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Background—Standard guidelines recommend selective serotonin reuptake inhibitors (SSRIs) 

as first-line antidepressants for adults with Major Depressive Disorder (MDD), but success is 

limited and patients who fail to benefit are often switched to non-SSRI agents. This study 

investigated whether brain and behavior-based markers of reward processing might be associated 

with response to bupropion after sertraline nonresponse.

Methods—In a two-stage, double-blinded clinical trial (Establishing Moderators and 

Biosignatures of Antidepressant Response for Clinical Care), 296 participants were randomized to 

receive 8 weeks of sertraline or placebo in Stage 1. Individuals who responded continued on 

another 8-week course of the same intervention in Stage 2, while sertraline and placebo non-

responders crossed-over to bupropion and sertraline, respectively. Data from 241 participants were 

analyzed. The Stage 2 sample comprised 87 MDD patients who switched medication and 38 

healthy controls. 116 MDD participants treated with sertraline in Stage 1 served as an independent 

replication sample. The probabilistic reward task and resting-state functional magnetic resonance 

imaging were administered at baseline.

Results—Greater pretreatment reward sensitivity, as well as higher resting-state functional 

connectivity between bilateral nucleus accumbens and rostral anterior cingulate cortex, were 

associated with positive response to bupropion, but not sertraline. Null findings for sertraline were 

replicated in the Stage 1 sample.

Conclusion—Pretreatment reward sensitivity and frontostriatal connectivity may identify 

patients likely to benefit from bupropion following SSRI failures. Results call for a prospective 

replication based on these biomarkers to advance clinical care.

Trial registration—clinicaltrials.gov Identifier: NCT01407094
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Introduction

Major depressive disorder (MDD) is a debilitating and recurrent condition associated with 

substantial personal socioeconomic costs (1,2). Despite significant efforts, treatment of 

MDD remains imprecise and involves trial-and-error to determine the most effective 

approach. Findings from the STAR*D trial revealed that only about half of individuals with 

MDD responded (i.e., exhibited ≥50% reduction in depressive symptoms) to the selective 

serotonin reuptake inhibitor (SSRI) citalopram (3), and over one-third failed to respond to 

two or more antidepressants (4,5). The situation is even worse in primary care, where only 

~30% respond to first-line antidepressants (6). To exacerbate these issues, it takes at least 

four weeks to evaluate the efficacy of an antidepressant. This can lead to lengthy treatment 

trials that are insufficient and unnecessary, thereby increasing patient morbidity, drop-outs 

and suicide risk.

This limited success partially stems from the fact that treatment selection is not based on 

identification of the underlying biomarker abnormality that reflects pathophysiology (7,8). 
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Hence, some depressed individuals may benefit from SSRIs while others might be better 

suited to other classes of medication. Identifying objective markers that reliably predict 

responses to different classes of antidepressants would critically help clinicians decide 

whether a particular medication might be suitable for the patient.

Functional magnetic resonance imaging (fMRI) studies have reported that pretreatment 

activation to emotional stimuli in the anterior cingulate cortex (9) and amygdala (10), as well 

as to non-emotional stimuli in frontocingulate (11–13) and parietal regions (14), were 

associated with greater improvements in depressive symptoms on SSRIs (15). Moreover, a 

recent study found that connectivity within the cognitive control network during a response 

inhibition task differentially predicts response to sertraline and venlafaxine (16). Converging 

evidence from resting-state studies also suggests that increased pretreatment activity in the 

rostral anterior cingulate cortex (rACC) predicts treatment response across a variety of 

interventions, including multiple antidepressants (17,18). Additionally, executive 

dysfunction, psychomotor slowing and impaired memory at baseline have been linked to 

poor clinical outcome on various medications (19–31), although lack of replications exists 

(32–34). Finally, higher pretreatment levels of C-reactive protein (35), interleukin-17 (36) 

and platelet derived growth factor (37) were associated with better improvement in 

depressive severity when treated with a combination of bupropion plus escitalopram.

