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Chromatin accessibility landscape and regulatory
network of high-altitude hypoxia adaptation
Jingxue Xin1,2,3,4,5,12, Hui Zhang1,3,12, Yaoxi He 1,3,5,12, Zhana Duren6,11,12, Caijuan Bai7,12, Lang Chen2,5,

Xin Luo1,3,5, Dong-Sheng Yan8, Chaoyu Zhang2,5, Xiang Zhu 6, Qiuyue Yuan2,5, Zhanying Feng 2,5,

Chaoying Cui7, Xuebin Qi 1,3, Ouzhuluobu7, Wing Hung Wong 4,6,9✉, Yong Wang 2,3,5,10✉ &

Bing Su 1,3✉

High-altitude adaptation of Tibetans represents a remarkable case of natural selection during

recent human evolution. Previous genome-wide scans found many non-coding variants under

selection, suggesting a pressing need to understand the functional role of non-coding reg-

ulatory elements (REs). Here, we generate time courses of paired ATAC-seq and RNA-seq

data on cultured HUVECs under hypoxic and normoxic conditions. We further develop a

variant interpretation methodology (vPECA) to identify active selected REs (ASREs) and

associated regulatory network. We discover three causal SNPs of EPAS1, the key adaptive

gene for Tibetans. These SNPs decrease the accessibility of ASREs with weakened binding

strength of relevant TFs, and cooperatively down-regulate EPAS1 expression. We further

construct the downstream network of EPAS1, elucidating its roles in hypoxic response and

angiogenesis. Collectively, we provide a systematic approach to interpret phenotype-

associated noncoding variants in proper cell types and relevant dynamic conditions, to model

their impact on gene regulation.
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T ibetans have lived at high altitude (average 4000 m) for
more than 30,000 years1–3. They survive the low oxygen
environment by a distinct suite of physiologic traits:

decreasing arterial oxygen content, increasing resting ventilation,
lack of hypoxic pulmonary vasoconstriction, lower incidence of
reduced birth weight, and relatively low hemoglobin (Hb) con-
centration. In contrast, Han Chinese lowlanders moving to high
altitude develop increased Hb concentration to compensate for
hypoxia but usually leads to polycythemia that increases the risk
of heart attack, stroke, and fetal loss during pregnancy4–7. This
blunted response to hypoxia in Tibetans is the result of natural
selection acting on genes in oxygen intake, delivery, and
utilization.

Previous genome-wide scans have identified many positively
selected variants underlying high-altitude adaptation (Tibetan,
Andean, and Ethiopian)8–11. In Tibetans, two major-effect genes
(EPAS1/EGLN1) show the strongest signals of selective
sweeps7,12–14, which were significantly associated with a
decreased hemoglobin phenotype. In addition, Tibetan-enriched
EPAS1 variants were experimentally shown to down-regulate
EPAS1’s transcription15, providing molecular basis at the tran-
scriptomic level of Tibetans’ blunted response to hypoxia.

However, major challenges remain to put those isolated data
together and causally define genotype-phenotype relationships
for high-altitude hypoxia adaptation. First, a great majority of
these positively selected variants are located in non-coding
regions which imply the critical role of gene regulation but
challenges the elucidation of unknown cell type of action,
relevant pathway, target gene, causality, and mechanism. In
particular, the Tibetan-enriched EPAS1 variants are all non-
coding ones, suggesting that gene expression regulation is likely
selected for adaptation. In addition, these EPAS1 variants are
highly linked and it is difficult to identify the causal variant(s)
without context-specific multi-omics data. Second, hypoxia is a
dynamic process and adaptation is a complicated phenotype
involving many tissues. Functional variants are usually tissue-
specific and may initiate the concerted effects of many reg-
ulatory elements and genes in a context-specific and time-
dependent way. Third, accumulating evidence of existing stu-
dies suggests the polygenicity of hypoxia adaptation, i.e., high-
altitude hypoxia adaptation is often affected by multiple genes/
variants with small or moderate effects on transcription factors,
regulatory elements and their target genes, and eventually
trigger changes of a larger-scale regulatory network.

To address the above challenges, here we generate accessibility
maps of REs across time series of hypoxia experiments in both
Tibetan and Han Chinese and inferred hypoxia regulatory net-
works by linking these REs to their target genes (TG) and their
transcription factor (TF) regulators. These maps and circuits
allow us to understand how human genetic variants contribute to
hypoxia adaptation.

Results
Chromatin accessibility landscape for hypoxia response and
adaptation. We design experiments to collect multi-omics data,
in particular high-quality ATAC-seq data for chromatin acces-
sibility landscape, to interpret the positively selected variants
underlying high-altitude adaptation. Figure 1a shows our proce-
dures for adaptive and wildtype population choosing, individual
filtering by EPAS1/EGLN1 genotypes, HUVEC cell selection, time
series hypoxia induction, multi-level omics data profiling, and
quality control (“Methods” and Supplementary Fig. 1). We also
confirm that response to being in culture for different periods of
time are not significant compared to the responses to hypoxia
(“Methods”).

Multi-level omics data reveal multiple stages of hypoxia
response. Hierarchical clustering of gene expression and chro-
matin accessibility indicates that hypoxia response is a multi-
stage biological process (Fig. 1b). Gene expression profiles of
12,998 genes group 0 h/6 h/1 day as the first stage, and 3 day/
5 day as the second stage. Chromatin accessibility profiles of
51,406 HUVEC enhancers show a three-stage landscape by
further dividing the 0 h/6 h/1 day stage into 0 h sub-stage and 6 h/
1d sub-stage. We identified 517 (out of 12,998 genes in total with
proportion 3.98%) differential expressed genes (DEG) and 8551
(out of all 54,102 regions with proportion 15.81%) differential
open regions (DORs) between normoxia 0 h and hypoxia 6 h with
FDR < 0.05. The proportion of DORs is larger than DEGs by 4
folds. Overall, chromatin accessibility tends to respond earlier to
hypoxia than gene expression. Unsupervised principal compo-
nent analysis for genes and enhancers shows consistent patterns
in larger variance under hypoxia response (PC1 and PC2) and
small variance between populations. In addition, 6 h and 1 day
cells tend to be similar under hypoxia pressure and 0 h, 3 day, and
5 day cells present large variation at both chromatin accessibility
and gene expression levels (Fig. 1c). In contrast, the accessibility
level shows a more smoothed and continuous trajectory than
expression.

Genome-wide accessible regions allow us to identify transcrip-
tion factors acting on regulatory elements to coordinately regulate
gene expression and response to hypoxia. We identified 43 TFs
with high expression of highly enriched motifs at different time
points (Supplementary Fig. 3a). CTCF is highly expressed and
enriched in all samples. This is consistent with its role to mediate
proper looping between promoters and distal regulatory ele-
ments16. Other key regulators in endothelial gene expression,
such as the E26 transformation-specific (ETS) family transcrip-
tion factors (ERG, ETS1, FLI1, ELK4), together with AP-1,
FOXO1, and GATA217 are identified. 14 TFs display interesting
dynamics in motif enrichment and expression (Fig. 1d). JUN,
ETS1, FOSL2, and TAL1 show a 6 h response, EPAS1 and MEF2D
show a 1d response, and STAT6, KLF10, MAFK, and SOX17 show
a 3d response to hypoxia. These early to late response patterns are
consistent with their enriched GO processes, including response
to oxidative stress, angiogenesis, and blood vessel/vasculature
development (Supplementary Fig. 3b).

Genome-wide expression pattern shows that Tibetan samples
have a blunted response to hypoxia as seen in the number of
DEGs (Fig. 1e). DEGs are identified between adjacent time points
by limma with FDR control of 0.05 (“Methods”). The pattern
again shows that hypoxia response is a multi-stage process with
more than 8,000 DEGs between 1d to 3d. Decline of DEGs over a
five-day period is consistent with our previous report15. This
decline pattern is likely caused by the known regulatory feedback
loops in hypoxic response18. Moreover, Tibetans have fewer
DEGs than Han in all four adjacent time point comparisons (348,
1068, 537, and 565 fewer DEGs with proportions of total DEGs
40.23%, 83.31%, 6.62%, and 18.24%). This indicates Tibetans’
response to hypoxia with less dramatic gene expression changes
than Han, i.e., the blunted effect.

Importantly, 111,182 positively selected variants for high
altitude adaptation are enriched in the open regions of our 50
HUVEC samples with varying thresholds (“Methods” and
Supplementary Fig. 4b). Open chromatin regions under hypoxia
and open regions under normoxia both show over 1.5 fold
enrichment, which are significantly different from open regions in
ESC (embryonic stem cell) as control (DNase-seq sample in
ROADMAP) (Fig. 1f). The SNPs with signals of positive selection
tend to have 20% more enrichment in hypoxia (6 h) than in
normoxia (0h). This pattern is consistent for the 50 samples
(Supplementary Fig. 4b). HUVEC shows relatively high
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enrichment compared with a large panel of cell types from
ROADMAP (Supplementary Fig. 4c).

Genome-wide statistical modeling and data integration. We
propose a statistical model, vPECA (Variants interpretation

model by Paired Expression and Chromatin Accessibility data), to
Integrate our measured paired expression and chromatin acces-
sibility data with the available public data, including population
genetics data, functional genomics data in ENCODE, and Hi–C
data for HUVEC. Our previous work PECA integrates paired
expression and chromatin accessibility data across diverse cellular
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contexts and model the localization to REs of chromatin reg-
ulators (CR), the activation of REs due to CRs that are localized to
them, and the effect of TFs bound to activated REs on the
transcription of target genes (TG)19. Our innovation here is to
extend PECA to interpret genetic variants from population
genetics and matched WGS data. vPECA models how positively
selected noncoding SNPs affect the RE’s selection status, chro-
matin accessibility, and activity and further determine the target
gene expression in relevant cellular context (Fig. 2a). The statis-
tical modeling allows us to systematically identify active REs,
active selected REs, and gene regulatory network to interpret
variants.

We prepare the genome annotation of all transcriptional units
(genes), regulatory elements (REs) and high-resolution 3D
chromatin interactions in HUVEC, and positively selected
variants with various quantitative scores and their LD associa-
tions (“Methods” and Fig. 2a). Table 1 summarizes the types of
data to be analyzed or incorporated into our model of gene
regulation. To model gene regulation with RE activity and
selection, our analytical approach learns from this data to
generate the distribution of the expression of target genes
conditional on the accessibility of regulatory elements and the
expression of transcription factors. Our model, depicted in
Fig. 2a, has four components designed to model respectively (1)
control of a target gene expression; (2) activity status of a
regulatory element; (3) selection status of a regulatory element,
and (4) the effect of RE’s selection status on accessibility.

Expression of target gene: we assume that the rate of
transcription of a TG in a cellular context is affected by TFs
bound to regulatory elements that are active in that cellular
context. For each RE we construct a variable (parenthesized term
in Eq. (4) of Fig. 2a) that represents the combined effect of TFs
that are expressed in that context and have significant motif
matches on that RE. Target gene expression is modeled by
regression with these variables as potential predictors. However,
only active REs associated with a TG will be included in the
regression model for that TG (Fig. 2a and Eq. (3)). The
association of RE to TG was restricted by the Hi–C TAD loop
boundary and the degree of correlation between the accessibility
of the RE with promoter accessibility and expression of the TG
across tissues by PECA (Methods).

Activity status of regulatory element: the activity status of a RE
(say the ith RE) is represented by a context-dependent variable Zi,
indicating the active state of ith RE. The knowledge of the
selection status of a RE is informative on the activity status of that
RE. To incorporate this into our model, we denote the activity
status of a RE by a binary variable S, i.e., Sk= 1 indicates that the
kth RE is under positive selection. These variables are used
together with the accessibility of the RE, as predictive variables in
our model for the activity status of the RE (Fig. 2a and Eq. (3)).

Selection status of RE: we assume a RE is likely to be selected if
the RE contains positively selected SNPs. We integrated multiple
SNPs in a RE by down-weighting the effect of LD structure. In
addition, multiple selection scores are combined to assess the
positive selection of SNPs in order to balance their advantages
and disadvantages. The resulting model for selection status
prediction is given in Eq. (1) of Fig. 2a.

Effect of RE’s positive selection on accessibility: regulatory
mutations can drive chromatin accessibility changes in direct or
indirect ways20. For example, a non-coding variant causes the
generation of TF binding site, this variant could lead to an
increase of chromatin accessibility in a cis-RE and concomitant
increase in the observed frequency of the mutant allele. Or
indirectly, the variant will impact the 3D chromatin interactions
and increase accessibility. If this variant in RE is functional and
can be fixed by natural selection, we expect the chromatin
accessibility increase or decrease will be associated with the RE’s
selection status. The resulting model for accessibility effect is
given in Eq. (2) of Fig. 2a.

We propose an algorithm to infer the unknown parameters μ,
α, β, γ, ω, σ2 and latent variables (S, Z) based on the observed
expression data (TG, TF), accessibility data (O), and the selection
and LD status of SNPs (X, Y). We consider the conditional
density of TG and O given TF, X, Y, and O:

P TG;OjTF;O;X;Yð Þ ¼ P OjTF;X;Yð ÞP TGjTF;O;X;Yð Þ
¼
X
Z;S

P TGjTF;Zð ÞP ZjS;Oð ÞPðOjSÞP SjX;Yð Þ

The term P(S|X, Y) represents the conditional density of the
selection status of the tth RE, as specified Eq. (1) of Fig. 2a.
Similarly the terms P(O|S), P(Z|S, O), and P(TG|TF, Z) are
specified by Eqs. (2)–(4) of Fig. 2a. Note that these terms involve
different components of the parameter vector: μ appears in the
first term, ω appears in the second term, αt appears in the third
term, and (βi, γk) appears in the fourth term. This conditional
experiment (TG, O|TF, O, X, Y) provides a valid basis for the
inference of the unknown parameters μ, α, β, γ, ω, σ and latent
variables (S, Z). To induce sparsity, we use Laplacian priors for
the parameters α, β, and γ. We employ an iterated conditional
mode algorithm for this inference. The resulting model of
inference methodology is named vPECA, extending our previous
Paired Expression and Chromatin Accessibility modeling19

(Table 1 and “Methods”).

