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Abstract

The second messenger molecule 3’5’-cyclic adenosine monophosphate (cAMP) imparts several 

beneficial effects in lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) 

and idiopathic pulmonary fibrosis (IPF). While cAMP is bronchodilatory in asthma and COPD, it 

also displays anti-fibrotic properties that limit fibrosis. Phosphodiesterases (PDEs) metabolize 

cAMP and thus regulate cAMP signaling. While some existing therapies inhibit PDEs, there are 

only broad family specific inhibitors. The understanding of cAMP signaling compartments, some 

centered around lipid rafts/caveolae, has led to interest in defining how specific PDE isoforms 

maintain these signaling microdomains. The possible altered expression of PDEs, and thus 

abnormal cAMP signaling, in obstructive lung diseases has been poorly explored. We propose that 

inhibition of specific PDE isoforms can improve therapy of obstructive lung diseases by 

amplifying specific cAMP signals in discreet microdomains.

Introduction

Chronic obstructive pulmonary disease (COPD), asthma and idiopathic pulmonary fibrosis 

(IPF) represent leading causes of morbidity and mortality [1–3]. These diseases are 

characterized by airway obstruction, chronic inflammation and airway remodeling, though 

the extent of each component varies by disease. Airway obstruction leading to a shortness of 

breath is a common feature of COPD, asthma and IPF. In asthma, such obstruction is 

associated with airway hyperresponsiveness but in all three diseases bronchodilators are 

used to open the airways [4]. Inflammation in COPD is characterized by increased numbers 

of CD8+ T-lymphocytes, macrophages and neutrophils, while in asthma inflammation is 
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characterized by eosinophils, CD4+ T-lymphocytes and mast cells [4]. The asthma-COPD 

disease overlap syndrome (ACOS) adds another level of complexity representing disease 

phenotypes. For example, severe asthmatics can display increased numbers of neutrophils 

and COPD patients suffering from exacerbations typically have increased numbers of 

eosinophils. These circumstances make it a major challenge to manage the therapy of 

patients with ACOS [5•].

In the etiology of IPF, the role of inflammation is disputed and largely considered a by-

product of fibrosis [3,6,7]. Since anti-inflammatory treatments show minimal therapeutic 

benefit in patients with IPF, research has shifted focus to viewing the diesease as a defect in 

the healing and repair process with concomitant inflammation [6]. Upon alveolar epithelial 

injury, transforming growth factor (TGF)-β induces fibroblast cells to transition into a-

smooth muscle actin expressing myofibroblasts, which produce excess collagen and 

extracellular matrix proteins [8]. Due to continuous alveolar epithelial microinjury, a 

dysregulated response occurs where myofibroblasts persist and remain active for an 

indefinite period of time and lose the ability to undergo apoptosis [9,10]. Normally after 

alveolar epithelial type I cells are damaged, alveolar epithelial type II cells regenerate the 

damage [11]. Abnormal healing responses causes an inability of alveolar epithelial type II 

cells to regenerate epithelial cells leading to permanent loss of functional lung tissue [12].

All these obstructive lung diseases are caused by a diverse subset of genetic and 

environmental factors including allergens, cigarette smoke and air pollution [13•]. Air 

pollution emanating from primarily diesel automotive engines is linked to metabolic 

dysregulation, metabolic reprogramming, and mitochondrial dysfunction in each disorder 

[14•, 15,16]. Taken together, these three represent serious pulmonary diseases that possess 

both common and unique characteristics. The heterogenous nature of these obstructive lung 

disorders hinders an effective treatment of all patient groups. New therapies tailored to the 

heterogeneity of the patient cohorts need to be developed based on novel insights that 

integrate underlying molecular mechanisms into translational pharmacological research. 

3’5’-cyclic adenosine monophosphate (cAMP) acts as a key regulator of all cells in the body. 

In the lung, cAMP regulates airway smooth muscle tone, cell proliferation, differentiation, 

apoptosis, inflammatory mediator synthesis and release, deposition of extracellular matrix, 

and the maintenance of barrier function in both endothelial and epithelial cells [17,18]. In 

this review, we will discuss multi-component therapies based on the concept of 

compartmentalization of cellular cAMP signaling pathways with a focus on strategies that 

target phosphodiesterases (PDEs).

