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Biophysical ambiguities prevent accurate
genetic prediction
Xianghua Li 1 & Ben Lehner 1,2,3✉

A goal of biology is to predict how mutations combine to alter phenotypes, fitness and

disease. It is often assumed that mutations combine additively or with interactions that can

be predicted. Here, we show using simulations that, even for the simple example of the

lambda phage transcription factor CI repressing a gene, this assumption is incorrect and that

perfect measurements of the effects of mutations on a trait and mechanistic understanding

can be insufficient to predict what happens when two mutations are combined. This apparent

paradox arises because mutations can have different biophysical effects to cause the same

change in a phenotype and the outcome in a double mutant depends upon what these hidden

biophysical changes actually are. Pleiotropy and non-monotonic functions further confound

prediction of how mutations interact. Accurate prediction of phenotypes and disease will

sometimes not be possible unless these biophysical ambiguities can be resolved using

additional measurements.
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A fundamental challenge across diverse fields of biology
including human genetics, animal and plant breeding, and
evolutionary theory is to predict how changes in genotypes

result in changes in phenotypes and fitness. Accurate prediction of
phenotypes from sequence entails two sub-challenges: predicting the
mutations that individually affect a trait of interest and by how
much, and predicting the joint effects when multiple mutations are
combined in an individual. Progress is being made in both sys-
tematically identifying1–3 and predicting4–6 the mutations that
impact traits of interest. Moreover, the extent to which mutations
combine additively or with genetic (epistatic) interactions is being
systematically quantified across diverse systems and phenotypes7,8.

However, a more fundamental question remains that is not
addressed in any of these studies. Even if we have perfect mea-
surements of the individual effects of a set of mutations on a trait
and a very good mechanistic understanding of a system, can we
always predict what happens when two mutations are combined?

In this study, we use a simple biophysical system to address this
question. We show that, for diverse biological systems, the answer
to this question will often be no. The fundamental reason for this
is that different combinations of biophysical parameters can give
rise to the same phenotypic value9.

The phage lambda repressor, CI, is one of the best-understood
proteins in biology and a classic model for gene regulation, protein
biophysics and systems biology10–14. CI regulates transcription
from two divergent promoters with well-established dose–response
curves: it represses transcription from the PR promoter via a
monotonic function but induces and then represses transcription
from the PRM promoter via a non-monotonic peaked function. The
molecular mechanisms that underlie these regulatory responses are
well-understood10,15,16 and thermodynamic models that incorpo-
rate them accurately predict the behaviour of the system17–20.
Specifically, Ackers’ statistical thermodynamic model predicts the
probabilities of the ON and OFF configuration states of the PR and
PRM promoters as a function of the total repressor concentration17.
To predict how mutations that affect the stability of CI combine to
affect gene regulation, Ackers’ model can be combined with a
thermodynamic model of protein folding19.

Like most proteins21, CI is multifunctional: in order to regulate
transcription it must fold correctly22–25, form a dimeric com-
plex26, bind to DNA at multiple operator sites27,28 and also form
a higher-order tetrameric complex29,30 on the genome (Fig. 1a).
Mutations in CI can affect any of these biophysical activities,
making CI a good model for investigating how mutations with
different biophysical effects interact to alter cellular phenotypes.

However, mutations in a CI, like mutations in other proteins,
can actually affect more than one biophysical parameter at the
same time. For example, of 12 mutations that alter the binding
affinity of CI to DNA, six (50%) also affected the stability of
the protein27,31–33. Such biophysical pleiotropy is common, for
example, mutations that alter enzymatic activity often reduce
protein stability34. Similarly, mutations that alter protein binding
affinities also frequently impact stability31,35 and in allosteric
proteins changes in the affinity of binding at one site will alter the
binding affinity at a second site36.

Here, using gene regulation by the lambda repressor model, we
show that, even for a very simple biophysical system, it is often
impossible to predict what happens when two mutations are
combined even if we have perfect measurements of their effects
on a trait. The cause of this apparent paradox is the one-to-many
mapping between phenotypes and the underlying biophysical
parameter changes that can cause them. When combining
mutations, the outcome can be very different depending upon
what these unidentified biophysical changes actually are. Our
results illustrate how accurate genetic prediction of phenotypes
and disease will often not be possible unless additional

measurements are made to resolve the biophysical ambiguities in
genotype–phenotype maps.