Despite these promising findings, two important gaps exist in prior literature. First, to the 

best of our knowledge, no study has examined brain-behavior factors associated with 

response to second-line antidepressants, especially after failing a full course of SSRI. 

Current guidelines recommend SSRIs as first-line antidepressant treatments (38), but 

response rates are modest and depressed patients who fail to benefit are often switched to 

non-SSRI agents (38–41). Previous studies have never explored whether pretreatment 

biological and behavioral markers can differentiate between responders to a second 

antidepressant, after failure on a pharmacologically distinct class of medication, and non-

responders resistant to both arms of treatment.

Second, alterations in the reward processing circuitry – modulated by dopamine and 

centered on the ventral striatum (VS) and medial prefrontal cortex (mPFC) – have been 

implicated in MDD (15,17,42–53). Emerging research also suggests that an impaired ability 

to respond to rewards is associated with anhedonia, a core feature of MDD (45,54,55). 

However, few studies have examined the degree to which markers of reward processing 

predict antidepressant response. A small open-label study in adolescents showed that 

pretreatment VS activity during reward anticipation was not linked to the severity of 

depressive symptoms after cognitive behavioral therapy (CBT) or CBT plus SSRI (56). The 

placebo-controlled Establishing Moderators and Biosignatures of Antidepressant Response 

for Clinical Care (EMBARC) trial in unmedicated MDD individuals also reported that 

pretreatment reward responsiveness did not associate with treatment outcome to the SSRI 

sertraline (57); however, better response to sertraline was linked to more abnormal VS 

temporal dynamics during a reward task (58). Given the key role of dopamine in reward 

processing (59,60), these previous findings beg the question of whether, and if so, which 

reward markers might be associated with response to dopaminergic (but not serotonergic-

based) antidepressants.
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The present study sought to address the two aforementioned gaps in the context of the two-

stage, double-blinded EMBARC study (61). A probabilistic reward task (PRT) was a priori 
selected to investigate response to bupropion, a noradrenaline/dopamine reuptake inhibitor. 

PRT reward responsiveness and resting-state fMRI data were collected at baseline of an 8-

week clinical trial, where outpatients with recurrent and non-psychotic MDD were 

randomized to receive sertraline or placebo (Stage 1). Participants who achieved satisfactory 

response at the end of Stage 1 continued on another 8-week course of the same intervention, 

while non-responders were crossed over under double-blinded conditions. Thus, sertraline 

non-responders received bupropion, and placebo non-responders received sertraline in Stage 

2. For comparison, baseline PRT and resting-state fMRI data were also collected from 

healthy controls.

Our goal was to examine whether neural and behavioral markers of reward processing were 

associated with response to secondary treatment by bupropion (after non-response to 

sertraline) and sertraline (after non-response to placebo). Based on the premise that 

dopaminergic blunting plays an important role in anhedonic phenotypes (62,63), we 

hypothesized that patients with more impaired reward responsiveness and resting-state 

functional connectivity within the reward circuit would disproportionally benefit from a 

dopaminergic antidepressant (bupropion), after failure to respond to an SSRI (sertraline), 

and distinguish them from non-responders who were resistant to both classes of medication. 

Also, we did not expect these reward markers to differentiate response to sertraline.

Methods and Materials

Participants

The EMBARC trial recruited MDD outpatients and healthy volunteers from Columbia 

University (New York), Massachusetts General Hospital (Boston), University of Texas 

Southwestern Medical Center (Dallas) and University of Michigan (Ann Arbor) between 

July 29, 2011, and December 15, 2015, after approval by the institutional review board of 

each site. All enrolled participants provided written informed consent and were aged 

between 18–65 years old. Details of the study design and list of inclusion/exclusion criteria 

can be found in (61)

Probabilistic Reward Task

The probabilistic reward task (PRT) assessed the ability to modulate behavior based on 

rewards received (55). On every trial, participants viewed one of two briefly presented 

(100ms) and perceptually similar stimuli (11.5mm vs. 13.0mm lines). Participants had to 

indicate which stimulus was shown via a button-press. Importantly, and unbeknownst to 

participants, a 3:1 reinforcement ratio was adopted such that correct responses to one 

stimulus were rewarded three times more frequently than the other – a manipulation that 

induces a response bias (i.e., preference for the more frequently rewarded stimulus). 