Limitations of current treatment guidelines

The extent of airway obstruction, chronic inflammation and airway remodeling varies in 

COPD, asthma and IPF [1–3], resulting in disease specific treatment guidelines. In the 

treatment and management of COPD, approved therapies include the usage of 

bronchodilators (β2-adrenoceptor (β2AR) agonists, anticholinergics and broad PDE 

inhibitors), and a combination therapies of inhaled corticosteroid plus long-acting β2-AR 

agonists or anticholinergics and long-acting β2-AR agonists. The broad PDE4 inhibitor, 

roflumilast, has been approved as add-on treatment to these therapies in patients with severe 
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COPD associated with bronchitis and a history of frequent exacerbations [1,19]. In the 

treatment and management of asthma, combined therapies of (short-acting or long-acting) 

β2AR agonists and inhaled corticosteroid are primarily used. Orally administered 

roflumilast has been proposed as a beneficial add-on therapy for use in patients with 

moderate-to-severe asthma but is not currently approved for this use [2,4,19]. Theophyl-line, 

a broad-spectrum PDE inhibitor and adenosine receptor antagonist, has fallen out of favor 

for asthma maintenance due to a wide array of off-target effects.

The treatment of IPF primarily relies on current antifibrotic therapeutics such as pirfenidone 

and nintedanib, both considered to have anti-inflammatory and anti-fibrotic action [3,6,7]. 

Importantly, it has been reported recently that Gαs-coupled receptors such as the β2-AR and 

receptors for prostaglandin E2 (PGE2) are repressed in IPF lungs [20–22]. Therapies 

targeting receptors coupled to cAMP in lung fibroblasts have some degree of specificity 

based on more limited expression of receptors across lung cell types. However, no 

therapeutic strategy currently exploits the antifibrotic effects of cAMP.

It has long been recognized that β2AR agonists, and the receptors themselves, contribute to 

asthma mortality [23,24]. These findings have led many to discount the therapeutic potential 

of cAMP signaling due to its association with β2AR as their canonical second messenger. 

However, some of these adverse effects of β2AR can be attributed to cAMP independent β-

arrestin signaling by these receptors [25]. Inhibition of PDE, particularly in combination 

with β2AR agonists, is a logical means to increase cAMP-induced bronchodilation without 

enhancing maladaptive β-arrestin signaling.

A current limitation is existing PDE inhibitors lack specificity due to the broad expression 

patterns of PDE isoforms (Table 1 and Figure 1). Expression and function of 

phosphodiesterases (primarily PDE4 and PDE3) are altered in lung pathologies, particularly 

upon cigarette smoke exposure [26,27•]. As it is now well established that increasing cAMP 

can improve lung dysfunction [4,17–19], constraining the endogenous enzymes that degrade 

cAMP could have profound impact on the treatment of obstructive lung diseases. Current 

cyclic nucleotide-based therapies induce broad effects through their action on many cell 

types, including airway smooth muscle, (myofibroblasts, bronchial epithelium and 

endothelium, and via inhibition of broad classes of PDE. Systemic or inhaled administration 

targets widely expressed proteins to induce therapeutic effects and unwanted side effects 

(Figure 1). These cyclic nucleotide-based therapies neglect the impact of spatio-temporal 

dynamics of cAMP signaling and lead to global (many cells and tissues) and bulk (many 

subcellular domains) elevations of cAMP. However, research over the past 15 years pointed 

to the existence of cAMP-sensing multiprotein complexes composed of a distinct subset of 

cAMP-producing receptors and PDEs, leading to the accepted concept of compartmentalized 

cyclic nucleotide signalling [4,17–19]. Intriguingly, recent studies in human fibroblasts from 

IPF patients illustrate the importance of monitoring the kinetics and localization of 

intracellular cAMP signals [28,29]. We will highlight some key findings of how the 

understanding of cAMP signaling compartments have evolved substantially, emphasizing the 

fact that no therapies yet exist to leverage localized cAMP signaling.
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The role of PDEs in compartmentized cAMP signaling

cAMP signaling compartments were first proposed by Buxton and Brunton based on early 

observations of disparate effects of cAMP signals in cells [30]. G protein-coupled receptors 

(GPCRs) initiate the signaling cascade leading to second messenger generation and their 

localization in plasma membrane microdomains are critical elements in the subsequent 

localization of a cAMP signal [31]. The G protein, Gαs, appears to be expressed uniformly 

across membrane microdomains and is in stoichiometric excess of both GPCRs and 

adenylylcyclases (AC) [32]. AC isoforms reside in caveolar/lipid raft microdomains or in 

non-raft plasma membrane domains [31]. However, the generation of an intracellular signal 

in a microdomain losses its spatial specificity if the signal freely diffuses through the cell. 

The fact that cAMP signals can remain membrane-delimited was first reported by Rich et al. 
[33]. FRET-based cAMP biosensors have provided direct evidence that cAMP is 

compartmentized [34•,35•]. Ample evidence has emerged since these reports to support the 

concept that cAMP does not freely diffuse inside cells [36]. Hydrolysis of cAMP by PDEs, 

in some cases existing in multiprotein complexes including receptors and A-kinase 

anchoring proteins (AKAPs) [4,17], physical barriers to diffusion by intracellular structures 

[37] and the buffering effects of PKA [38] all play roles in limiting the mobility of cAMP 

(Figure 2).