Results
Combining mutations in a thermodynamic model. To better
understand how genetic variants with different biophysical effects
combine to alter phenotypes, we investigated how mutations in a
model transcription factor, the lambda repressor (CI), alter the
expression of two target genes using an extensively validated
thermodynamic model (Fig. 1b)17–20. We first considered muta-
tions that affect the folding or stability of CI. Changes in protein
stability are one of the most frequent effects of amino acid
changes and a major cause of genetic disease22–25. The fraction of
a protein in its natively folded state depends on the difference in
Gibbs free energy (ΔG) between its folded and unfolded states.
Unless they are energetically coupled37, mutations have effects on
stability that are additive at the level of free energy but non-
additive for changes in protein concentration and expression
from the PR and PRM promoters, which are our two phenotypic
traits of interest (Fig. 1c, d)19,38,39.

Genetic prediction for mutations affecting protein stability. If
two mutations that only affect protein stability are combined, the
change in expression from PR is often non-additive (i.e. there is
substantial epistasis)19. However, the phenotype of the double
mutant can normally be unambiguously predicted from the
phenotypes of the two constituent single mutants because the
free-energy-phenotype function is monotonic40 (Fig. 2a). The
exception is when mutations have phenotypes that map to the top
or bottom plateaus of the free-energy-phenotype function where
the gradient approaches zero (Fig. 1d and Supplementary
Fig. 1b–e) and measurement imprecision results in ambiguity in
the underlying causal free-energy changes.

For expression from the PRM promoter, however, this is not the
case. Combining two mutations with measured effects on PRM
expression can result in more than one PRM expression value,
depending upon what the hidden underlying free-energy changes
are19,40. The cause of this ambiguity in the phenotype of a double
mutant is the non-monotonic input–output function of PRM (Fig. 1c,
d), which means that many phenotypic values can map to two
different underlying changes in the free energy of protein folding
(Fig. 1d). Thus, when combining mutations of known phenotypic
effect, there can be up to four different valid phenotypic outcomes in
the double mutant (Fig. 2e) and these outcomes can differ by almost
the entire phenotypic range (Fig. 2e, i). Thus, even if mutations only
affect protein folding, non-monotonic input–output functions and
plateaus in free-energy-phenotype functions can make it impossible
to predict how two mutations of known effect will combine to alter a
phenotype.

Mutations with other known biophysical effects. Mutations in
proteins can, however, affect more than their stability. For
example, mutations in CI can alter the binding affinity of the
protein for itself (dimerization)26, its affinity for DNA27,28 and
the affinity between two dimers to form a tetramer29,30. As for
mutations affecting protein stability, mutations causing additive
changes in the free energy of these molecular interactions
(Fig. 1d) often combine to cause non-additive changes in
expression from the two target promoters (Fig. 2b–d), generating
substantial epistasis. However, for expression from PR there is
again no ambiguity in the double mutant phenotypes, with the
exception of uncertainty created by imprecise measurements at
the plateaus of the free-energy-phenotype functions (Fig. 1d and
Supplementary Fig. 1b, c). However, as when combining muta-
tions that only affect protein folding, pairs of mutations of known
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phenotypic effect that both only affect either dimerization or
DNA binding can combine to have up to four different PRM
phenotypes as double mutants (Fig. 2f–k, Supplementary Fig. 2).
Similar conclusions are obtained if the two mutations individually
affect two different (but known) biophysical parameters: PRM
expression often cannot be unambiguously predicted, including
when one of the mutations affects tetramerization (Supplemen-
tary Fig. 2b, c), while PR expression can always be predictable
without ambiguity (Supplementary Fig. 2a).