Active and selected REs and their regulatory targets. vPECA
identifies 32,330 active REs (ARE) (β ≠ 0) for 9952 genes
including 1647 active selected REs (ASRE) (P(S= 1) > 0.95, α ≠ 0
and β ≠ 0) for 1146 genes (Supplementary Data 2) and the
associated regulatory network including 52,647 interactions
among REs and target genes. Each gene is on average regulated by

Fig. 1 Paired expression and chromatin accessibility time-series data reveal the regulatory landscape for high altitude adaption. a Experimental design
diagram for adaptive and wildtype population choosing, individual selection by EPAS1/EGLN1 genotypes, HUVEC cell culture, time-series hypoxia induction,
and multi-level omics data profiling. b Hierarchical clustering of gene expression (left panel) and chromatin accessibility (right panel) indicates hypoxia is a
multi-stage biological process. Gene expression profiles group 0 h, 6 h, and 1 day as the first stage, and 3 day and 5 day as the second stage. Chromatin
accessibility responses earlier to hypoxia than gene expression by further dividing the first stage into two sub-groups (0 h and 6 h, and 1 day). c
Unsupervised principal component analysis for 12,998 genes (upper panel) and 51,406 HUVEC enhancers (lower panel). In all, 6 h and 1 day cells tend to
be similar under hypoxia pressure and 0 h, 3 day, and 5 day samples present large variation at both chromatin accessibility and gene expression.
Accessibility pattern shows a more smoothed trajectory than expression. d TF response to hypoxia by their enriched motifs and gene expression dynamics
across time points. e Tibetan samples show the blunted responses to hypoxia by the number of differentially expressed genes (DEGs) between adjacent
time points. DEGs are identified by limma with FDR control 0.05. f Positively selected SNPs for high altitude adaptation quantified by the CMS score
thresholding by −log10(p-value) are enriched in the open regions revealed by HUVEC ATAC-seq data but not in embryonic stem cells (ESC). P-value of
CMS score for each SNP were calculated by Fisher’s method (“Methods” for details). Error bars indicate the mean ± standard error of fold change between
replicates (n= 10 biologically independent samples). Source data are provided as a Source data file.
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five active REs (Supplementary Fig. 5a). In addition, we use ω ≠ 0
to select those REs under selection with differential accessibility in
local time points. Target genes are enriched for functions in stress
response and metabolic process etc. (Supplementary Fig. 5b).

We validate the selection status, active status, and inferred RE-
TG interactions using independent data resources. The active REs
revealed by vPECA are significantly enriched in H3K27ac peaks
exposed to the 1% hypoxia environment for 24 h from an
independent public data source21. In all, 25,494 predicted REs are
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validated (78%) with Fisher’s exact test p-value 1.48 × 10−322 and
fold change 1.27 (Fig. 2b).

vPECA identified 1146 genes associated with ASREs and they
are significantly overlapped with 549 literature reported high
altitude adaptation genes for Tibetans (only 276 are expressed in
HUVEC)10 with hypergeometric test p-value 3.71 × 10−14 and
fold change 2.46 (Fig. 2c). We note that selected genes are
reported when there are high Fst SNPs in coding regions or inside
the gene body region. We further checked the 1,071 selected
genes identified by vPECA (Fig. 2c, genes without literature
support) and found that the vPECA model could integrate many
weakly selected SNPs and downstream accessibility and expres-
sion change as well as assign strongly selected SNPs to a distal
gene. Anti-oxidant enzyme NQO1 is reported as a selected gene
by vPECA due to 48 weakly selected SNPs with Fst score about
0.15 (Supplementary Fig. 5c and large accessibility and expression
change (Supplementary Fig. 5d). Cell mobility associated gene
ACTG1 is regulated by two SNPs (Fst > 0.23) 55Kb upstream and

shows the advantage of assigning distal target genes to high Fst
SNPs by the long-range RE-gene interactions inferred by vPECA
(>10 kbp) (Supplementary Fig. 5e).

Active selected REs are ranked by their selection (the
maximum Fst score of all SNPs in a given RE) and chromatin
accessibility change score. RE “chr2_46574334_46580523” in the
intron region of EPAS1 has the highest rank (Fig. 2d). This
demonstrates that vPECA can infer selection status for non-
coding REs. Functional enrichment analysis for the active selected
REs reveals the key process related to hypoxia adaptation, such as
“response to oxidative stress”, “mitochondrial transport”, and
“positive regulation of blood vessel endothelial cell” (Fig. 2e).

In addition, vPECA predicts RE-gene interactions via cross-
sample activity correlation. This functional evidence should be
complementary with the genetic evidence via SNP effect on
gene expression and physical evidence via proximity in 3D.
eQTL can provide enhancer-gene interaction in a tissue-specific
way. We used the eQTL data from GTEx to overlap with our

Fig. 2 vPECA systematically reveals active REs, positively selected active REs, and regulatory network. a vPECA models how positively selected
noncoding SNPs affect the RE’s selection status, chromatin accessibility and activity, and further determine the target gene’s (TG) expression by integrating
paired expression and chromatin accessibility profiling with population genetics, epigenome, and 3D chromatin interaction data. Refer to Table 1 for model
components and notations and “Methods” for details of vPECA). b Active REs revealed by vPECA are significantly enriched in H3K27ac peaks exposed to
1% hypoxia environment for 24 h from an independent public data source (Fisher’s exact test). c Active selected REs associated genes are enriched in the
literature reported high altitude adaption gene. P-value is calculated by hypergeometric test. d Active selected REs are ranked by their selection (maximum
Fst score of all SNPs in the given RE) and chromatin accessibility change score. e The active selected REs are enriched in biological processes related to
hypoxia adaptation. P-values were calculated by hypergeometric test with Benjamini–Hochberg correction. f eQTL data in the GTEx database significantly
overlapped with the vPECA identified RE-TG pairs. The null distribution by a random selection of the same number of REs nearby expressed genes for 1000
times. “Fix distance” means only selecting TG-RE pairs with the same distance distribution as eQTL data. P-values were calculated by one-sided t-test. g A
RE-TG pair is validated if their RE and promoter are linked by at least one Hi–C loop in hypoxia or normoxia. h HiC loop under hypoxia significantly
overlapped with the vPECA identified RE-TG pairs. The null distribution is constructed by the random selection of the same number of REs nearby
expressed genes in HUVEC for 1000 times. “Fix distance” means only selecting TG-RE pairs with the same distance distribution as Hi–C loop. Sensitivity is
calculated by the number of RE-TG pairs validated by Hi–C loops normalized by the total number. P-values were calculated by one-sided t-test. i vPECA
tends to link proximal REs to the promoter, while Hi–C loops detect distal interactions. Source data are provided as a Source data file.

Table 1 vPECA model component and notations.

Data and variables Notations Examples

Individual and time-dependent data
Expression of TF TFi,j,m:= expression of the mth TF of individual i

on time j
TFW1,1,EPAS1= 23.87

Expression of TG, not TF TGi,j,l:= expression of the lth TG of individual i on
time j

TGW1,1,NQO1= 97.35

Accessibility of RE Oi,j,k:= openness of the kth RE of individual i on
time j

OW1,1,chr2:46589710-46594828,= 1.14

Individual and time dependent latent variable
Activation status of a RE Zi,j,k:= activation status of the kth RE of the ith

individual on time j
ZW1,1,chr2:46574334-46580523= 2.72

Population dependent data
FST score Xp,1:= FST score of pth SNP Xrs3768729,1= 4.62
iHS score Xp,2:= iHS score of pth SNP Xrs3768729,2= 9
XP-EHH score Xp,3:= XP-EHH score of pth SNP Xrs3768729,3= 1.94
PBS score Xp,4:= PBS score of pth SNP Xrs3768729,4= 4.94
Weight of the pth SNP wp:=weight of the pth SNP derived from

LD score
wrs3768729= 0.0583

TFs with motif on a RE MBk:= set of TFs with motif match in kth RE ARNT has motif match at
chr2:46589710-46594828

Individual dependent data
The difference of Derived Allele Frequencies between
two populations ΔDAF

Yp:=ΔDAF of pth SNP Yrs3768729=−0.8

Motif matching strength of TF on RE Bi,k,m:=matching strength of the mth TF binding
on the kth RE of individual i

BW1,chr2:46589710-46594828,BACH1= 2.90

Population and individual dependent latent variables
Selection status of a RE Sk:= selection status of the kth RE Schr2:46589710-46594828= 1
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predicted active RE-gene interactions. Totally 65,732 eQTL
interactions across 44 cellular contexts are collected (“Meth-
ods”). Overall 18,079 out of 52,647 predictions have eQTL
support such that they overlap at least one reported eQTLs.
This is significantly larger than expected with one-sided t-test
p-value < 10−70 (Fig. 2f). The overlaps in 44 individual tissues
are all significant (Supplementary Fig. 5f). Those tissues sensing
oxygen similar to HUVEC tend to have a higher ratio of
consistency. We further checked the concordance between
chromatin loops from the Hi–C experiment and RE-TG pairs
identified by vPECA (Fig. 2g). 33% of Hi–C loops are
concordant with at least one RE-TG pair identified by vPECA.
To assess the significance, we generated the null distribution by
a random selection of the same number of REs in HUVEC
nearby expressed genes for 1000 times. vPECA gives 2-fold
higher than randomly selected pairs with one-sided t-test p-
value 1.2 × 10−73 (Fig. 2h). If the null distribution is generated
with physical distance constraint, i.e., the distance between
randomly selected RE-TG pairs follows the same distribution
with vPECA identified ones, vPECA still shows significantly
higher enrichment with one-sided t-test p-value 1.06 × 10−35.
To exclude the potential bias due to public normoxia HUVEC
Hi–C, we re-run the vPECA model without using Hi–C data to
define physical boundaries and still 26% Hi–C loops are
concordant with vPECA prediction (one-sided t-test, p-value
1.2669 × 10−24). The distribution of RE-TG distance shows that
vPECA tends to link proximal REs to promoter and comple-
ment to Hi–C loops which only detect distal interactions
(Fig. 2i).

The mechanism for down-regulation of EPAS1 in Tibetans’
hypoxia response. EPAS1 is the most important hypoxia-
inducible transcription factor and shows the strongest selective
sweep in Tibetans. Our evolutionary omics strategy helps explore
the EPAS1 regulatory mechanism in hypoxia and adaptation.
vPECA successfully identifies EPAS1’s upstream active REs and
explains its down-regulation mechanism in expression. EPAS1’s
regulatory map includes annotated REs, positively selected SNPs,
Hi–C loops restricting the regulatory boundary (Fig. 3a). In all, 23
potential REs are annotated by epigenomic data (DNases-seq,
H3K27ac, H3K4me1, and H3K4me3). Positively selected SNPs
are picked by their Fst scores from population genetics study8. LD
structures are derived from Tibetan populations8 and 1000
Genomes and the positively selected SNPs (Fst > 0.5) show more
compact linkage in Tibetans.

By integrating the static regulatory map with time-series
hypoxia omics data, vPECA identified 7 active REs potentially
regulating EPAS1’s expression in HUVEC (Fig. 3a and Supple-
mentary Data 3). Three elements within introns of PRKCE (E7,
E8, and E12) are predicted to regulate EPAS1 because they locate
in the same Hi–C loops with the promoter of EPAS1 but not
PRKCE (Supplementary Fig. 6a). From the REs’ dynamics pattern
in chromatin accessibility (Supplementary Fig. 6b), 5 REs (E7, E8,
E12, E17, and E21) regulate EPAS1 across all time points and
populations (β ≠ 0). 2 REs (E20, E22) show significant interac-
tions between population and expression dynamics (ω ≠ 0). E20
responses to hypoxia earlier and E22 responses quite late. From
the inferred selection status, we group the REs into two types: (A)
3 REs (E7, E8, E12) as active REs and (B) 4 REs (E17, E20, E21,
E22) as active selected REs (Supplementary Data 3).

Under the regulation of those REs, we observed EPAS1’s
expression level increased by 30% after 1 day hypoxia treatment.
It is significantly less expressed (30% reduction) in Tibetan than
in Han (two-sided t-test p-value is 0.002) (Fig. 3b). This confirms
the EPAS1’s down-regulation pattern at expression level15, which

contributes to the molecular basis of Tibetan’s blunted response
to high-altitude hypoxia.

Chromatin accessibility dynamics well explain EPAS1’s expres-
sion. Linear regression of EPAS1’s expression by 23 REs’
accessibility (Supplementary Data 3) identifies 4 REs (E2, E12,
E20, E21) having nonzero coefficients. Two active REs (E12, E21)
can explain 54% variance. E12 contributes the most by 34%, and
the percentage increases to 54% when adding E21 (Supplemen-
tary Fig. 6c). This is due to the fact that both E12 and E21 show a
global accessibility pattern correlated with expression (Fig. 3c).
Utilizing the binding TFs on the REs predicted by vPECA, TFs
and REs together can increase the percentage to 68% (Supple-
mentary Fig. 6d).

We used Hi–C data to test if RE-promoter physically interacts.
vPECA predicted active REs of EPAS1, i.e., E7, E8, E12, E17, E20,
E21, and E22, show physical interactions with the EPAS1’s
promoter in hypoxia d3 and the interactions are enhanced from
normoxia to hypoxia (Fig. 3d). We reversely queried RE’s
interacting regions and the promoter shows the strongest signal
(Supplementary Fig. 7). We further applied dual-luciferase
enhancer reporter gene assay in both normoxic and hypoxic
conditions to test if the five active REs (E2, E12, E20, E21, and
E22) functionally affect the expression of the downstream gene.
Assays transfected to two independent cell lines HEK293 and
HELA (each with three replicates) were cultured in normoxia and
hypoxia (1% oxygen) environments for 36 h (Fig. 3e), and an
empty vector was used as control. All the five active REs (E20,
E21, E22 with adapted and wildtype alleles, E2, and E12) show
significantly higher activities in hypoxia than in normoxia (two-
sided t-test p-values < 0.05) in at least one cell line, except for
E21-2. Together, the identified EPAS1’s REs physically interact
with its promoter in the Hi–C data and are likely functional.