PDEs, by virtue of their ability to metabolize cAMP, play critical roles the establishment and 

maintenance of compartmentized cAMP signaling domains. Recent reviews discuss these 

effects of PDEs in more detail [39,40•]. Very few reports have examined the distinct 

localization of specific PDE isoforms in the subcellular microdomains where these cAMP 

pools operate, and these investigations have focused primarily on PDE4 [41]. PDE4D is of 

particular interest because it binds to β-arrestin, which brings it into close association with a 

recently activated GPCR [42]. PDEs also bind to certain AKAP isoforms to target their 

enzymatic activity to specific signaling complexes. These types of interactions expand the 

potential roles for AKAPs in the formation of macromolecular signal transduction 

complexes that create cAMP compartments (Figure 2). Recent work by the group of Baillie 

and others using cell-permeable peptide disrupters provided novel insights into the concept 

of compartmentized cAMP signaling, particularly focusing on different PDE4 isoforms. For 

example, direct interaction between PDE4A5 and the p75 neurotrophin receptor was 

implicated in extracellular matrix remodeling and tissue repair, processes potentially 

important to target fibrinolysis in COPD [43]. Direct interaction between PDE4D5 and 

integrin α5 was implicated in endothelial proinflammatory functions, processes known to 

impact obstructive lung diseases [44]. Disruptor peptides have been of tremendous value to 

provide proof-of-concept, although their development into drug-like tools still in its infancy.

Dynamic alterations of PDE expression in lung diseases: focus on PDE4

The PDE superfamily consists of 11 gene families with more than 21 individual genes, each 

with a distinct profile of substrate specificities, molecular structures and subcellular 

localizations (Table 1). PDE4, PDE7 and PDE8 are cAMP-specific; PDE5, PDE6 and PDE9 

are cGMP-specific; PDE1, PDE2, PDE3, PDE10 and PDE11 are dual-specific [4,45]. 

Intriguingly, we reported recently that PDE family member mRNA levels exhibit a 
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differential sensitivity to cigarette smoke in nasal epithelium, bronchial epithelium and lung 

tissue from patient cohorts [27•]. The gene expression of both PDE1A and PDE11A were 

decreased in bronchial epithelium and lung tissue. PDE7A was decreased in bronchial 

epithelium and nasal epithelium whereas PDE6A was increased in bronchial epithelium and 

lung tissue. These data suggest that these PDE isoforms, largely neglected in current lung 

research, are of central importance in pathophysiological processes induced by cigarette 

smoke, the latter primarily linked to COPD and IPF pathologies [13•].

Of note, PDE4D had a contrasting pattern of change (decreased in bronchial epithelium and 

increased in lung tissue), implying that this PDE isoform may be subject to alternative 

regulation in the different elements of the respiratory tract. Alternatively, cell type specific 

expression of PDE4D and alterations in these cell types may cause the shift in expression 

levels during smoke exposure. We also reported that changes in PDE3A and PDE4D protein 

expression were restricted to distinct lung compartments (bronchial epithelium versus total 

lung homogenates) [27•]. Our findings correlate with the existence of a unique amino-

terminus of the PDE4 family shown to contribute to the generation of distinct signalling 

complexes that seem to maintain local cAMP gradients [19,45]. Indeed, in primary human 

airway smooth muscle cells PDE4D, to be more precise PDE4D5, is subject to cAMP-

induced upregulation at the level of gene expression, protein expression and activity [46], 

implicating this isoform as an important cAMP negative feedback node. In human airway 

smooth muscle PGE2 upregulates PDE4D5 expression and leads to pro-asthmatic changes, 

including β2AR desensitization, reduced cellular cAMP and increased airway smooth 

muscle responsiveness to acetylcholine [47]. Moreover, human airway smooth muscle from 

asthmatic patients exhibited an increased PDE4D expression and a subsequent reduction of 

cAMP production by β2AR agonists [48]. Together these studies indicate that alterations in 

spatio-temporal dynamics of cAMP may contribute to key features of obstructive lung 

diseases and further points to the necessity to accelerate research to successfully target 

PDE4 family subtypes, such as PDE4D, to overcome limitations in current therapies. Recent 

studies also demonstrate that a subset of PDE4s, such as PDE4A-D, are specifically linked 

to Gαs-coupled receptors and cAMP production (Table 1). Targeting PDE4D might increase 

the therapeutic benefit for patients suffering from cigarette smoke-related obstructive lung 

diseases such as COPD and IPF [13•].