Prediction for mutations with unknown biophysical effects. So
far, we have considered cases where we know the identity of the
biophysical parameter affected by each mutation. But normally
we actually do not know which biophysical property of a protein
is altered by a mutation. For example, any measured change in PR
expression resulting from a mutation in CI could be caused by
a mutation that affects folding, DNA binding or dimerization
(Fig. 1d, mutations that affect tetramerization have a more lim-
ited range of phenotypic outcomes).
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Fig. 1 Genetic interactions in a transcription factor. a CI binds three operators as a dimer with two dimers also forming a tetrameric complex. Cyan and
yellow distinguish the two monomers of each dimer. b Statistical thermodynamic model of gene regulation by the lambda repressor (CI). CI exists as
unfolded, folded monomer, free dimer and dimers that are bound to operators. The partitioning of these molecules depends on Gibbs free-energy
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relationships. Dotted vertical black lines denote ΔΔG= 0 (wild type). See also Supplementary Fig. 1. Source data are provided as a Source data file.
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We therefore considered what happens when two mutations
combine and each of these mutations might have altered one
of two different biophysical parameters, for example either
protein stability or DNA-binding affinity. Now, even when
considering expression from PR as the phenotype of interest,
there is always ambiguity when predicting the phenotypes of
double mutants (Fig. 3a–f and Supplementary Fig. 3a–f).
For example, there are now four valid phenotypic outcomes
when combining two mutations if each can alter either
stability or DNA binding (but not both, Fig. 3a–f). Consider-
ing expression from PRM as the phenotype of interest, there
are now many valid phenotypes for each double mutant

when combining mutations of known effect (Fig. 3g–l and
Supplementary Fig. 3g–l).

If mutations can affect any one of the four biophysical parameters,
the number of possible double mutant phenotypes can be very large
indeed (Fig. 3m, n and Supplementary Fig. 3m, n). For example, two
mutations with known effect on PRM expression can combine to
produce up to 15 different double mutant phenotypes if each
mutation can affect any one (and only one) of the four possible free-
energy terms (Fig. 3n). Thus, when we do not know the biophysical
property of a protein that is altered by each mutation, it becomes
impossible to predict the phenotypes of double mutants from the
phenotypes of single mutants alone.
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Biophysical pleiotropy further confounds genetic prediction. In
reality, the situation can actually be worse than this because
mutations can affect more than one biophysical parameter at the
same time. For example, of 12 mutations changing the binding
affinity of CI to DNA, half also altered the stability of the
protein27,31–33. We define these situations when one mutation

influences two or more biophysical parameters as biophysical
pleiotropy.

Allowing one (Fig. 4a, b, Supplementary Fig. 4) or both
(Fig. 4f, j and Supplementary Fig. 4) mutations in CI to be
pleiotropic and to alter two different free-energy terms results in
the possible double mutant outcomes now covering a continuous
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range of values (Fig. 4 and Supplementary Fig. 4). Thus, when
mutations are biophysically pleiotropic, we cannot predict the
phenotype of a double mutant containing two mutations of
precisely measured individual effects.

Biophysical ambiguity confounds genetic prediction. To illus-
trate how these diverse double mutant phenotypes arise when
combining pairs of mutations with identical phenotypic effects,
we plot in Fig. 4c–f how the expression from PR changes as a
function of changes in the free energy of folding (ΔΔGF) and
DNA binding (ΔΔGB). Non-pleiotropic mutations that only alter

folding are horizontal movements in this space, mutations that
only affect DNA binding are vertical movements and pleiotropic
mutations are diagonal movements. All of the changes in free
energy that result in the same phenotype form a phenotype iso-
chore, for example the grey dashed curves in Fig. 4c–f represent
all parameter changes that can produce a 4-fold increase (2 in log
(2) scale) in PR expression.

When two non-pleiotropic mutations that cause this same
phenotypic change (lie on the same phenotype isochore) are
combined together there are three possible combinations of free-
energy changes (the two mutations alter DNA binding, folding, or
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one alters folding and the other binding) and two possible
resulting double mutant phenotypes (Fig. 4c). When a non-
pleiotropic mutation affecting DNA binding is combined with a
pleiotropic mutation affecting both free-energy terms, there are
many possible combinations of free-energy terms but, because of
the topology of the free energy-phenotype landscape, all of the
double mutants have very similar phenotypes (Fig. 4d). In
contrast, when a non-pleiotropic mutation affecting folding is
combined with a pleiotropic mutation, the possible double
mutants do not fall on an isochore but now cover a range of
possible phenotypes (Fig. 4e). Finally, when two pleiotropic
mutations are combined, the possible double mutants are widely
spread in the free-energy landscape (red shaded area in Fig. 4f)
and take many different phenotypic values (Fig. 4f). The
equivalent free-energy-phenotype landscape is plotted for PRM
in Fig. 4g–j and for other combinations of free-energy terms in
Supplementary Fig. 4. It is both the monotonicity and symmetry
of these landscapes that determines the degree of ambiguity when
combining mutations.

