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Abstract

The worldwide socioeconomical burden associated with chronic respiratory diseases is substantial. 

Enzymes involved in the metabolism of nicotinamide adenine dinucleotide (NAD) are increasingly 

been implicated in chronic airway diseases. One such enzyme, CD38, utilizes NAD to produce 

several metabolites, including cyclic ADP ribose (cADPR), which is involved in calcium signaling 

in airway smooth muscle (ASM). Up-regulation of CD38 in ASM caused by exposure to cytokines 

or allergens lead to enhanced calcium mobilization by agonists and the development of airway 

hyperresponsiveness (AHR) to contractile agonists. Glucocorticoids and microRNAs can suppress 

CD38 expression in ASM, whereas cADPR antagonists such as 8Br-cADPR can directly 

antagonize intracellular calcium mobilization. Bronchodilators act via CD38-independent 

mechanisms. CD38-dependent mechanisms could be developed for chronic airway diseases 

therapy.
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Introduction

Chronic obstructive pulmonary disease (COPD) and asthma are the most common chronic 

respiratory diseases and are among the leading causes of morbidity and mortality worldwide. 

In 2015, it was estimated that 358 million people across all ages and ethnicities were 

affected by asthma and 174 million by COPD, although the death burden from COPD was 

eight times higher than from asthma [1]. In the United States, chronic obstructive lung 

diseases (e.g., asthma and COPD) are the 3rd leading cause of death. Among Americans of 

all age groups, the estimated lifetime asthma prevalence is 8.4% [2] with an associated 

economic burden of $81.9 billion dollars [3]. Whereas the risk of COPD is largely related to 

modifiable behaviors (e.g., smoking), risk factors for asthma appear to be substantially more 

heterogeneous and less understood. Use of symptomatic therapy (e.g., corticosteroids, 

bronchodilators) has significantly decreased asthma mortality but the overall asthma 

prevalence is on the rise [1]. A better understanding of underlying causes and mechanisms is 

necessary to improve disease prevalence. This brief review intends to summarize current 

knowledge regarding the role of CD38 in the pathogenesis of chronic obstructive pulmonary 

diseases. The reader is kindly referred to recent, more in depth reviews if interested in more 

details regarding regulatory mechanisms [4] and therapeutic potential [5].

Nicotinamide adenine dinucleotide (NAD) in health and disease

The importance of nicotinamide adenine dinucleotide (NAD) and related metabolic enzymes 

in health and disease is becoming increasingly appreciated [6]. For example, sirtuins (SIRT) 

are a family of NAD-dependent enzymes with an increasingly recognized role in 
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metabolism, ageing [7], as well as in airway inflammation during allergic airway diseases 

[8; 9]. Another NAD-consuming enzyme, poly(ADP-ribose) polymerase (PARP), appears to 

be involved in airway inflammation, hyperresponsiveness and remodeling [10–13]. Finally, 

CD38 is another NAD-consuming enzyme that has emerged as an important determinant of 

airway hyperresponsiveness (AHR) associated with allergic airway diseases [14–31]. This 

body of literature suggests that NAD metabolism may be an important determinant of 

altered airway function in chronic obstructive pulmonary diseases and constitute a feasible 

therapeutic target.

CD38 protein

CD38 is a type II, 45 kDa glycoprotein with 300 amino acids distributed in three domains 

comprised by a short N-terminal cytoplasmic tail (21 amino acids), a single chain 

transmembrane portion (23 amino acids) and a large C-terminal extracellular domain (256 

amino acids) [32]. The short cytoplasmic tail does not appear to contain any known motifs 

(Src homology domain 2 or 3 – SH2 or SH3, antigen receptor activation – ARAM, or 

pleckstrin homology – PH) that could mediate interactions with other signaling molecules 

and no enzymatic activity has been demonstrated [32; 33]. The enzymatic activities reside in 

the extracellular domain whereby CD38 catalyzes the cleavage of the nicotinamide group 

from NAD (NADase activity) leading to the formation of an enzyme-ADP-ribosyl 

intermediary complex, which then partitions between two possible pathways. An 

intramolecular reaction between the ribosyl carbon-1 and the nitrogen-1 of the adenine ring 

(ADP-ribosyl cyclase activity) yields cyclic adenosine diphosphate ribose (cADPR; ~3% 

final product) and a macroscopically irreversible hydrolysis reaction (cADPR hydrolase or 

NAD glycohydrolase) produces adenosine diphosphate ribose (ADPR; ~97% final product). 

Thus, CD38 is a more efficient NAD glycohydrolase (i.e., direct conversion of NAD to 

ADPR) than ADP-ribosyl cyclase [34–36]. CD38 is also responsible for the generation of 

nicotinic acid adenine dinucleotide phosphate (NAADP) from NADP. The cADPR and 

NAADP products regulate Ca2+ signaling and contractility in smooth muscle cells [22].