Performance was analyzed in terms of response bias (objective measure of reward 

responsiveness) and discriminability (ability to distinguish between the stimuli). See 

Supplemental Methods for details.
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Computational modelling

To dissociate the influence of reward sensitivity (i.e., immediate behavioral impact of 

rewards) and learning rate (i.e., ability to accumulate and learn from rewards over time) on 

PRT performance, four different models were fitted to participants’ trial-by-trial data (64). 

Following previously established procedures, we used expectation-maximization to derive 

group priors and individual Laplace approximation of posterior distributions for parameter 

estimations for each participant. Models were compared using integrated group-level 

Bayesian Information Criterion factors. See Supplemental Methods for details.

Region of Interest

Analyses focused on voxelwise resting-state functional connectivity (RSFC) of a seed region 

of bilateral nucleus accumbens (NACC), defined using the AAL atlas (65). The NACC was 

selected because significant evidence has implicated this region as a key area in different 

aspects of reward processing (60), including reinforcement learning and reward anticipation 

(66–71), as well as acquisition and development of reward- based behavior (72–74). 

Moreover, the ventral striatum (which includes the NACC) contains widespread afferent 

connections to cortical regions that mediate reward processes, such as the ventromedial 

prefrontal, orbitofrontal and anterior cingulate cortices (60,75). Pharmacological challenge 

studies provide further support, showing that the administration of drugs that enhance 

ventrostriatal signaling improves reward learning while disrupting phasic dopamine release 

causes an impairment (50,52). Collectively, these findings motivated us to focus on the 

NACC ROI in the RSFC analyses.

Magnetic Resonance Imaging Acquisition and Analyses

Acquisition, preprocessing, head motion and artifact detection, and denoising
—See Supplemental Methods.

First-level analysis—Fisher’s z-transformed Pearson’s correlation coefficient was 

computed between timecourse of the NACC seed and that of all other voxels. For each 

participant, this yielded a beta map containing, at each voxel, an estimate of the correlation 

in activity between the NACC seed and that voxel over the scan duration.

Group-level analyses—Group level analyses were performed by entering first-level maps 

into a whole-brain analysis to test for an interaction between medication type (sertraline vs. 

bupropion) and response status (responders vs. non-responders) in voxelwise NACC. The 

contrast was sertraline responder (−1), sertraline non-responder (+1), bupropion responder 

(+1), bupropion non-responder (−1). Scanner site and motion variables were included as 

covariates, but the inclusion of these covariates did not affect the significance of RSFC 

effects. Group-level effects were considered significant if they exceeded a peak amplitude of 

p<0.001 (two-sided), cluster corrected to false discovery rate (FDR) of p<0.05.

Post-hoc RSFC analyses—To interrogate the nature of group differences underlying 

significant interaction effects, RSFC estimates were extracted from clusters identified by 

voxelwise analysis using REX (https://www.nitrc.org/proiects/rex/) (76). Then, RSFC in 

clusters of effect was compared between sertraline responders vs. non-responders, and 
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between bupropion responders vs. non-responders, using independent t-tests and effect sizes 

comparison. Additionally, post-hoc voxelwise analyses were performed comparing bilateral 

NACC RSFC of responders vs. non-responders within each medication group.

Clinical Measure

17-item Hamilton Rating Scale for Depression (HAMD) (77): The HAMD was 

administered at baseline, Stage 1 (weeks 1, 2, 3, 4, 6 and 8) and Stage 2 (weeks 9, 10, 12 and 

16). Here, patients were defined as responders for each stage if they completed at least 4 

weeks of treatment and showed a decrease in HAMD score of ≥50% at the last observation 

compared to when treatment started.