When mutations can alter three or more free-energy
terms, these landscapes become difficult to visualise (Fig. 5).
For example, if each mutation in CI can alter stability,
DNA binding or dimerization, each mutation with a known
phenotype potentially maps to any position on a surface of
combinations of causal parameter changes. Combining two
mutations with precisely measured phenotypic effects can
combine to have phenotypes that span nearly the entire range
of possible phenotype values (Fig. 5). This is because, without
additional information, the actual parameter changes in the
double mutant can take many values within a 3D volume of
possibilities. There is now nearly complete ambiguity in the
predicted phenotype of the double mutant (Fig. 5).

Biophysical ambiguity in even simpler systems. Finally,
although gene regulation by the lambda repressor is a relatively
simple biological system, we note that biophysical ambiguity also
confounds the prediction of double mutant phenotypes in even
simpler systems. For example, consider a protein whose only
function is to bind another molecule (a ligand), with the con-
centration of the bound complex directly proportional to the
phenotype of interest (Fig. 6a). In such a minimal system
mutations can only alter protein stability or the binding affinity to
the ligand. The outcome in a double mutant can still differ
depending upon which free-energy terms are individually affected
in each single mutant (Fig. 6b, c). Again, allowing pleiotropic
mutations further thwarts the ability to predict the phenotypes of
double mutants from the phenotypes of single mutants (Fig. 6d,
e). Similar conclusions are obtained using a model in which a
protein’s only function is to bind to itself to form a dimer
(Supplementary Fig. 5). Thus, even in these most basic biological
systems of a single binding reaction of a macromolecule, it is
often impossible to predict what happens when single mutants of
known phenotype are combined without additional measure-
ments or inferences.

Discussion
Taken together, our results show that, even for a simple biological
system—the regulation of gene expression by a single transcrip-
tion factor—it is often impossible to unambiguously predict how
two mutations of known phenotypic effect will combine together
to alter the same phenotype in a double mutant.

The fundamental cause of this uncertainty is the one-to-many
relationship between a measured phenotype and the underlying
causal changes in biophysical parameters. Mutations can affect
multiple biophysical properties of a system—for example, the
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stability and binding affinities of proteins—and many different
changes in biophysical parameters can cause the same observed
change in a trait. However, the phenotype of a double mutant
depends on which of these biophysical properties is actually
altered in each single mutant and so can take multiple values.
Pleiotropic biophysical effects and non-monotonic input–output
functions create further ambiguity when predicting how muta-
tions of known effect combine to alter a phenotype.

The extent to which biophysical ambiguities will thwart the
prediction of different phenotypes will depend on the number of
parameters that can be affected by mutations, their biophysical
pleiotropy, and monotonicity of input–output functions. The
distributions of mutational effects on multiple biophysical para-
meters have been quantified for very few systems, but for both the
lambda repressor and other proteins, mutations frequently affect
both stability41,42 and binding to interaction partners41,43,44 with
biophysical pleiotropy and non-monotonic functions also
common31,35,45. In other words, we expect biophysical ambiguity
to confound phenotypic prediction in other systems including
heteromeric complexes and beyond transcription factor-mediated
repression.

To resolve ambiguities and accurately predict how mutations
combine to alter phenotypes, additional information will always
be required. Although ultimately it may be possible to predict
from sequence how a particular mutation affects all the biophy-
sical parameters of a protein, for the foreseeable future resolving
ambiguities will require additional measurements to be made.
High-throughput methods to quantify the effects of mutations on
protein stability42, binding41,44,46 and activity47 will help in this
endeavour, particularly when used in combination to disentangle

biophysical effects. Moreover, quantifying how individual muta-
tions interact with many other mutations in a system may allow
the underlying causal changes in biophysical parameters to be
inferred, at least when only two different parameters can
be affected35. Quantifying intermediate molecular phenotypes
such as protein concentrations and additional higher-level phe-
notypes may also be useful (e.g., quantifying expression from PR
is sufficient to resolve the ambiguities resulting from the
non-monotonicity of the PRM dose–response curve), and
experimentally quantifying the dose–response curves of indivi-
dual mutations can also sometimes help to distinguish mutations
with different biophysical effects48.