CD38 and immunity

CD38 is a pleiotropic cell surface molecule within the immune system, acting as a 

multifunctional enzyme and receptor. CD38 generates transmembrane signals upon 

engagement with its counter-receptor, CD31, with agonistic monoclonal antibodies and 

during G-protein coupled receptor activation. The effects mediated include production of 

pro-inflammatory and regulatory cytokines by monocytes, NK cells, activated B and T 

lymphocytes, proliferation of T lymphocytes and protection of mature B lymphocytes from 

apoptosis. Defective CD38 signaling in neutrophils impairs innate immunity to bacterial 

infection, and inadequate dendritic cell priming of B- and T-cells affect humoral immune 

responses to antigens [37].

CD38 and airway function

Our laboratory was the first to demonstrate the contribution of CD38 to the regulation of 

airway hyperresponsiveness (AHR). We first determined the airway phenotype of CD38 
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knockout mice as compared to that of the wild-type mice. Airway challenge with inhaled 

methacholine resulted in significantly attenuated changes in resistance to airflow and 

dynamic compliance in the CD38 knockout mice compared to wild-type controls [27]. 

Additionally, ASM cells isolated from CD38 knockout mice developed significantly lower 

intracellular calcium responses to acetylcholine and endothelin-1 than wild-type controls. In 

ASM cells, CD38 utilizes NAD to form cADPR and ADPR, but the release of calcium in 

response to agonist activation is cADPR-dependent as it can be antagonized by the 

competitive cADPR antagonist 8Br-cADPR [27]. These evidences suggested that the 

attenuated airway responsiveness to inhaled methacholine likely stemmed from decreased 

intracellular calcium responses in ASM cells due to the loss of CD38 activity and cADPR 

production in these cells.

Since asthma is an inflammatory disease in which pro-inflammatory cytokines have a role in 

inducing abnormal ASM function and in the development of AHR, we determined the 

methacholine responsiveness of CD38 knockout and wild-type mice exposed to the asthma-

relevant cytokines IL-13 and TNF-α [25; 26]. It was previously known that the pro-

inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon 

(IFN)-γ or the T helper type 2 (TFI2) cytokine IL-13 significantly up-regulate CD38 

expression, cADPR production and intracellular calcium responsiveness in ASM cells [23; 

24; 38–41]. Intranasal challenge with IL-13 induced robust AHR to inhaled methacholine in 

wild-type mice whereas AHR was significantly lower in the CD38 knockout mice. The 

ASM reactivity to inhaled methacholine was significantly lower in the CD38 knockout mice 

than in wild-type controls. Using tracheal ring preparations, we showed that CD38 within 

ASM mediated the IL-13-associated increase in isometric force generation to carbachol 

stimulation whereas absence of CD38 did not affect relaxation of ASM to the β-adrenergic 

receptor agonist isoproterenol [25]. A single intranasal challenge with TNF-α caused AHR 

to inhaled methacholine in wild-type but not in CD38 knockout mice whereas the 

differences in airway phenotype were no longer present following more prolonged exposure 

to TNF-α [26]. Together, these results provided evidence that CD38 expressed in ASM cells 

plays a significant role in AHR to two asthma-relevant cytokines. More recent findings 

showed that the CD38 signaling pathway mediated AHR due to high-fat diet in mice, thus 

extending its possible role to obese asthma phenotype [30].

Earlier studies suggested that CD38 knockout mice developed attenuated T cell-dependent 

humoral immune response to protein antigens [42]. The underlying mechanisms for this 

attenuated allergen-induced antibody response were complex and included inefficient 

migration of CD38-deficient dendritic cells from sites of inflammation to the draining lymph 

nodes and defective priming of T cells [37]. Interestingly, airway inflammation in response 

to IL-13 was similarly robust in both wild-type and CD38 knockout mice, yet AHR was 

significantly lower in the former [25]. The role of CD38 in the responses to intranasal 

challenge with TNF-α also seemed disconnected from the development of airway 

inflammation [26]. Since asthma is triggered by allergen exposure leading to airway 

inflammation and release of cytokines and chemokines, we asked whether CD38 knockout 

mice would develop an attenuated airway phenotype following allergen sensitization and 

challenge [14]. We compared the airway responsiveness of CD38 knockout and wild-type 

mice following intranasal sensitization and intranasal challenge with fungal antigens as well 
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as following intraperitoneal sensitization followed by intranasal challenge with ovalbumin 

antigen. Regardless of the route of allergen sensitization, the CD38 knockout mice 

developed significantly attenuated AHR to inhaled methacholine compared to wild-type 

mice. Once again, the airway inflammatory response characterized by the number and types 

of inflammatory cells in the bronchoalveolar lavage (BAL) fluid was comparable in the two 

groups of mice. Furthermore, the changes in BAL fluid content of IL-5 and IL-13 were 

similar between CD38 knockout and wild-type mice in both allergen models. However, the 

magnitude of increase in eotaxin-2 levels in BAL fluid was significantly less in the CD38 

knockout mice following fungal allergen challenge but not following ovalbumin. These 

findings indicated that CD38 expression is relevant for the development of heightened AHR 

following allergen sensitization and challenge, but appears to be a less important 

determinant of airway inflammation.