Interpretation of causal SNPs that regulate EPAS1. vPECA
reveals two types of REs to achieve a fine-tuned down-regulation
of EPAS1 by modeling epigenomic data to interpret high Fst
SNPs. One type is active REs without selection, such as E2 and
E12. The second type is the active REs with strong selection, such
as E20, E21, and E22. The three selected active REs, E20, E21, and
E22, tend to show significant chromatin accessibility difference
between Tibetan (adaptive) and Han (wildtype) globally or locally
across time points (Fig. 3c). The two types of REs work together
to regulate EPAS1’s expression and the combined effect of E12
and E21 is revealed in a stepwise linear regression (E12 explains
30% and E21 explains an additional 20%) (Supplementary
Fig. 6c). Furthermore, these two REs tend to be clustered in the
H3K27ac peak regions across tissues and their activities positively
correlate with EPAS1’s expression (Supplementary Fig. 6e).

vPECA used the predicted active REs to interpret SNPs’ causal
effect on gene expression. We experimentally tested five SNPs
with high Fst scores located in E20, E21, and E22. The
presumably adaptive alleles are “C” for rs569774785; “G, A” for
rs4953357, rs6756667; “A, G” for rs10206434, rs141366568; “A,
T” for rs370299814, rs368706892 and “T” for rs3768729, and all
SNPs associate with RE’s chromatin accessibility changes
(Supplementary Fig. 8a). For SNP rs3768729, the putatively
adaptive allele is ancestral and it has a large allelic divergence
between Tibetan and other populations, especially for East Asian
populations (Fst= 0.522 for CHB; Fst= 0.574 for JPT) (Supple-
mentary Fig. 8b). Strikingly, the dual-luciferase enhancer reporter
gene assay around rs3768729 located in E22 (E22-1) clearly
indicates a weaker activity of the Tibetan-enriched “T” allele
compared with the wild-type “C” allele in both cell lines and
under both conditions (Fig. 3h). The two-sided t-test p-values are
2.18 × 10−6 (HEK293 in normoxia), 2.40 × 10−6 (HELA in
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normoxia), 1.18 × 10−6 (HEK293 in hypoxia), and 9.35 × 10−11

(HELA in hypoxia), respectively. Notably, under hypoxia, the
activity differences for E22-1 between Han and Tibetan became
larger (two-sided t-test, p= 0.0038 in HEK293 and p= 3.51 ×
10−5 in HELA). The “T” allele also shows significantly higher
accessibility in the [−200 bp, +200 bp] region around rs3768729
in Han than in Tibetan (one-sided t-test, p-value 0.0166) (Fig. 3f).
This SNP may weaken the binding strength of the AhR-Arnt-
HIF-1 complex (Transfac motif ID: MA0259) to E22 in Tibetan

(Fig. 3g). It changes the first position of mandatory core
consensus CGTG in the high-quality motif derived from
oxygen-regulated elements of 70 known HIF target genes22–24,
which partly explain the strong effect in the reporter assay.
Together, we have the evidence that single SNP will change motif
binding and chromatin accessibility of E22, alter E22’s activity,
and eventually decrease EPAS1’s expression. This causality has
been strongly supported by the reporter assays in two
independent cell lines (HEK293 and HELA), implying that the
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Tibetan-specific SNP is likely functional (Fig. 3h). Similarly, the
[−200 bp, +200 bp] region around rs141366568 in E22 shows
differential accessibility between Tibetan and Han (p-value 3.62 ×
10−6) (Supplementary Fig. 8a). The SNP rs141366568 (in E22-2)
may causally weaken SOX17’s binding strength in E22 (Supple-
mentary Fig. 8c), repress EPAS1’s expression, which was validated
by the reporter assay in HELA and HEK239, and the element
activity in hypoxia is significantly larger than in normoxia
(Fig. 3e). The [−200 bp, +200 bp] region around rs569774785 in
E21 shows differential accessibility between Tibetan and Han
(one-sided t-test, p-value < 10−4, Supplementary Fig. 8a). The
SNP rs569774785 (in E21-1) may causally weaken the receptor
RORA’s binding strength in E21, repress EPAS1’s expression and
this was validated by the reporter assay in HELA with higher
activity in hypoxia (Fig. 3e and Supplementary Fig. 8d). We noted
that a SNP in RORA is the second strongest signal of association
with Hb concentration in the Amhara in Ethiopia and directly
regulates HIF1A25,26. Given EPAS1’s strongest selection signal
and association to hemoglobin concentration in Tibetan adapta-
tion, this EPAS1’s potential regulator RORA may imply the
convergent evolution of hemoglobin regulation in high altitude
adaptation.

In Supplementary Fig. 6b, EPAS1 is regulated by multiple
enhancers, whose activity is different along time and affected by
various SNPs (Fig. 3e) in the tightly linked haplotype. Although
the functions and effect sizes of these SNPs and enhancers might
be different, some even have an inverse pattern, the overall output
is a down-regulation of EPAS1 in Tibetan compared with Han
Chinese.

In addition to the 3 causal SNPs, we observed that many
positive selected SNPs are not in HUVEC’s active REs (Fig. 3a). A
possible explanation is that those SNPs may be functional in
other tissues (Fig. 3i). We overlap the set of 31 SNPs with the
largest allelic divergence (Fst > 0.5) between Tibetan and Han15

with predicted enhancers (H3K27ac peaks) in the 127 ROAD-
MAP cell types. The enrichment is assessed for the overlap with
enhancers in each cell type by comparing with two background
models: all 1000 Genomes variants with a frequency above 5% in
any population and all independent GWAS catalog SNPs. The
enrichment relative to these background frequencies is performed
using a binomial test and fold change. The analyzed key tissues
include the right atrium, placenta, and H1 BMP4 derived
trophoblast cultured cells, etc.

We demonstrate that the regulatory mechanism of three
positively selected SNPs is to reduce EPAS1’s expression level.
This allows us to hypothesize that the higher EPAS1’s expression
level, the more difficult is the task and more selected SNPs are

required. Indeed, we found that the number of high Fst SNPs in
context-specific H3K27ac region associated with EPAS1 is
positively correlated with EPAS1’s expression level across tissues
(with Pearson correlation coefficient (PCC) 0.505) (Fig. 3j). The
higher the expression in the tissue, the higher the fold enrichment
of the large Fst SNPs in their H3K27ac peaks. For example,
HUVEC utilizes many high Fst SNPs in its active REs to regulate
EPAS1’s high expression in contrast to ESC (Supplementary
Fig. 8e). The plot implies the key tissues for EPAS1’s function are
the right atrium, lung, HUVEC, and H1 BMP4 derived
trophoblast cultured cells. Given the fact that EPAS1 shows the
strongest selection, we predict these tissues contain the most
relevant cell types for high altitude adaptation. We further
hypothesize that this is a general mechanism and plot the nine
genes with PCC larger than 0.5 in Supplementary Fig. 8f,
including LDHA and NEK7, which are identified under selection
in Tibetan and highly expressed in hypoxia-related cell types
(“Methods”).

Reconstruction of regulatory network downstream of EPAS1.
EPAS1 is the major-effect gene in Tibetan’s high-altitude adap-
tation and is the master TF regulator for development and many
processes. We extract all the active REs with EPAS1’s motif
binding and link those REs with TGs, and pool all the EPAS1-RE-
TG triplets (Fig. 4a) as the EPAS1’s downstream regulatory net-
work. In total, 621 TGs are regulated by EPAS1 via 1962 active
REs (Supplementary Data 4). For example, EPAS1 binds to 13
REs to regulate transactivate vascular endothelial growth factor
(VEGF), which promotes the growth of new blood vessels in high
altitude adaptation. On average, each TG is regulated by 3.16 REs
and the number of active REs follows a power-law distribution
(Fig. 4b). Overall, EPAS1 tends to bind to REs within 300 kb to
regulate downstream genes (Supplementary Fig. 9a).

We validated the EPAS1 network by the significant overlap of
621 TGs with EPAS1 knockdown by siRNA experiment in both
HUVEC and C16627 (p-values are 1.22 × 10−4 and 7.8 × 10−11,
Fig. 4c, “Methods”). The EPAS1’s target genes are also enriched in
DEGs of lung and heart after heterozygous EPAS1 knock-out in
mouse15 (p-value 0.018 and 0.01, hypergeometric test, Supple-
mentary Fig. 9b, “Methods”). These 621 TGs tend to be positively
selected in Tibetan and Andean populations (p-value 0.025 and
0.087, hypergeometric test, Supplementary Fig. 9c) and are
differentially expressed in day 5 after hypoxia treatment
(Supplementary Fig. 9d).

Functional enrichment of the 621 TGs reveals that angiogen-
esis and hypoxia response are two important terms (Fig. 4d).
Then we present the core network for EPAS1’s regulation related

Fig. 3 EPAS1’s upstream active REs explains its down-regulation mechanism. a Regulatory map for EPAS1 shows Hi–C loops restricting the regulatory
boundary, epigenomic data (DNases-seq, H3K27ac, H3K4me1, and H3K4me3) annotating the 23 REs, and SNPs under positive selection with their Fst
score and LD structure (from Tibetan populations and 1000 Genomes). vPECA outputs active RE and regulations. b EPAS1’s down-regulation pattern at the
expression level. P-value was calculated by two-sided t-test (n= 25). Data are presented as mean values ± standard error (n= 3). c Chromatin accessibility
dynamics of EPAS1’s four active REs, E12, E20, E21, and E22. P-values were calculated by two-sided t-test (n= 25). Data are presented as mean values ±
standard error (n= 5). d EPAS1’s RE-EPAS1 regulations are validated by HiC’s chromatin interaction data between REs and promoter. e Dual-luciferase
enhancer reporter gene assay of five upstream EPAS1 variants in normoxic and hypoxic culture conditions of 37 °C in two cell lines HEK293 (left) and HELA
(right). All assays were performed in three independent experiments (each with three technical replicates, n= 9). The p-values were calculated by two-
sided t-test (*P < 0.05; **P < 0.01; ***P < 0.001). A indicates adaptive and W for wildtype. f The [−200 bp, +200 bp] region around rs3768729 shows
differential accessibility between Tibetan and Han samples. The p-values were calculated by one-sided t-test (n= 25 samples). g The SNP rs3768729
weakens TF complex HIF1A-ARNT (AhR,-Arnt,-HIF-1_transfac_M00976)’s binding strength in Tibetan. h Dual-luciferase enhancer reporter gene assay of
E22-1 (rs3768729). All assays were performed in three independent experiments (each with three technical replicates, n= 9) and the p-values were
calculated by two-sided t-test (**P < 0.01; *****P < 0.00001). i EPAS1’s 31 high Fst SNPs are enriched in the enhancers in other tissues defined by H3K27ac.
j The number of EPAS1’s high Fst SNPs in REs is positively correlated with EPAS1’s expression level across tissues. The fold change is defined as the number
of high Fst SNPs per kb in context active region. All boxplots in this figure are represented by minima, 25% quantile, median, 75% quantile, and maxima.
Source data are provided as a Source data file.
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to angiogenesis and hypoxia response (Fig. 4e), indicating that
EPAS1 regulates hypoxia response TFs, including FOXP1, SNAI2,
HIF1A, ATOH8, NFE2L2, TP53, as well as hypoxia-related genes
with signals of positive selection in Tibetans. The regulation of
NOTCH4 indicates the interplay between the cellular hypoxic
response and the Notch signaling pathway28. Interestingly,
EPAS1 regulates NRP2 by two distal REs (>600 Kb)

(Supplementary Fig. 9e), which is supported by the observed
RE-promoter interactions in the Hi–C data (Supplementary
Fig. 9f). NRP2 shows a blunted response to hypoxia at expression
level (Fig. 4f) and the regulatory map shows a combination of
active REs and active selected REs (Supplementary Fig. 9e).
Moreover, independent data shows that NRP2 is differentially
expressed after EPAS1’s knock-down in C166 (one-sided t-test,
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Fig. 4 EPAS1’s downstream regulatory network. a Extracting EPAS1’s subnetwork from the vPECA result. We extracted all the active REs with EPAS1’s
motif binding link those REs with predicted TGs, and pool all the EPAS1-RE-TG triplets. In total, 621 TGs are regulated by EPAS1 via 1962 active REs. b The
number of active REs for each TG follows a power-law distribution. c EPAS1’s 621 TGs are validated by the EPAS1’s RNAi knock-down experiment in HUVEC
(p= 1.22 × 10−4, 56 overlap) and C166 (p= 7.80 × 10−11, 101 overlap) with hypergeometric test. d Functional enrichment of TGs reveals that angiogenesis
and response to hypoxia are two important terms. P-values were calculated by hypergeometric test with Benjamini–Hochberg correction. e Core network
for EPAS1’s regulation related to angiogenesis and response to hypoxia. Rectangles refer to TFs and circles are TGs. Genes with a red border are those with
reported selection signals in Tibetan. Colors denote the −log10(p-value) of t-test of gene expression between A and W. f EPAS1’s target gene NRP2 shows
blunted response to hypoxia at expression level. Data are presented as mean values ± standard error (n= 5). g NRP2 is differentially expressed after EPAS1
is knocked down in HUVEC and C166. P-value was calculated by one-sided t-test (n= 3). Boxplots are represented by minima, 25% quantile, median, 75%
quantile, and maxima with data points. Source data are provided as a source data file.
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0.0237) (Fig. 4g). Literature search supports that NRP2 interacts
with VEGF with convergent evolution in other highlanders.
NRP2-/- knockout mice display abnormal guidance and fascicu-
lation of some cranial nerves and fewer small lymphatic vessels
and capillaries29.