Statistical Analysis

We included participants who passed the PRT quality control criteria, were non-responders 

to sertraline or placebo in Stage 1 and completed ≥4 weeks of Stage 2 treatment on 

bupropion (after switching from sertraline) or sertraline (after switching from placebo). 

Independent samples t-tests assessed whether responders and non-responders to bupropion 

or sertraline differed in baseline HAMD, week 8 HAMD and change in HAMD from 

baseline to week 8. Next, separate two-way Treatment (sertraline vs. bupropion) × Response 
(responder vs. non-responder) ANOVAs were run to evaluate pretreatment differences in 

response bias, discriminability, reward sensitivity and learning rate. Significant Treatment × 

Response interactions were followed up with simple effects analyses comparing responders 

and non-responders to each treatment. P<0.05 was taken to be statistically significant unless 

otherwise stated. Bayesian statistical analyses were also conducted using JASP (78) to 

complement classical statistics. The Bayes Factor (BF10) quantifies the amount of evidence 

in favor of the alternative hypothesis (H1) and generally (79): 1<BF10<3 indicates anecdotal 

evidence, 3<BF10<10 indicates substantial evidence, 10< BF10<30 indicates strong 

evidence, 30<BF10<100 indicates very strong evidence and BF10>100 indicates extreme 

evidence for H1.

Results

Participant characteristics

Data from 241 participants were analyzed. 87 patients had valid PRT data (of which 84 had 

valid MR data) and completed ≥4 weeks of Stage 2 medication (Supplemental Fig. 1). 

Thirty-eight were non-responders to sertraline in Stage 1 and took bupropion in Stage 2, 

while 49 were placebo non-responders who switched to sertraline. Thirty-eight healthy 

controls were also analyzed. The clinical and demographic characteristics are reported in 

Table 1. In addition, we included a replication sample of 116 MDD patients who had valid 

PRT data (of which 112 had valid MR data) and completed ≥4 weeks of sertraline treatment 

in Stage 1 (Supplemental Table S2). These participants served as an independent group to 

verify our Stage 2 sertraline findings.
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Pretreatment response bias differentiated responders to bupropion after failing sertraline 
from non-responders resistant to both classes of medication

To investigate whether PRT response bias could differentiate between response to bupropion 

(after switching from sertraline) and sertraline (after previous non-response to placebo) in 

Stage 2, we conducted a Treatment (sertraline vs. bupropion) × Response (responders vs. 

non-responders) ANOVA. Notably, the only significant effect to emerge was the Treatment × 

Response interaction (F(1,83)=7.21, p<0.01, ηp
2=0.080, BF10=5.27) (Fig. 1A). Follow-up 

simple effects tests revealed that eventual Stage 2 bupropion responders had larger (rather 

than lower, as originally hypothesized) pretreatment response bias than non-responders 

(p<0.01, d=0.90, BF10=15.57). Conversely, there was no difference between sertraline 

responders and non-responders (p>0.05, d=0.26, BF10=0.38). We conducted a separate 

analysis including site as a covariate and obtained similar results. Control analyses using 

discriminability also showed no significant interaction or main effects, suggesting that 

findings were specific to response bias (Supplemental Results). Moreover, bupropion 

responders exhibited comparable response bias scores as healthy controls, (t(52)=1.17, 

p>0.05, d=0.35, BF10=0.51) but non-responders had significantly lower response bias than 

healthy counterparts (t(58)=−2.77, p<0.01, d=0.74, BF10=5.90). This suggests that 

individuals who eventually responded favorably to bupropion had normal reward 

responsiveness, whereas non-responders did not.