However, the fundamental conclusion remains: even in this
simple biological system (and in even simpler ones, Fig. 6 and
Supplementary Fig. 5) it can be impossible to predict the combined
effect of two mutations, even if we have perfect measurements
of their individual effects on a trait. In such cases, additional
information or measurements will always be required to accurately
predict how genetic variants combine to alter phenotypes and cause
disease.

Methods
Methods overview. Our model is based on Ackers’ thermodynamic model of
lambda repressor binding to its operator sites (OR1, OR2 and OR3)17. Briefly, this
model describes eight possible operator configuration states (c1–c8) in which the
CI dimer can bind to the operators (Fig. 1b). Based on statistical thermodynamics,
the downstream gene expression from promoters PR and PRM is determined by the
probabilities of the ON and OFF cis-regulator configuration states17.

To examine CI coding mutants’ effects on gene expression from PR and PRM
promoters, we extended Ackers’ model by including CI folding because many
mutations destabilise proteins22–25. Destabilising mutations will decrease the fraction
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of the folded functional protein, and thus change gene expression from the
downstream PR or PRM promoter. In other words, compared to Ackers’ model, we
have one more protein state—CI unfolded state CI(U) and the corresponding
additional parameter—protein-folding energy ΔG(F) (Supplementary Tables 1 and 2).
The rest of our model is the same as Ackers’ model. We consider the system as a
single equilibrium, i.e. protein folding and dimerization are coupled reactions.

Below are the details of the model, which follow simple statistical
thermodynamics.

CI configuration states. The total CI (CI(Total)) molecule amount is the sum of all
the CI molecules in the 10 different possible states as shown in Eq. (1). These
different states include unfolded CI(U), folded monomer CI(M), free dimer CI2 and
seven operator-bound CI dimer states (Fig. 1b and Supplementary Table 1). The
unit of molecule amount per cell is M in all the equations in our model.

CIðTotalÞ ¼ CIðUÞ þ CIðMÞ þ 2 � CI2 þ 2 � ORðTotalÞ
X7

i¼2

k � fið Þ: ð1Þ

Above, ORðTotalÞ is the molecule amount of the operators, fi is the relative
probability that each of the seven cis-configuration states where CI is bound to
operators occurs in relation to the not-bound state. i is the index for each cis-
configuration state, and k is the number of CI dimers in the corresponding cis-
configuration state (Supplementary Table 1). The amount of CI molecule for each
operator-bound state is calculated based on the statistical thermodynamics but also
multiplying the number of CI dimers (k) in each state and a factor 2 to account for
two molecules for each dimer (Supplementary Table 1).

All the parameters in the model for wild-type CI are taken from literature
(Supplementary Table 2).

Equilibrium between CI unfolded and folded monomer states. CI monomer
folds in a simple folded CI(M) and unfolded CI(U) two-state fashion49 that can be
described as in the equation below:

CIðMÞ
CIðUÞ

¼ exp
�ΔGF

RT

� �
: ð2Þ

ΔGF is the free-energy difference between the folded monomer and unfolded states
of CI molecule. R is the gas constant (R= 1.98 × 10−3 kcal per M) and T is the
absolute temperature for 37 °C (310.15 Kelvin).

Equilibrium between folded CI monomer and free dimer states.

CI2
CI2ðMÞ

¼ exp
�ΔGD

RT

� �
: ð3Þ

Equilibrium between free CI dimer and operator-bound states. We use Ackers’
model to describe these relationships. Briefly, the likelihood of each configuration
state (c1–c8 based on the cis-regulatory state) is a function of the binding energies
and the free CI protein dimer concentration.

The probability that each of the eight cis-configuration states fið Þ occurs is:

fi ¼
exp �ΔGi

RT

� �
CIk2

P
i exp

�ΔGi
RT

� �
CIk2

: ð4Þ

Where ΔGi is the total free energy of lambda repressor dimers in the respective cis-
configuration state i∈ [1, 8] (Supplementary Table 1, where ΔG is free energy, with
ΔGT referring to the cooperation energy for two dimers binding to the adjacent
operator sites); the exponent k∈ [0,1,2] is the total number of the lambda repressor
dimers in the corresponding cis-configuration state i. As stated earlier, all the
parameters are kept as originally described in Ackers’ model (Supplementary
Table 2).