EPAS1-oriented network and its associations to the adaptive
physiological traits in Tibetans. To explore EPAS1’s regulation
over the network, we extend the above network to an EPAS1-
oriented subnetwork and associate it with phenotype data
(“Methods” and Fig. 5). Our network provides the genetic basis
and associations for diverse physiological traits and demonstrates
the far-reaching role of EPAS1 as a major effect gene for adap-
tation. However, the network also implies the potential side effect
for selecting a master regulator EPAS1, such as embryonic leth-
ality, postnatal growth retardation, ventricular septal defect, and
premature death (Fig. 5).

We also associate the network with the positively selected genes
for high altitude adaptation in other species. EPAS1 was reported
undergone positive selection in 13 species. STAT6, HIF1A, and
FOXP1 are positively selected in more than 2 species. We
integrate the number of species showing positive selection into
the 80-genes subnetwork (Supplementary Fig. 11). In total, there

are 80/178 genes (44%) showing evidence for positive selection in
at least one organism other than human (Supplementary Data 5).

In addition to the EPAS1-oriented network, we also construct a
hypoxia-oriented network by removing the EPAS1 neighbor
downstream constraint and choose the TFs with dynamic
expression and motif enrichment in active REs (Supplementary
Fig. 10b). It has 208 genes and 440 interactions and is enriched
with respiratory system development, circadian clock, vasculature
development, cell cycle (p-value < 10−5) and other terms
(Supplementary Fig. 10c). This demonstrates EPAS1’s regulation
propagation to multiple organs and processes via hypoxia
response. GPER1 is far from the EPAS1 in the network with
relatively weak selection (Fst > 0.15). It is differentially expressed
between Tibetan and Han (two-sided t-test, p-value 0.01), and
known to stabilize HIF-1a and promotes HIF-1a–induced VEGF
and MMP9 in ESCs, which play critical roles in endometrio-
sis30,31 (Supplementary Fig. 10d).

Genome-wide hypoxia and adaptation network provides a
useful resource to interpret genetic variants. We illustrate the
use of the inferred active REs and regulatory network by vPECA
to interpret the genetic variants with two examples.

Example 1: the vPECA network can annotate pulmonary
hypertension (PAH) GWAS SNPs. PAH is a complex trait

Fig. 5 EPAS1-oriented regulatory network associates various phenotypes. The EPAS1-oriented network is extracted from vPECA by selecting genes
satisfying the conditions: the 1st and 2nd neighbor downstream of EPAS1, differentially expressed genes and enhancers between 0–6 h and 1–3 day (FDR <
0.05) and differentially expressed genes and enhancers between A and W (p-value < 0.05). Rectangles refer to TFs and circles are TGs. Genes with a red
border are those with reported selection signals in Tibetan. Colors denote the −log10(p-value) of t-test of gene expression between A and W. Source data
are provided as a source data file.
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without major-effect genes since no SNP achieved the statistical
threshold for genome-wide significance (P < 5 × 10−8)32. We
annotated the 319 risk SNPs with the most significant association
p-values ranging from 1.82 × 10−6 to 6.87 × 10−4 after further
association testing in an independent replication sample of 285
cases and 457 controls32. By overlapping the active REs in our
network, we link the risk SNPs in REs to seven genes. In
particular, SOX17 is identified as a candidate gene for PAH. The
risk SNP rs1995535 is located in the RE chr8:55246176-55252419,
which is about 118 kb upstream to TSS of SOX17. vPECA links
this risk SNP to SOX17 rather than the nearest gene LOC729038.
Another PAH associated locus rs10103692 (8:55258127: G/A),
located 5 kb near our identified RE, is in an enhancer region that
specifically regulates the expression of SOX17 in endothelial
cells33. Our analysis of GWAS data thus strongly implicates
SOX17 as a PAH associated gene. This is consistent with recent
findings34–36 that PAH patients are significantly enriched in rare
deleterious variants. Also, vPECA predicts ERG as an upstream
regulator of SOX17 binding to the RE chr8:55246176-55252419
according to motif occurrence (Fig. 5), which is consistent with
the fact that ERG binds to the super-enhancers of HUVEC and
activates target genes including SOX1717.

Example 2: The vPECA network can annotate Tibetans’
structural variants (SVs). We identified 17,902 Tibetan-specific
SVs from the long-read genome sequencing data (“Methods”). In
addition to the SVs located in genes or introns, 638 SVs are found
to overlap with the inferred active REs acting on distal target
genes. Two SVs, a 200 bp duplication in chr9:139422831-
139423031 and a 1200 bp duplication in chr9:139429296-
139430493 are in the upstream RE of NOTCH1
(chr9:139420177-139429697, 67,694 bp). They may increase this
RE’s accessibility, and affect NOTCH1’s expression, and may
promote high altitude adaptation similar to the SNP rs3124608
located in this RE (Fst: 0.12)28.

Discussion
We provide an initial characterization of the chromatin accessi-
bility and transcriptional landscape during hypoxia and adapta-
tion. We develop a statistical methodology vPECA to fully utilize
this dataset by integrating with public genomic data. Our inte-
grative experimental and bioinformatics efforts provide a wealth
of data resource, and data analysis method, and also a resource
platform for interpreting genetic variants and biological insights.
Our major contributions, which include a systematic approach
for interpreting variants in the non-coding region, finding
selected RE, model-based omics data integrating will have a broad
interest in other fields. For population genetics study, we provide
a genome-wide statistical method to detect causal regulatory
element (selected REs) by paired expression and chromatin
accessibility data for high altitude adaptation in Tibetans. Our
multi-omics data integration on matched genome-transcriptome-
DNA accessibility data is useful in precision medicine and per-
sonal omics37. For variant interpretation, our statistical approach
is successful to annotate variants based on dynamical and con-
ditional specific omics data. We propose that our vPECA model
can be a general framework for GWAS variants interpretation
(“Methods”).

vPECA models the active selected REs, which significantly
expands the traditional selected region concept (for example the
25 regions by DNA sequencing11), narrows down the regions to
kb resolution, and reveals causal SNPs by RE’s accessibility and
the downstream target genes and upstream regulators. These REs
can identify many candidate genes under selection, its regulation,
and pathways. These genes are weakly selected in traditional
population genetics studies but have a strong effect on

accessibility and expression in trait relevant cell types. We find
many interesting genes in addition to EPAS1, especially those
genes far from the selected REs. This also leads to the corre-
sponding Tibetan vs Han difference regulatory subnetwork
(Supplementary Data 2).

The integrative analysis of genetic variant, ATAC-seq, and
RNA-seq by vPECA suggests a regulatory adaptation mechanism
through selective fine-tuning among a set of active enhancers.
The active REs are classified as either adapted or canonical
depending on whether they show evidence of being selected. In
the case of EPAS1, the canonical enhancer E12 is the major driver
(accounting for 34% of the variance, Supplementary Fig. 6d) of
the canonical hypoxia response in both Hans and Tibetans. In
contrast, the adapted REs E21 and E22 exhibit selected changes in
the Tibetan population. These changes fine-tune their accessi-
bility dynamics to effect a blunted hypoxia response of EPAS1
expression (Supplementary Fig. 12a). We observed similar reg-
ulatory patterns in many other genes, i.e., GCH1, NRP2, NQO1,
NOTCH1, NOS3, HYOU1, BNIP3, and BCL6, etc. (Supplementary
Fig. 12b), which may imply a general regulatory mechanism for
the blunted response. For example, GCH1 and NOS3 are involved
in the blunted nitric oxide regulation in Tibetans under high-
altitude hypoxia38,39. In the 1146 selected genes, 38 genes show
significant expression differences between Tibetan and Han (p-
value < 0.05). We check their regulatory map and most show the
REs’ combinatorial regulation. It will be interesting to further
explore the canonical enhancers and adapted enhancers by public
genomic data and features and its evolutionary evidence in other
species.

vPECA reveals the feedback regulation of EPAS1 and HIF1A,
the most structurally similar and best-characterized genes in
hypoxia. In mammals, the primary transcriptional response to
hypoxic stress is mediated by these two hypoxia-inducible factors
(HIFs)40. We observe HIF1a responses to hypoxia quite early at 6
h while EPAS1 responses after 1d. HIF1A regulates EPAS1 via
active selected RE (E22 in Fig. 3e). In return, EPAS1 negatively
regulates HIF1A’s expression by four REs (Supplementary
Fig. 13). This hypoxia stage-specific regulatory mechanism by two
family members is consistent with prior studies indicating that
HIF1A and EPAS1 can promote the expression of distinct genes
in endothelial cells40.

Our current study takes advantage of EPAS1/EGLN1 genotype
biased design to reduce sample size and predicted enhancer target
associations. The question remains for the extension from a single
tissue to multiple tissues and to associate with the evolutionary
time scale, i.e., how the variants related to complex traits are
functional in different tissues? How evolution selects SNPs, ele-
ments, and genes in the hypoxia network to achieve high-altitude
hypoxia adaptation accordingly along the evolution time in dif-
ferent species?

In the future, we will improve vPECA from several aspects.
Hi–C without promoter capture identifies TAD boundaries but
does not have the resolution to identify actual
enhancer–promoter (E–P) interactions. For example, the Hi–C
loop near EPAS1 in Fig. 3a cannot identify E–P physical inter-
actions. Nevertheless, Hi–C data are still useful to provide phy-
sical evidence for long-range interactions in Sox17, SNAI2, and
IL6 (Supplementary Fig. 15). The vPECA framework is ready to
incorporate data from Trac-looping, HiCHiP, and CHIA-PET
technologies, which will provide E-P interactions with higher
resolution. We will further extend the vPECA model by con-
sidering self-regulation41, solely using the available public data,
providing a user-friendly interface, and integrating with other
analyses in the eGPS framework42. We will continue our effort to
provide biological interpretation for the signals of selection
observed in the Tibetan population. For example, TMEM247 is
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another important gene near EPAS1 with a strong signal of
selection in Tibetans. TMEM247-rs116983452 has recently been
identified to be significantly correlated with reduced hemoglobin
concentration, red blood cell count, and hematocrit in Tibetans43.
Because it is mainly expressed in testis, but not in HUVEC
(Supplementary Fig. 16), we need to collect relevant tissues and
generate multi-omics data to further explore its functional role.
Finally, we will further improve our functional validation plat-
form for the predicted causal SNPs, regulatory elements, and
genes. For example, we plan to establish an immortal HUVEC cell
line derived from Tibetans, which can be used in editing assays.

Methods
Modeling gene regulation with RE activity and selection. The basic idea of the
vPECA method is to model the distribution of expression of target genes (TG) and
chromatin accessibility of regulatory elements (RE) conditional on expression of
transcription factors (TF), chromatin accessibility of REs (O), selection status of
SNPs on REs (X, Y), and linkage disequilibrium (LD) scores of those SNPs. vPECA
uses four formulations to model, (1) expression of target genes, (2) activity status of
the REs, (3) selection status of the REs, and (4) chromatin accessibility of REs
(Fig. 2a and Table 1).

TG expression. We model a TG expression as a linear regression model shown in
the following formulation.

TGi;j;l ¼ βl;0 þ
X
k2Il

βl;kZi;j;k

X
m2MBk

γmBi;k;m � TFi;j;m
 !

þ εl ; εl � N 0; σ2l
� �

ð1Þ

where TGi,j,l is the expression level of the lth TG of individual i on time j. The error
εl is a Gaussian random variable with expectation zero and variance σ2l . We assume
that the lth TG expression level is determined by the activation status of its reg-
ulating REs denoting as Il and the TF complex binding to these REs. The strength
of TF complex binding to kth RE of individual i on time j is denoted asP

m2MBk
γmBi;k;m � TFi;j;m , where Bi,k,m is the sum of all matching strength of mth

TF binding to kth RE of individual i. To simplify the complexity of motif binding
sites when considering individual specific sequence, we only use motifs scanned
from the reference genome. The expression of mth TF of individual i on time j is
denoted as TFi,j,m. Moreover, MBk represents the motif binding sites on the kth RE.
β, γ, σ2 are the parameters to be estimated.

RE activity. We assume that RE activity is determined by both genomic and
epigenomic features, i.e., RE activity is modeled by linear regression of selection
signals and open chromatin dynamics represented by ATAC-seq signals, which is
revealed by the following formulation.

Zi;j;k ¼ Oi;j;k þ αkδiSk þ εzk; εzk � N 0; σ2zk
� �

; ð2Þ
where hidden variable Zi,j,k denotes the activation status of the kth RE of the ith
individual on time j. We assume that each RE’s activity status Z follows a normal
distribution, where the mean is modeled by the combination of Oi,j,k and Sk. Here,
Oi,j,k is the openness score of the kth RE of individual i on time point j, while Sk
denotes the selection signals of the kth RE defined by formulation (4). The variance
is denoted by σ2zk . δi is an indicator function to represent population information.

δi ¼
1; if individual i is Tibetan

0; otherwise

�
: ð3Þ

αk k ¼ 1; ¼ ;Kð Þ are parameters to be estimated, while K is the total number
of REs.

Selection signals of RE. When modeling the difference of gene regulation between
Tibetans and populations living at low altitude, REs under positive selection are
under great consideration. We defined variable Sk k ¼ 1; ¼ ;Kð Þ as the selection
status of the kth RE. Sk is measured by several widely used test scores for selection
signals denoted as Xp;qðp 2 Jk; q ¼ 1; ¼ ;QÞ, which represents the qth selection
test score of the pth SNP on the kth RE, where Jk denotes the set containing all
selection SNPs on the kth RE, while |Jk| is the total number of SNPs containing in
Jk. Q equals to the total number of selection test scores (Here, Q= 4). In our case,
Xp,q (q ¼ 1; ¼ ; 4) refer to the −log10 p-value of Fst, iHS, XP-EHH, and PBS
respectively. Ypðp 2 JkÞ represents the ΔDAF score of the pth SNP on the kth RE
(“Methods”—“Calculating selection scores for SNPs” section). The selection status
of RE is modeled by a logistic regression corresponding to the weighted summation
of selection test scores X and Y.

log
P Sk ¼ 1jX;Yð Þ

1� P Sk ¼ 1jX;Yð Þ ¼ μ0 þ
XQ
q¼1

μq
X
p2Jk

1
Jkj jwpXp;q þ μQþ1

X
p2Jk

1
Jkj jwpYp; ð4Þ

where wp indicates the weight of the pth SNP, which is related to LD score, defined
by formulation (5). μ is the parameters to be estimated.