Importantly, for each treatment, responders and non-responders to bupropion or sertraline 

did not differ in HAMD at baseline (BUP: t(36)=0.51, p>0.05, d=0.17, BF10=0.35; SER: 

t(47)=0.34, p>0.05, d=0.10, BF10=0.30) and Week 8 (BUP: t(36)=−0.27, p>0.05, d=0.09, 

BF10=0.33; SER: t(47)=−0.52, p>0.05, d=0.15, BF10=0.32), and change in HAMD from 

baseline to Week 8 (BUP: t(36)=−0.41, p>0.05, d=0.13, BF10=0.34; SER: t(47)=−0.63, 

p>0.05, d=0.18, BF10=0.34, Table 1). Thus, PRT findings were not influenced by differences 

in symptom severity at baseline or during Stage 1, and baseline response bias distinguished 

Stage 2 responders and non-responders 1216 weeks later.

Computational modelling revealed that bupropion responders had greater reward 
sensitivity, but not learning rate, than non-responders

An ANOVA revealed a significant Treatment × Response interaction for reward sensitivity 

(F(1,83)=7.12, p<0.05, ηp
2=0.079, BF10=5.15, Fig. 1B). Follow-up tests showed that 

eventual bupropion responders were more sensitive to rewards at the pretreatment session 

than non-responders (p<0.05, d=0.87, BF10=7.48), whereas Stage 2 sertraline responders 

and non-responders did not differ (p>0.05, d=0.29, BF10=0.36). We also found that reward 

sensitivity for bupropion responders was similar to healthy volunteers (t(52)=0.82, p>0.05, 

d=0.26, BF10=0.39), but that for non-responders was significantly lower than controls 

(t(58)=−2.14, p<0.05, d=0.59, BF10=1.75). This suggests that patients who responded better 

to bupropion showed normative reward sensitivity. When considering learning rate, the 

Treatment × Response effect was not significant (F(1,83)=0.55, p>0.05, ηp
2=0.007, 

BF10=0.38, Fig. 1C). Results remained significant when including site as a covariate 

(Supplemental Results). Thus, the difference in response bias between bupropion responders 

and non-responders was likely driven by variations in reward sensitivity, rather than learning 

rate.
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Higher resting-state functional connectivity between nucleus accumbens and rostral 
anterior cingulate cortex was associated with better response to bupropion

Whole-brain analyses showed a significant interaction between medication type and 

medication response in RSFC between bilateral NACC and a region of rostral anterior 

cingulate cortex (rACC; cluster peak at MNI coordinates −6, 30, 12, maximum t=5.76, 

k=170 voxels, clustering threshold p<0.001 FDR p<0.05, Fig. 2). Post-hoc analyses 

indicated that among those assigned to bupropion, patients with higher NACC-rACC RSFC 

showed better treatment response than those with lower NACC-rACC RSFC (t(34)=4.48, 

p<0.01, d=1.21, BF10>100). There was also a significant positive correlation between 

reward sensitivity and NACC-rACC RSFC (r=0.22, p<0.05), indicating that individuals with 

greater frontostriatal connectivity were more sensitive to rewards.

Compared to healthy controls, bupropion responders had significantly larger NACC-rACC 

RSFC (t(51)=3.64, p<0.001, d=1.05, BF10=44.25) while that for non-responders were lower 

than controls at a trend level (t(55)=−1.84, p=0.07, d=0.51, BF10=1.10). This suggests that 

patients who responded better to bupropion exhibited elevated NACC-rACC RSFC. 

Conversely, among individuals randomized to sertraline, patients with higher NACC-rACC 

RSFC showed poorer treatment response than those with lower NACC-rACC RSFC 

(t(46)=4.48, p<0.01, d=0.93, BF10=37.47). Sertraline responders also had lower NACC-

rACC RSFC than healthy controls (t(60)=−3.70, p<0.001, d=0.97, BF10=58.92), but there 

was no difference between non-responders and controls (t(58)=0.83, p>0.05, d=0.21, 

BF10=0.36).

