang et al. 2009; Zhou et al. 2019).
BDNEF release from spinal dorsal horn microglia in response
to p38-MAPK activation was associated with chronic pain
hypersensitivity (Zhou et al. 2019). In addition to hydrophilic
messengers, membrane permeable first messengers like pro-
gesterone or C8-ceramide are also effective stimuli to accu-
mulate BDNF in extracellular medium after 16-h incubation
time in primary glial cultures (Nakajima et al. 2002; Su et al.
2012).

Contribution of small G proteins, SNARE proteins and
signaling pathways to BDNF secretion

Different proteins are involved in the organization of the re-
lease site, the transition of BDNF-containing vesicles from the
reserve pool to a readily releasable pool, fusion pore opening,
as well as disassembly of the SNARE complex. The exact
contribution of all the proteins and direct interactions between
the proteins with all their multiple binding sites are unknown
also for synaptic vesicles. For BDNF-containing granules,
some proteins and their binding partners have been identified.
Among them are important cytosolic kinases (Gimenez-
Cassina et al. 2012; Gomes et al. 2013; Hsieh et al. 2010;
Hutchinson et al. 2009; Kolarow et al. 2007; Santi et al.
2006; Trang et al. 2009), small G proteins (Hong et al.
2016; Kato et al. 2018; Persoon et al. 2019), SNARE proteins
(Dean et al. 2009; Shimojo et al. 2015; Wong et al. 2015) and
other priming factors (Eckenstaler et al. 2016; Lee etal. 2019).

Contribution of cytosolic-signaling pathways to BDNF
secretion

Important cytosolic kinases, which are also implicated in
BDNF release, are the protein kinase A (PKA), calcium cal-
modulin kinase I (CAMKII), protein kinase C (PKC) via
phospholipase C (PLC), as well as protein kinase G (PKG)
via the NO/cGMP/PK G-signaling pathway. The NO/cGMP/
PKG-signaling pathway was shown to negatively regulate
calcium release from internal calcium stores, thereby reducing
BDNF secretion (Canossa et al. 2002; Kolarow et al. 2014;
Santi et al. 2006). BDNF release was also dependent on acti-
vation of the PLC/IP3/IP3R-pathway, thereby mediating cal-
cium release from internal calcium stores (Canossa et al. 2002;
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Fig. 4 Suggested mechanisms for astrocytic and microglial release of
BDNF. Glial BDNF release is dependent on GPCR activation and
Ca’*-release from internal Ca**-stores (a) and on Ca’*-influx via P2X-
R (b). AC adenylate cyclase, DAG diacylglycerol, ER endoplasmatic
reticulum, IP3 inositol triphosphate, IP3R inositol-3-phosphate receptor,
p38MAPK p38-mitogen-activated protein kinase; P2XR purinergic P2X
receptor, PKA protein kinase A, PLC phospholipase C; TRPC transient
receptor potential channel

Gartner and Staiger 2002; Jean et al. 2008). Activation of
PKA was shown to be important for BDNF release from neu-
rons and glial cells (Gomes et al. 2013; Hsieh et al. 2010;
Hutchinson et al. 2009; Kolarow et al. 2007) although the
exact downstream effectors contributing to cAMP/PKA-
dependent BDNF release are unknown. Furthermore, inhibi-
tion of CAMKII prevented BDNF release from neurons
(Kolarow et al. 2007) while chronic inhibition of GSK-3 re-
duced accumulation of BDNF in culture media of neuroblas-
toma cells (Gimenez-Cassina et al. 2012). These serine/
threonine kinases are known to regulate open channel proba-
bility of VGCCs, IP3Rs, the activity of effector proteins im-
portant for actin dynamics, as well as the activity of different
other proteins, such as small G-proteins.

Contribution of small G-proteins to BDNF secretion

The Ras superfamily of small G proteins is an important reg-
ulator of several cellular processes. Based on structural and
functional similarities, the superfamily is divided into 5 main
subfamilies: Ras, Ran, Rho, Arf and Rab family. While the
Ras family controls cell proliferation, differentiation and

survival, the Ran family contributes to nucleocytoplasmic
transport of RNA and proteins. The Rho family is important
for actin dynamics and Rab and Arf subfamilies have been
shown to regulate vesicular transport (Wennerberg et al.
2005). Different small G proteins seem to contribute to the
release of BDNF. Activation of p38 MAPK is mediated via
Ras. Ras/p38-signaling is important for BDNF release in as-
trocytes and microglia (Long et al. 2020; Trang et al. 2009).
The small G-protein rab3a, which is important for vesicular
trafficking, is localized on membranes of BDNF-containing
granules, in astrocytes. Interactions between huntingtin (htt)
and rab3a prevent binding of rab3a GTPase-activating pro-
teinl (rab3a-GAP1) to rab3a, which leads to an impaired at-
tachment of the granules to the plasma membrane (Hong et al.
2016). In synaptic vesicle release, it could be shown that
Rab3a interacting protein Rimlalpha directly interacts with
the priming factor munc13 thereby recruiting muncl13 to the
active zone. Inhibition of this interaction reduces the number
of readily releasable vesicles (Andrews-Zwilling et al. 2006;
Betz et al. 2001; Dulubova et al. 2005). A similar finding has
been reported recently for BDNF-containing vesicles.
Recruitment of BDNF-containing granules to release sites
and thus fusion depends on the interaction of Rab3a-Riml
and Muncl13 (Persoon et al. 2019).