One challenge in population genetics is to consider the LD among SNPs. Here
we introduce the weight of each SNP by utilizing the LD related network. We
represent SNPs as a network format (Supplementary Fig. 8e), where a node denotes
a SNP and edge denotes LD score after thresholding. If two SNPs have a correlation
larger than a given threshold, then there exists an edge between them. The degree
of a fixed node in the network represents the number of SNPs linkage to the fixed
SNP. Mathematically, let rp be the LD score of SNP p, the weight of pth SNP wp is
defined as the reciprocal of LD score of SNP p, i.e.,

wp ¼ 1=rp: ð5Þ
Here, wp is used to down-weight the influence of SNPs with large LD, which

reduces the redundancy of correlated SNPs. LD score based on the population of
East Asian from 1000 Genomes project is collected from the URL (https://data.
broadinstitute.org/alkesgroup/LDSCORE/).

Chromatin accessibility of RE. We model chromatin accessibility of a RE with a
linear formulation, i.e.,

Oi;j;k ¼ ηjk þ ωjkδiSk þ εok; εok � N 0; σ2ok
� �

; ð6Þ
where Oi;j;k is the openness score of the kth RE of individual i on time point j, while
Sk denotes the selection signals of the kth RE defined by formulation (4), and δi is a
population indicator defined by formulation (3). We assume openness score of the
kth RE at time j follows a normal distribution with mean ηjk þ ωjkδiSk , and var-

iance σ2ok . ηjk is the average openness level of the kth RE at time j in both popu-
lations, while ωjk is a parameter to balance ηjk and Sk. Both η and ω are parameters
to be estimated. The assumption is that the openness score of a RE can be partially
determined by the DNA sequence, i.e., selection status Sk. With ωjk≠0, we extract
those REs under selection and the chromatin accessibility in time j are different
between populations.

Likelihood function. The likelihood function of our statistical model is as follows.

P TG;OjTF;O;X;Yð Þ ¼
X
Z;S

P TG;O;Z; SjTF;O;X;Yð Þ

¼
X
Z;S

P TGjTF;Zð ÞP ZjS;Oð ÞPðOjSÞP SjX;Yð Þ;

where TG and TF indicate the observed expression data of target gene and TF, and
O represents observed chromatin accessibility data of regulatory elements. X and Y
are the selection test scores of each SNP derived from DNA sequence data. In this
model, we aim to maximize the likelihood function to estimate parameters μ, α, β,
γ, ω, σ2, as well as hidden variables Z and S.

max
μ;α;β;γ;η;ω;σ2

P TG;OjTF;O;X;Y; μ; α; β; γ; η;ω; σ2� �
: ð7Þ

This is equal to

max
μ;α;β;γ;η;ω;σ2

X
Z;S

P TGjTF;Z; β; γ; σ2l
� �

P ZjS;O; α; σ2zk
� �

PðOjS; η;ω; σ2okÞP SjX;Y; μð Þ

where P TGjTF;Z; β; γ; σ2l
� �

, P ZjS;O; α; σ2zk
� �

, P SjX;Y; μð Þ and PðOjS; η;ω; σ2okÞ
are computed according to Eqs. (1), (2), (4) and (6).

Estimate P(S|X, Y; μ) by iteratively updating μ and S. Note that the selection
status of each RE is mainly determined by population genetics information, i.e., it is
independent of chromatin accessibility and gene expression, the selection status Z
(Eq. (4)) is estimated independently from other equations. For estimation problem
of P(S|X, Y; μ) denoted by Eq. (4), we implemented the following steps.

(1) Let p0k ¼ 1� 1
Jkj j
P

p2Jk cp , where cp denotes the p-value of CMS score of the

pth SNP. Initiate PðSk ¼ 1Þ ¼ p0k and
(2) Estimate μ given P Sk ¼ 1jX;Yð Þ k ¼ 1; ¼ ;Kð Þ by least-squares:

min
μ

X
k

log
P Sk ¼ 1jX;Yð Þ

1� P Sk ¼ 1jX;Yð Þ � μ0 �
XQ
q¼1

μq
X
p2Jk

1
Jkj jwpXp;q � μQþ1

X
p2Jk

1
Jkj jwpYp

�����
�����
2

2

:

(3) Estimate P(Sk= 1|X, Y) given μ:

P Sk ¼ 1jX;Yð Þ ¼ f μ0 þ
XQ
q¼1

μq
X
p2Jk

1
Jkj jwpXp;q þ μQþ1

X
p2Jk

1
Jkj jwpYp

 !
;

where f denotes the sigmoid function, i.e., f xð Þ ¼ 1= 1þ e�xð Þ.
(4) If not convergent, go to step (3). Convergence means μ does not change

between adjacent steps.

After the above iteration, we obtained the selection status P(Sk= 1|X, Y) for all
REs. We choose a threshold of 0.95. If P(Sk= 1|X, Y) > 0.95, P(Sk= 1|X, Y)= 1.
Otherwise P(Sk =1|X, Y)= 0. This procedure enforces sparsity to the REs under
selection.
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Estimate PðOjS;η;ω;σ2okÞ. Equation (6) is a linear regression model. given O and S,
parameters η, ω, and σ2ok can be easily estimated by the least square. Then we used
t-distribution to test whether ω is non-zero, with p-value < 0.05.

Estimate PðTGjTF;Z; β;γ;σ2l Þ and P ZjS;O;α;σ2zk
� �

. Combining Eqs. (4) and (6),
we obtained Eq. (8).

TGi;j;l ¼ βl;0 þ
X
k2Il

βl;kðOi;j;k þ αkδiSkÞ
X

m2MBk

γmBi;k;m � TFi;j;m
 !

þ εl : ð8Þ

Then we updated α, β, and γ iteratively by fixing two parameters and calculating
the other one. Specifically, for each TG, we solved the following optimization
problem.

min
α;β;γ

X
i;j

TGi;j;l � βl;0 �
X
k2Il

βl;k Oi;j;k þ αkδiSk
� � X

m2MBk

γmBi;k;m � TFi;j;m
 !������

������
2

2

:

ð9Þ
Note that usually, the numbers of REs and TFs are much larger compared with

the number of samples, we implemented variable selection method LASSO when
estimating β and γ. Moreover, in order to make good use of regulatory
relationships in public data, we calculate prior information β0 (correlation between
RE and TG) and γ0 (correlation between TG and TF) for β and γ. Based on public
data of paired chromatin accessibility (DNase-seq and ATAC-seq) and gene
expression data across ~200 cellular contexts, we calculate the cross-tissue
correlation between gene expression and openness score of RE of all candidate RE-
TG pairs and obtained β0, and also co-expression between all TGs and TFs, which
forms γ0.

For each TG, we implement the following algorithm:

(1) Initiate γ= γ0 and α= 0, solving Lasso:

min
β

X
i;j

TGi;j;l � βl;0 �
X
k2Il

βl;kOi;j;k

X
m2MBk

γ0mBi;k;m � TFi;j;m
 !������

������
2

2

þ λ βk k1;

where γ0m indicates the prior of the mth TF with the lth TG. We used 5-fold
cross-validation to choose λ. Then REs with β ≠ 0 are chosen to the
next step.

(2) Fix β calculated from step (1) and α= 0, solving the following LASSO
problem:

min
γ

X
i;j

TGi;j;l � βl;0 �
X
k2Il

βl;kOi;j;k

X
m2MBk

γmBi;k;m � TFi;j;m
 !������

������
2

2

þ λ γk k1:

Similarly, we use 5-fold cross-validation to choose λ. Then TFs with γ ≠ 0 are
chosen to the next step.

(3) For TFs and REs chosen from step (1) and (2), we calculate the following
non-linear optimization model.

min
α;β;γ

X
i;j

1
2

�����TGi;j;l � βl;0 �
X
k2Il

βl;k Oi;j;k þ αkδiSk
� �

X
m2MBk

γmBi;k;m � TFi;j;m
 !�����

2

2

� βT0 β� γT0 γþ
1
2

βk k22þ
1
2

γk k22:

We used the “fminunc” function in MATLAB to solve the above problem,
where the quasi-newton method is implemented in the nonlinear programming
solver. Thus, α, β, and γ are obtained.

Output of vPECA. vPECA identifies 32,330 active REs (ARE) (β ≠ 0) for 9952
genes including 1,647 active selected REs (ASRE) (Pr(S= 1) > 0.95, α ≠ 0 and β ≠ 0)
for 1146 genes (Supplementary Data 2) and the associated regulatory network
including 52,647 interactions among REs and target genes. In addition, we use ω ≠
0 to select those selected REs with differential accessibility in local time points.
vPECA also identifies TFs potentially binding to REs with γ ≠ 0. Thus we obtain
428,871 TF-RE-TG triplets in total. If we omit the REs, 109,090 TF-TG relations
are identified.

Genome annotation in HUVEC. We note that a good genome annotation is
available that contains the coordinates of all transcriptional units (genes) and most
REs in the genome44. A RE is defined as a short region in the chromosome,
typically a few hundred bp in size, on which sequence-specific TFs and other
related proteins may assemble to exert control on the transcription of nearby genes.
ENCODE has mapped more than 68,636 REs by H3K27ac and H3K4me1 ChIP-
seq in the HUVEC cells. In addition, high-resolution 3D chromatin interactions
from Hi–C data in HUVEC45 impose physical boundaries for promoter-enhancer
interactions. Population genetics studies have identified thousands of positively

selected variants underlying high-altitude adaptation with various quantitative
scores and their LD associations (Fig. 2a).

Motif scan and identification of enriched dynamic TFs. In the bubble plot of
Fig. 1d, we select a set of TFs based on their expression level (FPKM) and motif
enrichment scores. We use Homer46 to scan motifs on peak regions of each ATAC-
seq sample. The motif enrichment (ME) score is defined as

ME Score ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�log10P ´ FoldChange
p

:

At each time point, we have 10 samples (5 Hans and 5 Tibetans). The color of
each dot represents the average gene expression value and the circle size indicates
the average ME score along with all samples at each time point. As Fig. 1d shows,
the gene expression FPKM values are divided into 5 levels, i.e. Level I: < 6, Level II:
6–12, Level III: 12–30, Level IV: 30–120, and Level V: > 120, which are represented
by 5 colors. Similarly, the ME scores are divided into 7 levels showing by the circle
size. Then we filter out motifs by two requirements, i.e. (1) Maximal FPKM ≥ 12,
and (2) Maximal ME Score ≥ 2, which gives 43 TFs (long list in Supplementary
Fig. 3a). Moreover, we require that the TFs should be dynamic, i.e. the expression
FPKM and ME scores are not at the same level along 5 time points, thus obtaining
14 TFs in the short list (Fig. 1d).

Calculating selection scores for SNPs. For each SNP, the selection signals are
represented by several commonly used test scores based on public sequenced
population genome data. Since the population data with a large number of samples
could provide rich information on human genetics. In this study, we obtained
4,627,029 variants in total after variant calling from the whole-genome sequencing
data of 38 Tibetan highlanders and 39 Han Chinese lowlanders8. Then for each
SNP, we compute the fixation index (Fst)47, iHS48, XP-EHH49, and PBS14 scores.
Each score is represented by its –log10 p-value. To composite multiple signals, we
use Fisher’s method to combine all the 4 scores together and calculated an overall
p-value by chi-squared distribution, then FDR < 0.05 is implemented and 111,182
SNPs are identified as under selection. This method is a simplified version of the
widely used CMS score50.

Additionally, we incorporate delta derived allele frequency (ΔDAF) of the 10
WGS data to capture the difference between 5 Tibetans and 5 Han individuals and
to reveal the specific DNA sequence information of our hypoxia induction
experiment. ΔDAF is defined as the derived allele frequency of 5 Tibetans minus
the derived allele frequency of 5 Hans.

Enrichment of SNPs under selection in functional regions. The first critical step
for our vPECA model is to quantify the aggregation effect of variants in non-coding
regions. The aim is to choose the right cell type and condition for GWAS variants
interpretation and then generate multi-omics data in this condition. This step is
extremely important when regulatory elements are functional in dynamic contexts.
We calculate fold enrichment (FE score of selection SNPs in functional genomic
regions. For each SNP set under a certain cutoff (for example, 111,182 SNPs are
under selection with FDR p < 0.05), we calculate their fold enrichment score
defined by the following formulation.

FE score ¼ #ðSNPs above the threshold in peaksÞ=#ðAllSNPs in peaksÞ
#ðtotal SNP above the thresholdÞ=#ðtotal SNPsÞ ;

Where total SNP number equals to 4,627,029. Then FE scores are calculated
across 40 DNase-seq tissues from ROADMAP (Supplementary Fig. 4c) and 50
ATAC-seq samples in our hypoxia induction experiment. For all 50 samples, we
calculate the average FE score along 5 samples under each condition (within one
population in one-time point) (Supplementary Fig. 4b), where each line represents
the FE score of one population in one particular time point under changes of
selection cutoff. Then if the FE scores are averaged by time points (each time
contains 10 samples, ignoring population difference), we obtain the fold
enrichment changes under normoxia (0 h) and hypoxia (6 h) (Fig. 1f).