To further explore this mechanism, we developed bone marrow chimeras to assess if 

reciprocal transfer of bone marrow-derived cells from wild-type and CD38 knockout mice 

would restore the airway phenotype in the hosts. The airway phenotype under naive 

conditions was unchanged by reciprocal bone marrow transfer. Following ovalbumin 

challenge, the airway phenotype in CD38 knockout mice was partially reversed by bone 

marrow transfer from either source whereas the airway phenotype of WT hosts was 

preserved [14]. These results thus confirm that loss of CD38 in hematopoietic cells is 

insufficient to prevent AHR to allergen and thus the contribution of CD38 to AHR stems 

from its presence and activity in resident airway cells. Altogether, the above findings in the 

cytokine and allergen models are consistent with the role of CD38 in ASM calcium 

responses and contractility to agonists and suggest that this CD38 mechanism is an 

important contributor to heightened bronchoconstriction in allergic airway diseases. 

Interestingly, injection of dendritic cells overexpressing CD38 into ovalbumin-immunized 

female mice prior to ovalbumin challenge led to lower airway inflammation compared to 

controls as well as increased in the levels of the Th1 cytokine IFN-γ concurrently with a 

decrease in the Th2 cytokine IL-4 [43]. Thus, it is possible that CD38 expression in dendritic 

cells and ASM cells has opposing roles in terms of inflammation and AHR during allergic 

airway disease.

The presence of increased CD38 expression in the lungs of asthmatic human patients was 

first reported in a study analyzing its distribution in human tissues [44]. Since then, the role 

of CD38 in human ASM cell function has been extensively investigated in cells obtained 

from patients with asthma and healthy controls [15–21; 23; 28; 29]. In human ASM from 

asthmatics, CD38 amplifies calcium signaling and inflammatory response to pro-

inflammatory cytokines via mechanisms involving both transcriptional and post-

transcriptional regulation [16–21; 24]. Glucocorticoids, which are commonly used in both 

asthma and COPD therapy [45; 46], significantly suppress TNF-α-induced CD38 expression 

in human ASM from asthmatics [15; 17; 20]. Treatment of human ASM with microRNAs 

with (miRNAs) miR-140-3p and miR-708 negatively regulate CD38 expression by 

mechanisms that involve translational repression as well as indirectly by transcriptional 

mechanisms [19]. This results in profound anti-inflammatory effect as evidenced by 

significant decreases in the expression and release of several chemokines and asthma related 
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genes [47]. Thus, there is good understanding of the role of CD38 in ASM from human 

asthmatics.

The role of CD38 on COPD is less clear. In COPD patients, expression of CD38 occurs in 

both alveolar and interstitial macrophages (small and large), although expression is greater 

in the small macrophages [48]. “Small” and “large” macrophage subpopulations have been 

identified in the sputum of COPD patients based on pattern of forward scatter during flow 

cytometry analysis. Compared to large macrophages, COPD small macrophages show 

higher levels of TNF-α, both constitutively and in response to lipopolysaccharide challenge 

[49]. Current smoking on COPD patients is associated with lower CD38 expression in large 

interstitial macrophages compared to ex-smokers [48]. Levels of a soluble form of CD38 

(sCD38) in the serum and exhaled breath condensate of patients with moderate COPD were 

higher than in healthy non-smoker controls [50], but the significance of this finding is 

unclear. In addition, patients with significant smoking history (> 25 pack years) had 

significantly higher CD38 expression in epithelium-denuded bronchial smooth muscle when 

compared to lifetime non-smokers. In vitro, cigarette smoke extract concentration-

dependently increased CD38 expression and calcium responsiveness in human ASM, as well 

as enhanced TNF-α release and proliferative capacity [51]. Lastly, in vitro evidence suggests 

that CD38 might play a role in the response to respiratory viral infections [52], which are 

known to worsen the symptoms of asthma and COPD patients. In that study, the 

inflammatory response of human monocyte-derived dendritic cells infected with respiratory 

syncytial virus was significantly reduced by inhibiting CD38 enzymatic activity with the 

flavonoid kuromanin, as well as by inhibiting CD38 downstream signaling with the cADPR 

antagonist 8Br-cADPR [52].

Conclusions and future directions

This review outlines the current understanding of the role of CD38/cADPR signaling in 

chronic obstructive pulmonary diseases. Cytokines, glucocorticoids and miRNAs modulate 

CD38 expression in human ASM, especially in asthmatics. Furthermore, CD38 significantly 

contributes to the asthmatic phenotype in mice challenged with inhaled allergens. The role 

CD38 in the pathophysiology of COPD appears to be emerging, but additional studies are 

necessary to elucidate this possibility. Studies are warranted to better understand the 

epigenetic interactions between the CD38 signaling system and factors such as viral 

infections, cigarette smoking and ozone, which contribute to or exacerbate obstructive 

pulmonary diseases such as asthma and COPD.
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