CI distribution based on statistical thermodynamics. By combining Eqs. (1)–(4),
we can describe the total expression level of CI(Total) as a function of CI free dimer
concentration and Gibbs free energies:

CIðTotalÞ ¼ exp ΔGDþΔGF
RT

� �
CI0:52 þ 2CI2

þ 2OR
P4

i¼2
exp �ΔGi

RTð ÞCI2þ2 ´
P7

i¼5
exp

�ΔGi
RTð ÞCI22þ3 exp �ΔG8

RTð ÞCI32
� �
P4

i¼2
exp

�ΔGi
RTð ÞCI2þP7

i¼5
exp

�ΔGi
RTð ÞCI22þexp �ΔG8

RTð ÞCI32
: ð5Þ

Probability of PR—ON. CI represses expression from the PR promoter by binding
to the operator sites that overlap with the RNA polymerase sigma factor binding
site (Fig. 1b)17. Based on Ackers’ model, two out of the eight cis-configuration
states fail to repress gene expression from PR—when CI is not bound to any
operators (c1) and when CI only binds to the low-affinity OR3 (c2) (Fig. 1b,
Supplementary Table 1). Therefore, the probability of the PR promoter to be active
(Ppr) is the sum of the probabilities of the two configuration states in which

promoter PR is not repressed
P

i¼ 1;2f g fi
� �

, as shown in Eq. (6)17.

Ppr ¼ f1 þ f2 ¼
exp �ΔG1

RT

� �
CI02 þ exp �ΔG2

RT

� �
CI12

P8
i¼1 exp �ΔGi

RT

� �
CIk2

� � : ð6Þ

Probability of PRM—ON. CI not only suppresses PR promoter but also activates or
suppresses the divergently transcribed PRM promoter in response to changes in the
CI concentration in the cell (Fig. 1c)10,50. When CI is present and binds to OR2, it
activates the PRM promoter, while binding to OR1 per se does not have any effects
on PRM activity10,16. On the contrary, once CI binds to the low-affinity OR3, it
blocks the access of RNA polymerase sigma factor, repressing expression from
PRM51. Therefore, gene expression from PRM is activated only when CI is bound to
OR2 and not bound to OR3 (corresponding to the two cis-configuration states: c3
and c7) (Fig. 1b and Supplementary Table 1). Using Ackers’ model and Eq. (4)17,
we describe the probability that the PRM promoter is activated as follows:

Pprm ¼ f3 þ f7 ¼
exp �ΔG3

RT

� �
CI12 þ exp �ΔG7

RT

� �
CI22

P8
i¼1 exp �ΔGi

RT

� �
CIk2

� � : ð7Þ

Calculating free dimer concentration. As seen from Eq. (5), we can easily cal-
culate CI(Total) from CI2 for a given set of free energies but not CI2 from CI(Total).
Therefore, we performed a parameter search for CI2 values with each set of known
biophysical parameters (ΔG values) that minimizes the absolute differences
between the provided CI(Total) value and CI(Total) calculated based on Eq. (5). The
Optimize52 function in R was used for the parameter search, with the tol parameter
set to 1e−23. We refer to this process using Eq. (8), where ΔGs are all the Gibbs
free energies of the system.

CI2 ¼ f CIðTotalÞ;ΔGs

� �
: ð8Þ

Biophysical changes to phenotypes. The probabilities of the two promoters’ ON-
states as phenotypes can be calculated using a set of biophysical parameters (free
energies) and CI(Total). We call this process a Forward Function (see Code availability).
This function is composed of two steps: (1) parameter search for CI2 for the given CI
as described in the previous section (Calculating free dimer concentration) using Eq.
(8); (2) calculating PPR and PPRM based on Eqs. (6) and (7).