Approach for fold enrichment of SNPs in functional regions. For 111,182 SNPs
under selection (FDR < 0.05), we calculated their fold enrichment scores in
annotated regulatory regions such as enhancers and promoters in ENCODE. For
each functional region set, we calculated the fold ratio by the formulation:

Fold ratio ¼ #ðSelection SNPs in regionsÞ=region length
#ðtotal SNPÞ=whole genome length

;

where the whole-genome length is 3 billion base pairs and the number of total
SNPs is 4,627,029 (Supplementary Fig. 4a). P-value is calculated using binomial
distribution with distribution function b(x,n,p), where n= 111,182, p= Region
length/whole-genome length, and x= #(Selection SNPs in regions).

With the same method, we also calculated the enrichment score of 31 high Fst
SNPs around EPAS1 in active enhancer regions, i.e., H3K27ac peaks, of multiple
tissues in ROADMAP (Fig. 3i, j and Supplementary Fig. 8f).

Nine genes with Pearson correlation coefficient (PCC) larger than 0.5 are listed
in Supplementary Fig. 8f, which providing candidate selection genes that may have
functions in a variety of cellular contexts other than HUVEC. Among the genes,
LDHA expression is mediated by HIF1/2 A in human pancreatic cancer51. And
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LDH family is under selection in adaptation to hypoxia in yaks52. This gene is
highly expressed in A549 lung, K562 leukemia cells, and other epithelial cells.
NEK7 was identified under selection in Tibetan according to another publication9.
And it’s highly expressed in the aorta, fibroblast cells, and right atrium.

Criteria for choosing the donors. Written informed consent was obtained from
each subject. We report sample collection and primary culture of human umbilical
vein endothelial cells (HUVECs) as follows15. Umbilical cords were obtained from
131 normal, full-term pregnancies at the People’s Hospital of Lhasa, Tibetan
Autonomous Region of China. Written informed consent was obtained from each
subject. We implemented stringent criteria, deep surveys, as well as genetic analyses
in the sampling procedure to make sure that the ancestry of the donors are
Tibetans.

Firstly, the ancestry of the donors was determined by the self-report and verified
by the genetic analyses using genotyping and whole-genome sequencing data. Only
those Tibetans, whose lineal relatives are also Tibetan ethnicity within three
generations, were included in this study. The same strategy was also implemented
for Han donors.

For genetic verification, we chose the adaptive (Tibetan) and wildtype (Han
Chinese) populations according to the EPAS1/EGLN1 genotypes using Tibetan-
specific common SNPs (Supplementary Data 11). Given the DAF (derived allele
frequency) of these SNPs in the Han population is extremely low (near 0), we can
determine ancestry with high confidence using their genotypes. Additionally, we
used known ancestry populations conducted principal component analysis, which
also supports the ancestry identification from genotypes.

For pregnancy situation, we confirmed that the Tibetan donors were all born
and raised at high altitude (Lhasa, elevation: 3680 m), and their entire pregnancy
procedure took place at high altitude and no low altitude visit during the period.
Biologically related individuals were excluded from this study.

Choosing relevant cell type to hypoxic response. We chose HUVEC to study
hypoxia response by the following reasons.

(1) HUVEC can be easily accessed compared with other tissues, such as lung
and heart in human. Hypoxia adaptation is a complex physical trait that
involves multiple tissues in the respiratory and circulatory systems. These
tissues are important when interpreting selection signals but difficult to
access. Moreover, although gene regulatory networks are different between
tissues, hypoxic inducible pathways are conserved to some extent. The HIF
family genes, such as HIF1A and EPAS1, have similar expression patterns
responsive to hypoxia.

(2) HUVEC is a classic model to study oxidative stress and hypoxia, due to its
oxygen-sensitive and easy to obtain. We found many references using it to
study cellular responses to hypoxia53–56. Nakato et al. recently cataloged
gene expression and active histone marks in nine types of human ECs
(generating 148 genome-wide datasets) and carried out a comprehensive
analysis with chromatin interaction data. They pointed out that endothelial
cells (ECs), which make up the innermost blood vessel lining of the body,
express diverse phenotypes that affect their morphology, physiological
function and gene expression patterns in response to the extracellular
environment, including the oxygen concentration, blood pressure and
physiological stress57.

(3) HUVEC is listed as the Tier 2 ENCODE Project common cell types [https://
www.genome.gov/encode-project-common-cell-types]. Cell types were
selected largely for practical reasons, including their wide availability, the
ability to grow them easily, and their capacity to produce sufficient numbers
of cells for use in all technologies being used by ENCODE investigators.
Importantly, HUVEC has a normal karyotype and are readily expandable to
108–109 cells. ENCODE and NCBI GEO database collected rich public data
for HUVEC, i.e., RNA-seq, DNase-seq, and ChIP-seq experiments, which
provides much independent validation samples.

(4) EPAS1 (endothelial PAS domain protein 1) is a key transcription factor
involved in hypoxic induction and Tibetan adaptation to high-altitude.
Compared with HIF1A, EPAS1 expression is more tissue restricted58 and
highly expressed in endothelial cells, such as HUVEC, which makes it an
appropriate cell type in this study.

Generating multi-omics data and data quality control. We design experiments
to collect multi-omics data, in particular high-quality ATAC-seq data for chro-
matin accessibility landscape, to interpret the positively selected variants under-
lying high-altitude adaptation. To improve our ability in identifying the causal
target genes with reasonable sample size, we measure functional genomics data
from 10 individuals with different genetic backgrounds (5 Tibetans, 5 Han Chinese
with desired EPAS1/EGLN1 genotypes, “Methods”) during time-course hypoxia
with matched genome sequence, transcriptome, and chromatin accessibility data.
To meet the inherent cell type specificity challenges, HUVEC is chosen as the
convenient and oxygen-sensitive human endothelial cells from the large vein of the
umbilical cord, which has rich public data available in ENCODE. Figure 1a shows
our procedures for adaptive and wildtype population choosing, individual filtering

by EPAS1/EGLN1 genotypes, HUVEC cell selection, time series hypoxia induction,
and multi-level omics data profiling (details in “Methods”).

We collected high-quality RNA-seq and ATAC-seq data for 50 samples
(HUVEC from 10 donors, each with 5 time points) to assess gene expression and
chromatin accessibility as a hallmark of active DNA regulatory elements
(Supplementary Data 1). For ATAC-seq data, each sample has more than 100M
uniquely mapped reads (Supplementary Fig. 1a), two-fold enrichment in
transcription start site (TSS) (Supplementary Fig. 1b), and clear fragment length
distribution to show nucleosome structure (Supplementary Fig. 1c). All the
50 samples showed significant consistency with HUVEC than other cell types in
the ENCODE data (Supplementary Fig. 1d). Moreover, we collected whole-genome
sequencing data of the 10 cell lines and obtained Hi–C data of HUVECs of 2
Tibetans and 2 Han Chinese from both 0 h and 3 day (8 samples in total) for
mapping 3D chromatin interactions. Data processing and quality checking details
are described in “Methods”. Our rich data provide a foundation to assess the
regulatory landscape of high-altitude adaptation.

Controlling the cell culture effect in the data. To evaluate the effects of cell
culture in normoxia, we performed additional experiments that cells are cultured in
normoxia for the same lengths of time (“Methods”). We generated RNA-seq data
and analyze them together with the hypoxia data. We found that the variance of
samples being cultured in hypoxia (75%) is much larger than in normoxia (11%) by
~7 fold (Supplementary Fig. 2a). And the number of DEGs in hypoxia response is
significantly larger than in normoxia by more than 30 folds (1000 vs 30 in Sup-
plementary Fig. 2b). DEGs between 0 h and 5 day in normoxia are not related to
response to hypoxia (Supplementary Fig. 2c). Thus, we confirm that response to
being in culture for different periods of time are not significant compared to the
responses to hypoxia.

Quantifying positively selected variants. Variants are called from whole-genome
sequencing data by distinguishing 38 Tibetan highlanders and 39 Han Chinese
lowlanders8. We quantify the selection by combining Fst, iHS, XP-EHH, and PBS
scores (“Methods”) and identified 111,182 variants (among the 4,627,029 tested
variants) under selection (FDR < 0.05). They are enriched in the annotated reg-
ulatory regions such as enhancers and promoters in ENCODE (Supplementary
Fig. 4a). Furthermore, those variants are enriched in the open regions of our 50
HUVEC samples with varying thresholds.

Endothelial cell hypoxic assay. The HUVECs were isolated from the veins of
human umbilical cord by the well-established method59. Briefly, cords were
separated from placentas within 2 h after delivery. The umbilical vein was can-
nulated and washed through with sterile phosphate buffered saline (PBS), sup-
plemented with 100 units/ml penicillin, 0.1 mg/ml streptomycin, and 5.6 mg/ml
amphotericin B in order to remove any blood clots. It was then infused with 1 mg/
ml (125 U/ml) of type I collagenase (Gibco) in Ca2 and Mg2 free PBS and incu-
bated at 37 °C for 15 min. After incubation, the HUVECs were flushed from the
vein vessel together with the collagenase solution. The obtained HUVECs were
cultured on flasks coated with 0.1% gelatin. The cells were grown in complete
medium (Medium199 supplemented with 10% FBS, 20 mmol/l HEPES (pH 7.4), 1
ng/ml recombinant human fibroblast growth factor (bFGF), 1 ng/ml endothelial
growth factors (EGF), and 100 units/ml penicillin, 0.1 mg/ml streptomycin)
(Gibco) at 37 C in 5% CO2, and the medium was changed every 2–3 days. About 7
to 10 days, the primary culture cells were confluent in the flask. For subculture,
cells were detached and harvested with a 0.05% trypsin-EDTA solution, then
neutralized with FBS (Gibco). When the cells were cultured to passage-3, they were
cryopreserved with cell freezing medium (NCS+ 10% DMSO) in liquid nitrogen.
The protocol of this study was approved by the Institutional Review Board of the
Kunming Institute of Zoology, Chinese Academy of Sciences.

All hypoxia experiments were performed in passage-5 cells. The HUVECs were
divided into two groups adaptive vs. non-adaptive based on the genotypes of
EPAS1 (including TED) and EGLN1 (Fig. 1a), and each group had five cell lines.
Cells were placed in a conventional 37 °C humidified incubator (Thermo-Forma,
Model 3141) with automated gas control of 1% O2, 5% CO2, balanced with N2.
The oxygen concentration of the hypoxic incubator was constantly monitored by a
real-time O2 sensor with 0.1% sensitivity. Here the choice of 1% O2 is empirical
and mainly based on the literature60–63. Our choice of 1% O2 is roughly estimated
based on the following understandings. Oxygen partial pressures of cells and bodies
are different. Oxygen is inhaled by the body to reach the mitochondria of the cells,
and the partial pressure of oxygen is a progressive step down. At sea level
(normoxia), oxygen partial pressure is 159.22 mm hg (20.95%), but the partial
arterial oxygen pressure (PaO2) is only 100 mmHg (13%), while the venous oxygen
partial pressure (PvO2) is 40 mmHg (5.2%), and the mitochondrial oxygen partial
pressure is 4–20 mmHg (0.52–2.6%). Each cell line was divided into four dishes for
whole-genome sequencing, RNA-seq, ATAC-seq, and Hi–C in parallel, and
harvested at different time points, including 0 h, 6 h, 24 h (1 day), 72 h (3 days) and
120 h (5 days). We selected all 50 samples for RNA-seq and ATAC-seq libraries.
All of 10 cell lines were extracted DNA for whole-genome sequencing and
8 samples (2 cell lines each group at 0 h and 72 h) for Hi–C libraries.
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RNA-seq library preparation and data processing. Total RNA was isolated using
TRIzol reagent (Ambion). Libraries from the resulting total RNA were prepared
using the TruSeq paired-end mRNASeq kit. Then library preparations were
sequenced on an Illumina Hiseq 4000 platform and 150 bp paired-end reads were
generated.

We used TopHat64 to map sequencing reads to human reference genome hg19.
Then used Cufflinks65 to call FPKM values as gene expression measurement. Genes
with FPKM value 0 in all samples were filtered out. Genes that are not expressed
consistently within replicates, i.e., the ratio of maximum to minimum FPKM
among 5 replicates is larger than 500, were also filtered out. Finally, 12,998 protein-
coding genes remain for further study.

ATAC-seq library, sequencing, and data preprocessing. We performed ATAC-
seq as described66. We used the TruePrep DNA Library Prep Kit V2 for Illumina
(Vazyme, TD501) to prepare the ready-to-use DNA library for ATAC-Seq. fol-
lowed the Instruction manual, fifty thousand cells (no fixation) were centrifuged at
500×g for 5 min at 4 °C. Washed once with 50 μL of cold 1x PBS buffer. Centrifuge
at 500×g for 5 minutes at 4 °C. Gently pipet to resuspend the cell pellet in 50 μL of
cold lysis buffer (10 mM Tris-HCl, pH= 7.4, 10 mM NaCl, 3 mM MgCl 2, 0.1%
IGEPAL CA-630). Immediately centrifuge at 500×g for 4 min at 4 °C. Discard the
supernatant and add 50 μL transposition reaction MIX to resuspend the cell pellet,
then placed in PCR machine for the transposition reaction at 55 °C 10 min. After
purified the transposition product with AMPure® XP beads, proceed PCR
Enrichment immediately for 9 cycles. Purify the amplified library AMPure® XP
beads for size selection. Real-time PCR and Qubit® were used to definitely quantify
the concentration of the library. ATAC-seq libraries were sequenced on Illumina
Hiseq 4000 platform and 150 bp paired-end reads were generated.

ATAC-seq pair-end reads were trimmed for Illumina adaptor sequences and
transposase sequences with a customized script and then mapped the reads to
reference human genome hg19 with Bowtie v1.0.067. Duplicate reads were removed
with Samtools.v0.1.1968. Only uniquely aligned reads were used for peak calling
with Hotspot using default parameters. We calculated a QC score as the ratio of
total read counts at TSS over a 2-kb window to the randomly selected background
for each sample.