Of note, separate voxelwise analyses performed within each medication group converged 

with the full-group results, and suggested that NACC-rACC RSFC was especially related to 

treatment response in the bupropion group. Within the bupropion group, those who 

responded to treatment showed higher NACC-rACC RSFC, and no other significant effects 

were observed across the brain; however, within the sertraline group, there were no 

significant differences in NACC RSFC across the brain (Fig. 3).

Findings for sertraline were replicated in an independent sample

Unique individuals were treated with sertraline in Stages 1 vs. 2. Hence, patients randomized 

to sertraline in Stage 1 could serve as an independent sample to replicate results. Consistent 

with Stage 2 findings, responders and non-responders to sertraline in Stage 1 did not differ 

in PRT response bias (t(114)=0.24, p>0.05, d=0.04, BF10=0.23), reward sensitivity (t(114)=

−0.15, p>0.05, d=0.03, BF10=0.20) or learning rate (t(114)=−0.58, p>0.05, d=0.11, 

BF10=0.27). There was also no statistical difference in NACC-rACC RSFC between Stage 1 

responders and non-responders to sertraline (t(110)=1.53, p>0.05, d=0.29, BF10=0.57).

No difference in dosage of sertraline received in Stage 1 by eventual bupropion 
responders and non-responders

The mechanism of action of bupropion is postulated to be primarily related to the inhibition 

of the reuptake of both dopamine and norepinephrine (80). Conversely, sertraline typically 

inhibits the neuronal reuptake of serotonin – although it also shows relatively high affinity 

for the dopamine transporter. As such, it has been suggested that sertraline might inhibit the 
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reuptake of dopamine, particularly at high doses of 200mg and above (63). When evaluating 

sertraline doses in Stage 1 by patients who went on to receive bupropion in Stage 2, we 

found that the average dose was well below 200mg (mean=118.3mg, SD=26.7, range=57.1–

155.2). Hence, it is difficult to disentangle the contributions of dopamine and norepinephrine 

to the efficacy of bupropion.

Discussion

Treatment for MDD is challenging and often proceeds with SSRIs as first-line 

antidepressants (38). Unfortunately, treatment selection is not informed by biomarkers, 

response rates are modest, and depressed patients who do not benefit from an adequate trial 

of SSRI are typically switched to non-SSRI agents (38–41). To the best of our knowledge, 

this is the first study to investigate behavioral and neural factors associated with response to 

the atypical antidepressant bupropion (which is assumed to increase dopaminergic and 

noradrenergic transmission), following a failure to respond to the serotonergic-based 

antidepressant, sertraline.

Notably, we found that greater reward sensitivity and higher RSFC between the NACC and 

rACC distinguished bupropion responders, who previously failed to respond to sertraline, 

from non-responders resistant to both classes of medication. Moreover, patients who 

responded better to bupropion had comparable reward sensitivity and potentiated NACC-

rACC RSFC relative to healthy controls. In contrast, both reward sensitivity and NACC-

rACC connectivity in bupropion non-responders were lower than healthy volunteers. Our 

results cannot provide a mechanistic explanation, but we speculate that these might reflect 

compensatory mechanisms in depression, in which elevated frontostriatal network functional 

connectivity is needed to respond normatively to reward. Future studies are needed to test 

this hypothesis. Our findings also suggest that depressed individuals with more normative 

reward behavior and potentiated brain reward system responded better to bupropion after 

failing an 8-week treatment with sertraline. In contrast, we found that these reward markers 

were not associated with response to sertraline in Stage 2 (after previous non-response to 

placebo), and replicated this null finding in an independent sample of patients randomized to 

sertraline in Stage 1. These findings contrast with our original hypotheses, which were 

originally derived from the assumptions that (1) SSRIs poorly address anhedonic phenotypes 

(81) and (2) patients with behavioral and neural markers indexing blunted reward processing 

would disproportionally benefit from pharmacological treatment assumed to increase 

dopaminergic (and noradrenergic) transmission (62,63,82).