Phenotypes to free energy for non-pleiotropic mutations. Mutations in the CI
protein can affect protein-folding energy (ΔGF), dimerization energy (ΔGD),
binding energy to the operator sites (ΔGOR1–OR3) and tetramerization energy (ΔGT)
at the biophysical level. We assume that mutations in CI that alter the free energy
of DNA binding do so by the same magnitude for all three operators (ΔΔGB=
ΔΔGOR1= ΔΔGOR2= ΔΔGOR3). To calculate only one biophysical change that can
lead to the phenotype, we reversed the Forward Function described in the previous
section. The Reverse Function for both PPR and PPRM is composed of two sub-
functions. The first sub-function is the above-mentioned Forward Function, which
calculates phenotypes from biophysical changes. This function is written in the
form of y= f(x), where y is the phenotype and x is a set of biophysical parameters
including the total expression level of CI. The second sub-function is an Inverse
Function that finds all roots for an equation in the form of y – f(x)= 0. A root-
finding process is performed using the uniroot.all function in the R package
rootSolve53. Specifically, for each perturbation of biophysical parameter (ΔΔG), we
looked for all the roots within a range of −2–10 kcal per mol, and returned the
ΔΔG values that produce the phenotypes while the other biophysical parameters
are not perturbed.

Mutational effects are modelled at a fixed expression level of CI
ðCIðTotalÞ ¼ 8:4e� 7MÞ that corresponds to ~99% repression of the PR

promoter and the CI concentration in a lysogen17,19. To calculate changes in
the biophysical parameters for single mutants with known effects on
expression from PR or PRM, we first generated 136 evenly spaced phenotypes
(with an interval of 0.1 in log(2) scale from −13.5 to 0). Then, for a given
phenotype, we calculated corresponding changes in any of the four free-energy
terms (biophysical parameters), each time allowing only one biophysical
parameter to change using the Reverse Function explained in in the previous
paragraph.

Phenotypes to free energy for pleiotropic mutations. For any given phenotype,
we systematically searched for combinations of biophysical changes that can
produce the phenotype. Taking a pleiotropic mutation affecting both protein-
folding energy (ΔGF) and DNA-binding energy (ΔGB) as an example, we first
generated a fixed range of ΔΔGF (−1 to 5 kcal per mol with an interval of 0.05 kcal
per mol). Then, for each ΔΔGF, we calculated ΔΔGB that produces the given
phenotype using the Reverse Function as described for non-pleiotropic mutations.
For mutations affecting three biophysical parameters (protein-folding energy ΔGF,
dimerization energy ΔGD and DNA-binding energy ΔGB), we first generated all
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possible two-way combinations of ΔΔGF and ΔΔGD, each from defined ranges of
−1 to 5 kcal per mol with an interval of 0.05 kcal per mol. For each combination of
ΔΔGF and ΔΔGD with the given phenotype, we calculated ΔΔGB, using the Reverse
Function as described for non-pleiotropic mutations.

Double mutant phenotypes from single mutants’ phenotypes. For each double
mutant, we simply added the changes in the free energies of both single mutants to
the corresponding wild-type free energy. Then, we used the updated parameters to
calculate the downstream phenotypes based on the Forward Function explained in
the section of Phenotypes to free energy for non-pleiotropic mutations. Double
mutants’ phenotypes are rounded to 2 decimal places in log(2) scale in order to
avoid counting phenotypes with very similar values as different phenotypes.

Thermodynamic model of simple protein interactions. We considered the
protein of interest (that is mutated) to be in three different configuration states: (1)
unfolded, (2) folded, and (3) folded and bound (or dimer) (Fig. 6a and Supple-
mentary Fig. 5a). The steady-state equilibrium is in the same format as shown for
CI protein in Eqs. (2) and (3). When protein binds to a substrate instead of to itself,
it follows Eq. (9).

½Complex�
ProteinX½ � � Ligand½ � ¼ exp

�ΔGB

RT

� �
: ð9Þ

Above, [complex] is the concentration of the bound Protein X to its ligand (or
substrate molecule). The parameters we used in the model for Figs. 6 and S5 are
ΔGF, WT=−1 kcal per mol; ΔGB (or D), WT=−2 kcal per mol. [Protein X]:
[Ligand]= 1:1.

3D visualisation of CI bound to OR1–3. The 3D structure of CI bound to OR1–3
was generated based on PDB structure 3bdn, using YASARA software (v 19.7.20).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting this work are provided within the paper, the supplementary
information and the source data file. Source data are provided with this paper.

Code availability
Scripts are publicly available from https://github.com/lehner-lab/Biophysical_Ambiguity. Source
data are provided with this paper.
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