Whole-genome DNA sequencing and variant calling. The genomic DNA was
extracted by HUVEC lysis using the standard phenol-chloroform method and
sequenced by Illumina X10 sequencer with 150 bp paired-end reads. We generated
the average 124 Gb raw sequence data for per subject (Supplementary Data 6). We
performed the quality control by FastQC and Genome Analysis Toolkit (GATK),
the mean Q30 of read-pairs is higher than 86%. Each sample has the reads depth
>36X (Supplementary Data 6).

We used the standard GATK pipeline to call the variants. With GRCh37 (hg19)
as the reference genome, we mapped reads to reference by bwa-MEM module69,
then Picard was utilized to mask the PCR duplicates and produced the dedup.bam.
Local alignment was performed to adjust the alignments via GATK indel
realignment, GATK score recalibration modules. Then, we used the known site set
as training data, re-calculated base quality via base quality score recalibration
(BQSR) module. Finally, variants were called by GATK HaplotypeCaller module70

and made the genomic VCF (gVCF) file, then we performed join calling of all
gVCF via GenotypeGVCFs module and obtain the raw VCF file as candidate
variant set. For variant filtering, the variant quality score recalibration (VQSR)
module of GATK was used based on the arguments listed in Supplementary Data 7.

Hi–C library, sequencing, and data preprocessing. Hi–C library was performed
as described in ref. 71. One million Cells were fixed by final concentration 1%
formaldehyde, mixed for 10 min at room temperature. Fixation was quenched
using 2.5 M glycine at room temperature for 5 min and immediately centrifuged at
800×g for 10 min. The supernatant was removed, the pellet resuspended in lysis
buffer (final concentration of 10 mMTris, pH 8.0, 10 mM NaCl, 0.2% Igepal CA-
630 and 1x complete protease inhibitors (Sigma-Aldrich) and incubated on ice for
10 min. Removal of lysis buffer was done by centrifugation at 2500×g for 5 min at 4
°C, followed by the removal of the supernatant. The pellet was resuspended in 342
μl 1x NEBuffer 3.1 and incubated with 38 μl 10% SDS at 65 °C for 10 min. Next,
add 43 μl of 10% Triton X-100 to the Hi–C-tube to quench the SDS, 37 °C for 15
min. Add 12 μl of 10x NEBuffer 3.1 and 400U DpnII, mix gently Digest the
chromatin overnight at 37 °C on a rocking platform. On the next day, the DpnII
restriction enzyme was inactivated at 65 °C for 25 min. Next, fill-in Biotin by
adding biotin-14-dATP, dCTP, dGTP, dTTP, and DNA polymerase I Klenow,
incubate at 23 °C for 4 h. The digested chromatin was diluted and religated in by
T4 DNA ligase, incubated at 16 °C for 4 h, and shaken manually 3 times. The
chromatin products were de-cross-linked overnight by adding 30 μl proteinase K,
and incubated at 65 °C overnight. Extract the DNA, dissolved in 50 μl 10 mMTris,
pH 8.0. Next, using T4 DNA polymerase to remove biotin from un-ligation ends,
20 °C for 4 h, inactivate the enzyme for 20 mins at 75 °C. Shear the DNA to a size of
200–300 bp using Covaris M220. Using AMpure XP magnetic beads perform DNA
size selection. Biotin pulldown with Streptavidin T1 beads. End repair, add A, add
adaptor reaction and PCR amplification, DNA product size selection was

performed step by step. The Hi–C library was sequenced with Illumina Hiseq 4000
platform for paired-end sequencing.

Totally we have eight samples, two replicates of both populations in 0 h and
5 days. We used two methods to process and analyze Hi–C data. First, HiC-Pro was
used to process Hi–C data from raw sequencing reads to normalized contact
matrix72. The main steps include mapping raw reads to hg19 reference genome,
detecting valid ligation products, and generating raw contact maps. For raw contact
matrix generating, we set a variety of resolutions of 500 bp, 1 kb, 5 kb, 10 kb, 25 kb,
50 kb, 100 kb, 500k, and 1Mb, which means that genome is divided into bins with
the above equal sizes. Then we used the iterative correction method73 to eliminate
the systematic basis and generate the normalized contact matrix. According to the
publication that “map resolution” is defined as the smallest locus size such that 80%
of loci have at least 1000 contacts45. If we merge the two replicates of the same
population in each time point, i.e. W–0 h, A–0 h, W–3 day, and A–3 day, we will
gain 5-kb resolution of four samples. In the second step, we used Homer46 to
further identify significant interactions (FDR < 0.01) based on contact maps
generated by HiC-Pro under 5 k resolution.

The proportion of duplicate reads and different contact ranges are shown in
each Hi–C sample. For each sample, we removed duplicated reads, and then
divided remaining valid reads into cis long-range (>200 k), cis short-range (<200 k),
and trans contacts, which are demonstrated by different colors. The proportion of
duplicate reads and contact ranges in eight original samples and four merged
samples are shown in Supplementary Fig. 14. The figure demonstrates that our
experiment is in high quality since the fraction of long-range intra-chromosomal
valid pairs for each sample is significantly larger than 40 %72. We obtained 48–64%
for 8 samples, and 50–61% for 4 merged samples.

Luciferase reporter assay. We chose E2, E12, E20 (rs370299814, rs368706892),
E21 (rs569774785), E21 (rs4953357, rs6756667), E22 (rs10206434, rs141366568),
and E22 (rs3768729) to verified by luciferase reporter assay74. The 100-bp synthetic
single-strand oligonucleotides were annealed to form double strands consisting of
the corresponding genotypes (CC and TT) for rs569774785, (GG, AA and AA, GG)
for rs4953357 and rs6756667, “AA, GG and “GG, AA” for rs10206434 and
rs141366568, “AA, TT and GG, CC” for rs370299814 and rs368706892 and “T and
C” for rs3768729 flanked by restriction sites. The fragments were cloned into the
multiple cloning site of the pGL3-promoter vector (Promega). All constructs of
new-building plasmids were validated by sequencing to make sure no de novo
mutation was introduced. The presumably adaptive alleles are “C” for rs569774785,
“G, A” for rs4953357, rs6756667;“A, G” for rs10206434, rs141366568;“A, T” for
rs370299814, rs368706892 and “T” for rs3768729 (Supplementary Fig. 8a). The
reporter vectors containing either an adaptive allele or no adaptive allele were co-
transfected into HEK293T and HeLa cells respectively, together with a reference
vector (pRL-TK vector). HeLa and HEK293T cells were grown in Gibco Dulbecco’s
Modified Eagle’s Medium (Gibco) supplemented with 10% fetal bovine serum
(HyClone). Lipofectamine 2000 (Invitrogen) was used in transient transfection.
After 36 h incubation in 21% oxygen (normoxia) and 1% oxygen (hypoxia) con-
ditions, we collected the cell lysates and measured luciferase activity using the
Dual-Luciferase Reporter Assay System (Promega, Madison, WI). The relative light
units were measured using a luminometer. The mean values of three independent
experiments were used.

HUVEC cultured in normoxic and hypoxic condition. We collected 2 replicates of
HUVEC from one Han Chinese and cultured them in normoxia (21% oxygen) for
five days. Other cell culture conditions are controlled the same as the hypoxic
induction experiments. RNA-seq was performed on 0 h, 6 h, 1 day, 3 day, and 5 day
for both replicates. The raw data were processed following the same pipelines in the
RNA-seq data processing part. The total reads numbers and the alignment statistics
of RNA-seq data are shown in Supplementary Data 1B, indicating it is in high
quality. Next, we compared the responses to being in culture for different periods
of time to the responses to hypoxia. We pooled the data together, carefully removed
the batch effect by ComBat75, and checked the variations of gene expression data
between cells being cultured under normoxia and hypoxia. We used PCA to
visualize the two datasets after batch effect adjustment (Supplementary Fig. 2a).
The normoxic samples (solid circles) are close to the previous 0 h samples (red
samples). The variance between normoxia samples (solid circles) is relatively
smaller than the hypoxia ones (hollow shapes), especially in 3 day and 5 day. In the
PCA plot, the largest variance revealed by PC1 is the response to hypoxia, i.e., the
difference between normoxia to hypoxia 1 day and 3–5 days under hypoxia (PC1
75%). This is the same as the results in Fig. 1c. PC2 shows the difference between
samples cultured in normoxia and hypoxia along time and is a mixture of response
to culture time and hypoxia response. There are two key observations from the
plot. (1) the responses to being in culture at normoxia for different periods of time
are insignificant and negligible compared to the responses to hypoxia. Although
cells are different between 0 h and 5 day when cultured under normoxia, the
variance is much smaller than 3–5 day under hypoxia (PC1 75% vs PC2 11%).
Thus, the effect that cells respond to hypoxia is much larger than responses to
being in culture in normoxia for different periods of time. (2) the response to
culture along time is quite independent, dramatically different, and not related to
the response to hypoxia in PC2. They have opposite directions that originated from
the very similar 0 h samples. This indicates there are two different gene groups
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underlying response to hypoxia and response to culture time. To further dissect the
general patterns revealed by PCA, we compared the differentially expressed genes
(fold change of the average value of two groups larger than 2) between different
time periods under normoxia and hypoxia. The numbers of DEGs between adja-
cent time points in hypoxia response, especially 1 day vs 3 day and 3 day vs 5 day,
are significantly larger than in normoxia by more than 30 folds (the number of
DEGs are 1000 vs 30 in Supplementary Fig. 2b). In total, we identified 560 DEGs
between 0 h and 5 days in normoxia with fold change >2. The functional terms are
significantly enriched in cell cycle and DNA replication (Supplementary Fig. 2c, p-
value < 10−40), which are not related to hypoxia response.

We used HEK293 and HELA to do dual-fluorescent reporting experiments to
test whether the elements are functional as enhancers. The transfection of the dual-
fluorescent reporting system is usually transient, so the dual-fluorescent reporting
system often uses cell lines of high transfection efficiency, easy culture and rapid
growth such as HEK293 and HELA. The transfection efficiency of the primary
culture HUVEC is <10%, and our current culture system only allows the generation
of the HUVEC for 92 h. Therefore, the signals could not be detected by the dual-
fluorescence reporting system.

Public data collection. Totally 40 DNase-seq, 98 H3K27ac, HUVEC H3K4me1,
H3K4me3 peak files (bed file), and 57 gene expression datasets were collected from
Roadmap Epigenomics Project (ROADMAP). This includes 40 cellular contexts
contain matched H3K27ac and gene expression data. We also downloaded eQTL
data across 44 tissues from GTEx Portal (The GTEx Analysis V6p release was
downloaded from GTEx Portal on 11/14/2017)76, which was used to provide the
genetic level evidence for the RE-TG pairs predicted by vPECA. Whole genome
sequencing data of 38 Tibetan highlanders and 39 Han Chinese lowlanders8 were
used to compute population genetic selection scores. H3K27ac histone marks
under normoxia (0 h) and hypoxia (24 h) are also downloaded from21. In addition,
we collect high-resolution 3D chromatin interactions from HiC data in HUVEC45

to impose physical boundaries for promoter-enhancer interactions.

RE annotation and openness score quantification. Totally 40 DNase-seq, 98
H3K27ac, HUVEC H3K4me1, and H3K4me3 peak files (bed file) were collected
from Roadmap Epigenomics Project (ROADMAP)77 and Encyclopedia of DNA
Elements (Encode) database78. Hi–C loops of HUVEC measured 3D chromatin
interactions were downloaded from45. For each gene, we defined the regulatory
boundary as the [−1Mbp, +1Mbp] region to TSS that overlaps with the nearest
loop contains the gene. If the loop is larger than 1M to TSS, the boundary is just
[−1M, +1M], otherwise, it is the overlap region within the loop. Then within the
regulatory boundary of each gene, we defined candidate REs as the functional
regions, with both H3K27ac and H3K4me1 marks (overlap with peak files of these
two marks), as well as promoters [−2 k bp, 0] to TSS. Now we have a candidate list
of REs that may potentially regulate certain genes based on the distance to TSS and
Hi–C loops. Then we calculated openness score for each RE under each condition
as the fold change of reads number per base pair19. For all 81,634 REs defined by
either the overlap of two histone marks or promoters, we calculated their openness
scores under 50 conditions. The REs with openness score 0 along with all samples
and inconsistent within replicates were filtered out (same methods with gene
expression, refer to “RNA-seq library preparation and data processing” in Sup-
plement methods). Finally, 51,406 REs remains for further study.

Hierarchical clustering and principal component analysis. For the expression
data of 12,998 genes and chromatin accessibility of 51,406 REs under 50 conditions
(contains 5 time points of two populations), we performed hierarchical clustering
and PCA. For hierarchical clustering, we implemented correlation as clustering
distance and “complete” as a clustering method. The heatmap was plotted with R
package pheatmap79. The first two principal components are shown in Fig. 1c.

Differential analysis of genes and REs. For the differential analysis of both gene
expression and chromatin accessibility data, we used limma to perform design
matrix80. For each sample, we implemented a binary variable “Population” to
indicate whether the sample belongs to Han Chinese or Tibetan, and variable
“Time” with 5 categories (0 h/6 h/1 day/3 day/5 day) to represent different time
points. We also incorporated variable “individual” to indicate the 10 individuals
between 5 time points. Then for each gene or RE, we constructed the following
linear model:

y ¼�1þ Populationþ Timeþ individual;

where y indicates a vector of expression of a certain gene or openness score of a RE.
With this linear model, we designed various contrast matrix for differential analysis
between populations and adjacent time points. Then we controlled FDR < 0.05 to
identify differentially expressed genes and REs. Specifically, when calculating DEGs
between every pair of adjacent time points, we used 0 h–1 day, 1–3 day, 3–5 day for
both W and A separately (Fig. 1e). For DEG analysis between A and W in each
time point, we used W.time- A.time (0 h/6 h/1 day/3 day/5 day) as the contrast
matrix, and p-value < 0.05 as a threshold.