Although unexpected, our results are in line with earlier suggestions that patients with a 

subtype of depression characterized by preserved reward sensitivity may preferentially 

improve with dopaminergic pharmacotherapy (83) and recent reports that MDD patients 

with more normative reward-related brain responses benefitted the most from Behavioral 

Activation treatment (84,85). Moreover, a recent study found that depressed individuals with 

higher baseline response bias responded more favorably to treatment by pramipexole, a 

selective dopamine agonist (86,87). However, this latter study did not include placebo or 

non-dopaminergic control. The current study demonstrated that better reward sensitivity and 

more positive RSFC among regions putatively involved in reward processing were 
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associated with superior response to treatment by bupropion, one of the few antidepressants 

that prevent the reuptake of dopamine. In contrast, these effects were not found for the 

common serotonin reuptake inhibitor sertraline.

Current results might have significant clinical implications. Although extant guidelines 

recommend SSRIs when starting treatment for MDD (38) – with sertraline being the most 

widely prescribed antidepressant in the United States (88) and Japan (89) – only 50% of 

patients benefit from them. A failure to respond to first-line antidepressants requires 

consideration of various second-line treatments, which includes switching to a different 

medication, augmenting with a non-antidepressant drug, dose escalation or combination 

with a different antidepressant (38). However, there is no clear evidence for a particular 

strategy being superior (40,41,90–101), and secondary treatment guidelines are needed 

(102). Although further scrutiny is required, our results suggest that laboratory-based 

paradigms, such as the PRT, and/or imaging might be useful in informing whether NDRIs 

could be prescribed if first-line SSRIs are not beneficial. Individuals likely to be resistant to 

NDRIs could be recommended alternative strategies, including augmentation, 

psychotherapy, or neurostimulation. Hence, a prospective replication based on these 

biomarkers could advance clinical care.

Limitations of this work should be acknowledged. First, although the sample size for Stage 1 

was large (N=296), that for Stage 2 was more modest with N=38 bupropion (16 responders 

vs. 22 non-responders) and N=49 sertraline (25 responders vs. 24 non-responders) patients. 

Nevertheless, this is the first study to examine reward biomarkers of second-line 

antidepressant response and, thus, will be valuable in guiding future studies. Second, the 

EMBARC trial adopted relatively strict inclusion criteria to minimize clinical heterogeneity. 

Hence, it is unclear whether findings will generalize to other depressed samples, such as 

those with psychotic features or comorbid substance abuse. Third, our results are not 

sufficient to provide any mechanistic explanation for why patients with intact, rather than 

impaired, reward processing systems respond more favorably to bupropion. Future, more 

mechanistic studies should investigate this.

Fourth, we have shown that reward sensitivity and frontostriatal connectivity distinguished 

between responders to bupropion, after failing to benefit from sertraline, and non-responders 

resistant to both classes of medication. However, it remains to be investigated whether these 

reward markers might also differentiate responders to secondary treatment by placebo, since 

non-responders to sertraline in Stage 1 of the EMBARC trial were all given bupropion, 

rather than being randomized to bupropion or placebo. In other words, due to the lack of 

placebo controls for the active treatments in Stage 2, the specific secondary treatment effect 

of bupropion cannot be determined. This should be noted when interpreting our findings 

because of the considerable placebo response rate observed in Stage 1. Nevertheless, the 

results of our study might still be useful in informing choice of second-line antidepressant 

when primary SSRI treatments fail since placebos are not prescribed in practice. Fifth, 

patients who received bupropion in Stage 2 took sertraline in Stage 1 while those in the 

sertraline group had previously been given placebo. While we confirmed that responders and 

non-responders to secondary treatment with bupropion or sertraline did not differ in 

depressive symptomatology at baseline, as well as during and after Stage 1, it is still possible 
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that the baseline states prior to Stages 1 and 2 may have been different. Sixth, unlike 

previous investigations such as the International Study to Predict Optimized Treatment in 

Depression (iSPOT-D) (103), measures in EMBARC were not collected post-treatment. 