Contribution of regulatory proteins and SNARE proteins
to BDNF secretion

The priming protein Munc13 further catalyzes the transition of
the closed inhibitory form of the Munc18/syntaxin complex to
the opened active form, thus enabling the formation of the
SNARE complex. Therefore, Munc-18 is an essential protein
for synaptic vesicle priming and stabilizing the core complex
by binding to the SNARE protein syntaxin. Accordingly, in

Secretion of endocytosed BDNF ®
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Fig. 5 Suggested mechanisms for recycling of BDNF. Endocytosed
BDNEF is recycled for re-release event in neurons and astrocytes. ER
endoplasmatic reticulum, IP3R inositol-3-phosphate receptor, NMDAR
N-methyl d-aspartate receptor, TBS theta burst stimulation
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knockout mice heterozygous for munc-18, BDNF release is
negatively affected (Lee et al. 2019).

The Ca®*-dependent activator protein for secretion
(CAPSI) is another priming factor during exocytosis of syn-
aptic vesicles and granule exocytosis in neurons (Farina et al.
2015; Jockusch et al. 2007). CAPS1, which is expressed in
many brain regions, is localized in axons and dendrite of hip-
pocampal neurons (Eckenstaler et al. 2016; Farina et al. 2015;
Sadakata et al. 2006; Speidel et al. 2003). For BDNF-
containing granules, a function of CAPSI1 in regulating
intravesicular pH value could be demonstrated (Eckenstaler
et al. 2016). A transient knockdown of CAPS1 significantly
increased the pH value in BDNF-containing granules while
the pH in the cytosolic compartment was unaffected.
Furthermore, knockdown of CAPS1 reduced the number of
fusion-competent BDNF-containing vesicles as well as the
amount of released BDNF per single vesicle by an unknown
mechanism (Eckenstaler et al. 2016).

Furthermore, the contribution of different SNARE proteins
to the release of BDNF was analyzed (Shimojo et al. 2015). In
cortical cultures, the SNARE proteins involved in BDNF re-
lease slightly differ for axonal and dendritic release. While
Syb2 and SNAP 25 were important for dendritic and axonal
release of BDNF, the SNARE protein SNAP 47, which is
irrelevant for synaptic vesicle exocytosis, contributed more
to axonal than to dendritic BDNF release (Shimojo et al.
2015). Another protein that interacts with SNARE proteins
is synaptotagmin (Syt). Synaptotagmins are localized in the
vesicular membrane. One member of this protein family,
synaptotagmin-4 (Syt-4), is upregulated by activity and sei-
zure and also localized on BDNF vesicles. Syt-4 reduces
depolarization-induced release of BDNF by preventing the
fusion step (Dean et al. 2009). However, TBS-induced release
of previously endocytosed BDNF was shown to be mediated
by syt-6 and not syt-4 at postsynaptic sites in hippocampal
neurons (Wong et al. 2015). Knockdown of the SNARE pro-
tein syt-6 as well as inhibition of direct interaction of syt-6
with the SNARE complex interacting protein complexin
inhibited re-release of BDNF quantum dots. The recycling
of BDNF was dependent on extracellular calcium as well as
AMPAR or NMDAR activation, respectively (Wong et al.
2015). Wong et al. showed that endogenous and endocytosed
BDNFs are both targeted to axons as well as to dendrites in
distinct non-overlapping vesicles (Wong et al. 2015). While
syt-6 is an important protein for recycling of BDNF in neu-
rons, the release of endogenous post-Golgi BDNF was regu-
lated by the SNARE protein syt-4 (Wong et al. 2015).

Altogether, great effort has been done to uncover the cel-
lular and molecular mechanisms of BDNF release in recent
years. A meshwork of proteins such as serine/threonine ki-
nases, small G-proteins and SNARE complex (-interacting)
proteins have been demonstrated to participate in regulated
release of BDNF, while constitutive release of BDNF is
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mainly neglected in almost all studies. Since regulated release
of synaptic vesicles and BDNF-containing vesicles share mul-
tiple proteins during fusion, the regulated release of vesicles
seems to be a highly conserved evolutionary process.)

Conclusion

BDNF and the other neurotrophins were initially identified as
target-derived survival factors that are secreted from non-
neuronal tissue to secure survival of innervating neurons. In
the early 1990s, the prominent function of BDNF in synaptic
plasticity emerged, followed by first insights into activity-
dependent release of BDNF from neurons. While sustained
firing of action potentials or longer lasting depolarization are
keys to neuronal BDNF secretion, the subsequent signaling
cascades and the molecular machinery triggering and regulat-
ing BDNF vesicle exocytosis have just begun to be elucidated.
Importantly, BDNF and potentially also the other
neurotrophins can be released from many non-neuronal cell
types using similar molecular mechanisms. Therefore, future
studies will need to establish the following:

1. What are the physiological and pathophysiological corre-
lates of the diverse BDNF-releasing stimuli in neuronal
and non-neuronal cells?

2. How are the molecular pathways triggered in non-
neuronal cells that can release BDNF (e.g.. microglia,
astrocytes, lymphocytes, endothelial cells, muscle cells)?

3. What are the molecular differences between the release
machinery for TGN-derived new vesicles vs. recycled
vesicles from neuronal and non-neuronal cells,
respectively?

4. Whatare the subcellular release sites of the distinct BDNF
vesicles (new or recycled vesicles) in neuronal and non-
neuronal cells?

5. What are the exact components of BDNF species (e.g.,
mBDNF, proBDNF and propeptide) and other cargo pro-
teins (e.g., PCs, other neuropeptides, ATP and pH) in
BDNF secretory granules that might help to fine tune
the effects of released BDNF in target cells?

6. How do these differences in release sites, release machin-
ery, distinct subsets of BDNF vesicles and components of
BDNF species contribute to the distinct physiological and
behavioral functions?

7. Last but not least: what is the origin and function of
BDNEF in the blood stream?
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