Functional enrichment analysis of DEG and DOR in dynamics. We used
DAVID81 to analyze the functional enrichment of DEGs. The number of DEGs
between every two adjacent time points are listed in Supplementary Data 8. For
each population, we did functional enrichment analysis separately. In general, the
function terms of DEGs are very similar between Tibetans and Han Chinese
(Supplementary Data 9). In comparison between 0 h and 6 h, glycolytic process and
carbo metabolism are important both in A and W. From 6 h to 1d, other than
glycolytic process, mitochondrial function and DNA damage response genes are
differentially expressed. When comparing 1d with 3d, because the number of DEGs
is too large to use in DAVID, we divided the DEGs into two groups, i.e. Time1 >
Time2 and Time1 < Time2. Enriched terms include mitochondrial functions, DNA
repair, canonical glycolysis, and VEGF signaling pathway. In all, 3–5 day also
contains canonical glycolysis as a key factor.

For differentially accessed regions, we used GREAT82 to annotate their
functions where default parameters were set. We listed functions in the MSigDB
pathway of those DCAs between adjacent time points. Also, two populations share
similar functions. Key enriched functions include HIF-1/2-alpha transcription
factor network, IL6-mediated signaling events, VEGF and VEGFR signaling
network, and Actions of Nitric Oxide in the Heart, which are consistent with prior
knowledge of hypoxia induction process and functions of DEGs above.

RE-promoter interactions revealed by reads count of Hi–C. To show the
potential physical interactions between RE-promoter identified by vPECA model,
we used the Hi–C data from four samples (W–0 h, A–0 h, W–3 day, and A–3 day).
We fixed the target gene’s promoter region and extracted the raw read counts
within every 1k bin (including REs) from the raw contact matrix (1 k) into a sparse
matrix. Each promoter may contain several bins, we combined these bins into a
single promoter region to get the interaction reads between the promoter and all
the 1k bins and REs. Since four samples have different sequencing depths, we
normalized the raw reads count by dividing the total reads counts in the sample.
Then, we drew the scatter plot of read counts supporting bin-promoter interactions
for each bin along with genome positions. To visualize the potential interactions,
we smoothed those data points using locally weighted scatterplot smoothing
(LOESS). Those peaks in the curve are consistent with the predicted RE-promoter
interactions (Fig. 3d, Supplementary Fig. 9f). To make sure the trend by the LOESS
method is stable, we tried different parameter settings for a smoother span. Fur-
thermore, we used Bootstrap to resample the data points 300 times and plot the
average of LOESS curves. We observed a similar trend. In addition, we tried
different bin sizes from 1 k, 1.5 k, 2 k, to 4 k, the peaks shown in RE-promoter
interactions are consistent with predicted results. Similarly, we can also focus on
one particular RE rather than a promoter, and find interactions between this RE
region with other bins (Supplementary Fig. 7).

Validation of 621 target genes of EPAS1 by siRNA knockdown. The cell lines of
HUVEC and C166 were transfected with EPAS1 siRNA and non-targeting control
siRNA for 48 h. The efficiencies of knocked down the EPAS1 expression were
assessed by qPCR with 1.4% for HUVEC and 3.2% for C16627. The FPKM gene
expression data of HUVEC and C166 was downloaded from the GEO database
with accession number GSE62974. Then EPAS1’s target genes were derived by
comparing expression profiles of EPAS1 siRNAs with non-targeting ones. We
calculated the fold change (FC) of average FPKM values between replicates and
identified 795 genes in HUVEC and 1382 in C166 with FC larger than 1.5. These
genes were assumed to be true positive to validate 621 EPAS1 target genes derived
from the regulatory network. Then we used the hypergeometric test to calculate the
enrichment of vPECA predicted target genes of EPAS1 in the gold standard
gene set.

Enrichment analysis with hypergeometric test. We used the hypergeometric test
to calculate the enrichment of predicted active REs in H3K27ac peaks under
hypoxia in 24 h (Fig. 2b) and predicted selection genes enriched in literature
supported genes (Fig. 2c). Also, we used the hypergeometric test to compute the
enrichment of TGs of EPAS1 in DEGs in EPAS1 knockdown in mouse (Supple-
mentary Fig. 9b) and selection genes in other populations (Supplementary Fig. 9c)
and DEGs along time (Supplementary Fig. 9d). For enrichment analysis of EPAS1
target genes, the hypergeometric cumulative distribution function is given by

F xjK;M;Nð Þ ¼
Xx
i¼0

K

i

	 

M � K

N � i

	 

M

N

	 
 ;

where x is the number of predicted target genes of EPAS1 in the gold-standard
gene set. M denotes the total number of expressed genes in HUVEC. K indicates
the number of gold standard genes expressed in HUVEC. N is the number of
predicted EPAS1 target genes.

Functional enrichment of multiple gene sets. We used Metascape83 to do the
gene functional enrichment analysis. Metascape selected significantly enriched
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function terms and clustered similar terms together (Figs. 2e and 4d, and Sup-
plementary Figs. 5b, and 10a, d).

We annotated the gene functions of the EPAS1 oriented network (Fig. 5) using
the MGI (Mouse Genome Informatics) database [http://www.informatics.jax.org/]
and GWAS Central [https://www.gwascentral.org/], which involves the phenotypes
of gene-knockout mouse and significantly associative traits/diseases in human
cohorts. Functions were marked when the supported gene number is larger
than two.

Subnetwork extraction. For network analysis, vPECA provided TF-RE-TG triplets
that reveal the whole picture of the transcription regulation network (“Meth-
ods”—“Output of vPECA” section).

For core subnetwork of EPAS1’s downstream analysis (Fig. 4e), we focused on
all EPAS1-TG pairs, which means fix TF as EPAS1 and select 621 downstream
target genes. Among 621 genes and EPAS1, we selected genes related to “response
to hypoxia” and “angiogenesis”, then constructed the core network in Fig. 4e. Edges
denote all predicted TF-TG relations between these genes.

EPAS1 oriented network (Fig. 5) mainly considers the 1st and 2nd neighbor
downstream genes of EPAS1. For all TF-RE-TG triplets within the 2nd order of the
EPAS1 downstream network, we selected TGs and REs under the following two
conditions. (1). Differentially expressed genes and REs between 0–6 h and 1–3 day
(FDR < 0.05). (2). Differentially expressed genes between A and W (p-value < 0.05).
Here, differential genes and REs are calculated from “Differentially expressed genes
(DEG) and differential chromatin accessibility analysis” in “Methods”. The
network encompasses 178 genes (18 TFs) and 234 interactions totally.

Hypoxia-oriented network (Supplementary Fig. 10b) mainly considers the
hypoxia-responsive network related to adaptation. For all TF-RE-TG triplets in the
whole network computed by vPECA, we extracted a subnetwork under two
conditions. (1). Differentially expressed genes and REs between 0h-6h and 1–3 day
(FDR < 0.05). (2). Differentially expressed genes and REs between A and W (p-
value < 0.05). Then from the above subnetwork, we selected the top 25 enriched
TFs by defining an enrichment score, i.e. the number of TFs occurred in the
subnetwork divided by the number of TFs in the whole genome. The number of TF
occurrences is based on motif binding sites. Usually, one TF matches several
motifs, so the TF occurrence number in the background is defined as the maximum
occurrence number among all motifs match to the same TF.

EPAS1-oriented network construction and annotation. To explore EPAS1’s
regulation over the network, we extend the above network to an EPAS1-oriented
subnetwork and associate it with phenotype data (Fig. 5). The network mainly
considers the 1st and 2nd neighbor downstream genes of EPAS1 under the two
conditions. (1) Differentially expressed genes and REs between 0–6 h and 1–3 day
(FDR < 0.05); (2) Differentially expressed genes and REs between Tibetan and Han
(p-value < 0.05). The network has 178 genes (18 TFs) and 234 interactions with 17
modules, which is enriched in oxidative stress and developmental terms (Supple-
mentary Fig. 10a). The modules were annotated with MGI (Mouse Genome
Informatics) phenotypes84 and GWAS Central database85 (“Methods”). Many
adaptive physiological traits in Tibetans show associations in the network such as
blood pressure, erythrocyte count, forced expiratory volume, respiratory quotient,
spleen/kidney/limb bone morphology, and coronary artery disease, etc. These are
consistent with the Tibetan’s advantage stemming from a different hypoxia reg-
ulation of ventilation, a low hypoxia pulmonary vasoconstrictor response, better
lung function, higher maximum cardiac output, better levels of blood oxygen
saturation, and better sleep quality6. As expected, heart and lung related physiol-
ogies and diseases are the most enriched items in these modules (14 modules are
involved). Coronary artery disease (CAD), heart failure, respiratory functions (e.g.
forced expiratory volume (FEV)) and a series functions about blood index, e.g.
erythrocyte count, blood pressure, hemoglobin, blood glucose and anemia are
consistent with the existing study for the main functions of EPAS1 in Tibetans
(“Methods”).

Phenotype annotation for EPAS1 oriented subnetwork. We constructed the
EPAS1 regulation network according to the putative interactions (“Meth-
ods”—“Subnetwork extraction” section). EPAS1 regulated 197 downstream genes,
including 17 TF as a mediator and forming 17 subnetworks. To explore the
potential function for these subnetworks, we performed functional enrichment
using MGI (Mouse Genome Informatics) database and the GWAS Central
database.

As expected, heart and lung related physiologies and diseases were the most
enriched items in these subnetworks (14 subnetworks were involved), for example,
coronary artery disease (CAD), heart failure, respiratory functions (e.g. forced
expiratory volume (FEV)) and a series functions about blood index, e.g. erythrocyte
count, blood pressure, hemoglobin, blood glucose and anemia, which was
consisting with the previous study for EPAS1’s major functions in
Tibetans15,56,86–90.

Notably, we observed some intriguing functions were enriched in some
subnetworks (Fig. 5). For example, functions related to facial structures were
enriched in eight subnetworks, including nose features (nasal bones), chin, and

lips. It is reported that nasal variation is related to the high-altitude adaptation in
Tibetans and Andeans, which may serve in increased oxygen uptake and air-
conditioning processes in highlanders30. Besides, body mass indexes (weight and
height) were enriched in five subnetworks, although it is still lacking a systematic
epidemiological survey for comparison of stature situation in Tibetans and
lowlanders. Some reports propose that Tibetan adults and adolescents possess a
shorter stature in high altitude than lowlanders91,92. In addition, other
functional traits were observed in multi-subnetworks, including spleen
morphology, skin lesions, and glucose tolerance (Fig. 5). These enriched
functions were reported before as an adaptive trait or a compensatory action. For
example, selection has increased Bajau (a kind of breath-hold diving people)
spleen size, which provides an oxygen reservoir for hypoxia diving93, but it needs
more data to identify the role of spleen morphology change in Tibetan high-
altitude adaptation. Besides, it is reported that Tibetan highlanders were
vulnerable to glucose intolerance94, but it is hard to tell whether the phenotype
contributes to high-altitude adaptation. Of course, the functional enrichment of
these network provides insights for Tibetan hypoxia adaptation, for example, we
can speculate that Tibetans may exhibit some adaptive characters for protecting
skin from high UV in a high-altitude environment (no reports) based on our
function enrichment in the subnetwork of STAT6 (Fig. 5). In summary, we
generated a systematic EPAS1-downstream network-based multi-omics data and
summarized the potential functions for EPAS1 downstream genes, which may be
putative candidate genes for adaption of high altitude in Tibetans.

Annotate Tibetans’ structural variants by the vPECA network. Structure var-
iations (SVs) may play important roles in human adaption to extreme environ-
ments such as high altitude. For example, a 3.4-kb copy number deletion near
EPAS1, named TED, is significantly enriched in high-altitude Tibetans. Many lines
of evidence support that the TED is a promising candidate that might have played a
critical role in high altitude adaptation of Tibetans95. Here, we combined long-read
sequencing with next-generation mapping and assembled a high-quality Tibetan
genome (ZF1), with a contig N50 length of 24.57 mega-base pair (Mb) and a
scaffold N50 length of 58.80 Mb. We detected 17,902 SVs, and 6,505 of them are
ZF1-specific when compared with two previously published de novo lowlander
Asian genomes (AK1 and HX1).

The whole-genome long read and short read sequencing data are available at
The Genome Sequence Archive (GSA) [http://gsa.big.ac.cn/index.jsp] under the
project ID of PRJCA000936.

vPECA framework for systematic GWAS variants interpretation. Our study
also has implications for human genome-wide association studies (GWAS), where
more than 90% of disease-associated regions do not affect proteins directly, but
instead lie in non-coding regions with putative gene-regulatory roles. We show that
our vPECA model can be applied to GWAS variants interpretation in the following
aspects: (1) Quantify the aggregation effect of variants in non-coding regions; (2)
Generate multi-omics data in the right cell type and condition. This is extremely
important when regulatory elements are functional in dynamic contexts. For
example, active selected REs are functional under hypoxia pressure and ultra-
conserved enhancers are functional in developmental process96; (3) Integrate
multi-omics data and reconstruct regulatory network. We expect understanding
the mechanism of genetic variants will go beyond the current candidate variants
from GWAS study and static profiling by ENCODE annotation. We propose a
feasible and efficient strategy as vPECA annotation (Variant plus time course
paired expression and accessibility data) in the relevant tissues. We see the
potential that vPECA can be generalized to understand the complex traits such as
schizophrenia with the prefrontal cortex’s multi-omics data and face phenotype
with neural crest cells’ multi-omics data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study, including RNA-seq, ATAC-seq, and Hi–C data were
deposited at [http://www.ncbi.nlm.nih.gov/geo/] (accession number: GSE145774) and
Genome Sequence Achieve (project number: CRA002025; [https://bigd.big.ac.cn/gsa/
browse/CRA002025]). All other relevant data supporting the key findings of this study
are available within the article and its Supplementary Information files or from the
corresponding authors upon reasonable request. Source data are provided in Zip
folder. Source data are provided with this paper.

Code availability
The source codes for vPECA are available at [https://github.com/AMSSwanglab/vPECA].
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