Hence, it is unknown whether reward sensitivity and frontostriatal connectivity will change 

with treatment to bupropion as a function of response.

Conclusion

Using a multimodal approach, the current study showed that behavioral and neural markers 

of reward processing-specifically, computationally derived reward sensitivity and NACC-

rACC connectivity–distinguished depressed individuals likely to benefit from a 

dopaminergic medication, following failure on SSRIs, and patients expected to be resistant 

to both classes of antidepressants. With further scrutiny, these findings could have important 

implications for clinical care.
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Figure 1. Comparison of (A) response bias, (B) reward sensitivity and (C) learning rate for the 
probabilistic reward task at baseline.
Bupropion responders in Phase 2 have significantly greater baseline (pretreatment) response 

bias and reward sensitivity, but not learning rate, compared to non-responders (*p<0.05, 

**p<0.01). On the other hand, there was no difference on these metrics between responders 

and non-responders to sertraline. Note that the reward sensitivity and learning rate 

parameters have been transformed to prevent issues with non-Gaussianity.
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Figure 2. Baseline resting-state functional connectivity (RSFC) of bilateral nucleus accumbens 
(NACC) is associated with differential response to bupropion (BUP) compared with sertraline 
(SER).
(A) Shown is the seed region of interest (ROI) in bilateral nucleus accumbens, anatomically 

defined using the AAL atlas. (B) The interaction between antidepressant type and response 

to treatment was associated with RSFC (Fisher’s z-transformed Pearson’s correlations 

across the full duration of the resting scan) between bilateral nucleus accumbens and a 

region of rostral anterior cingulate cortex (rACC). (C) Patients randomized to bupropion for 

Stage 2 who responded to treatment showed higher NACC-rACC RSFC before the onset of 

Stage 1 than patients who failed to respond to bupropion, and this pattern also emerged in 

separate voxelwise analysis within the bupropion group (Fig. 3). Patients randomized to 

sertraline who responded to treatment showed lower NACC-rACC RSFC than sertraline 

non-responders, but this effect failed to emerge in separate voxelwise analyses within the 

sertraline group (Fig. 3). Note: Voxelwise analyses thresholded at peak p<0.001, two-sided, 

FDR corrected p<0.05.
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Figure 3. Voxelwise resting-state functional connectivity (RSFC) of bilateral nucleus accumbens 
(NACC) of responders versus non-responders, within treatment groups.
(A) Shown is the seed region of interest (ROI) in bilateral nucleus accumbens, anatomically 

defined using the AAL atlas. (B) Patients randomized to bupropion who responded to 

treatment showed higher NACC-rACC RSFC than patients who failed to respond to 

bupropion. (C) Among patients randomized to sertraline (SER), there was no difference in 

NACC RSFC between those who responded, or failed to respond, to treatment. Note: 

Voxelwise static analyses thresholded at peak p<0.005, two-sided, FDR corrected p<0.05.
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KEY RESOURCES TABLE

Resource Type Specific Reagent or 
Resource Source or Reference Identifiers Additional Information

Add additional 
rows as needed for 
each resource type

Include species and 
sex when 
applicable.

Include name of 
manufacturer, company, 
repository, individual, or 
research lab. Include PMID 
or DOI for references; use 
“this paper” if new.

Include catalog numbers, stock 
numbers, database IDs or 
accession numbers, and/or 
RRIDs. RRIDs are highly 
encouraged; search for RRIDs at 
https://scicrunch.org/resources.

Include any additional 
information or notes if 
necessary.

Biological Sample
EMBARC Dataset 
(MDD Datients and 
controls)

NIMH Data Archive Collection ID: 2199
URL: https://nda.nih.gov/
edit_collection.html?
id=2199

Software; 
Algorithm MATLAB R2017a MathWorks RRID: SCR_001622

Software; 
Algorithm JASP v0.11.1 JASP Team RRID:SCR_015823

Software; 
Algorithm SPSS v22.0 IBM RRID:SCR_002865
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