Focus on PDE2 and PDE3 as novel players in lung disease

There are several dual-specific PDE isoforms that are important for maintaining the 

crosstalk between the cyclic nucleotides cAMP and cGMP. Of particular interest is PDE3, 

also known as cGMP-inhibited cAMP-specific PDE. PDE3 exhibits a higher affinity and 

lower catalytic hydrolysis rate for cGMP compared to cAMP, thus cGMP acts as a 

competitive inhibitor and subsequently leads to inhibition of cAMP hydrolysis by PDE3 

[49,50]. On the other hand, binding of cGMP to the amino-terminus of the allosteric 

regulatory site of PDE2 increases the hydrolysis rate of cAMP by 10-fold, leading to a 

profound drop in cellular cAMP [51,52•]. Recent research identified PDE3A as a novel anti-

inflammatory target in allergic airway inflammation [53•], and as shown for PDE4s, a subset 

of PDE3s are specifically linked to Gαs-coupled receptors and thus cAMP (Table 1). In 

addition to these interesting features, PDE2 is known to localize in mitochondria and linked 
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to cardiac and lung injury models [54,55] (Figure 2). Lung mitochondrial dysfunction, 

linked to metabolic dysregulation and metabolic reprogramming [56,57•], is caused by air 

pollution primarily originating from diesel burning automotive engines and it is envisioned 

as a primary cause for lung dysfunction [58–60]. Distinct groups of people are more 

susceptible to the health effects of air pollution. Of particular concern are elderly, children 

and people with pre-existing obstructive lung diseases, specifically the groups suffering from 

exacerbations [14•, 15,16]. Several types of pollutants are released during diesel fuel 

combustion including but not limited to particulate matter, metals and polycyclic aromatic 

hydrocarbons [58–60]. In primary murine tracheal epithelial and airway smooth muscle cells 

polycyclic aromatic hydrocarbons reduce cellular cAMP production by β2AR agonists [61•]. 

Such studies correlate air pollution-induced mitochondrial dysfunction with symptoms of 

asthma, COPD and IPF. Future studies should focus on targeting and stabilizing subcellular 

microdomain-specific PDEs to overcome the current limitations in PDE-based therapies of 

these obstructive lung diseases.

Focus on PDE8 as novel player in lung disease

While the cAMP signaling community has largely focused on PDE3 and PDE4 isoforms, 

other PDEs capable of regulating cAMP levels are encoded in the human genome. PDE8A, 

known as an IBMX-insensitive PDE, is expressed in human airway smooth muscle cells 

[62•]. This PDE isoform localizes in lipid rafts and specifically regulates cAMP signaling 

stimulated by β2AR with no effect on cAMP signaling stimulated by PGE2 ([62•] and Figure 

2). Inhibition of PDE8 may make an advantaged therapeutic approach since this isoform is 

not widely expressed in the body and it does not regulate global cAMP signaling [63]. 

Specific inhibitors of PDE8, particularly those with proven pharmacokinetic or safety 

profiles in animal studies and/or clinical trials, do not exist. More work is needed to 

determine if PDE8 inhibition would provide a therapeutic benefit, but it is tempting to 

speculate that it will be particularly effective in combination with β2AR agonists.

Conclusions and future perspectives

Other than the few reports outlined above, the localization of PDE isoforms in specific 

cAMP compartments is unknown. We and others have postulated that some PDEs act as 

global regulators of cAMP signaling while other PDEs are specifically localized (Figure 2). 

It is further likely that some PDE isoforms regulate a specific signaling complex in a 

contextuall manner by moving to a location based on particular stimuli [64]. Lung 

fibroblasts provide evidence for this type of regulation. PGE2, an important endogenous 

regulator of lung fibroblasts, displays diminished cAMP responses following chronic 

exposure to PGE2. Our recent data show that PGE2 pretreatment induces expression of 

PDE3A, 4B and 4D but that similar treatment with β2AR agonist only induced expression of 

PDE4D [64]. This indicates that EP2 receptors induce qualitatively different signals than 

β2AR despite both coupling to increases in cAMP. Moreover, the induction of PDE 

expression by PGE2 pretreatment reduced cAMP signaling by EP2 receptors but had no 

effect on cAMP responses stimulated by β2AR. The logical conclusion from these results is 

that the induced PDE isoform (likely PDE4B) selectively participates in EP2R signaling 

complexes and is excluded from the compartment where β2AR act. This highly specific 
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regulation by one PDE isoform provides an opportunity for new therapeutics that are more 

effective with fewer adverse effects. The fact that broad PDE inhibitors have enjoyed some 

clinical success, such as the PDE3 family inhibitor cilostazol and the PDE4 family inhibitor 

roflumilast, should provide motivation to develop small molecules that are more selective. 

Other approaches for disrupting the complexes where PDE isoforms act are also possible, as 

recently reviewed by Blair and Baillie [40•] and outlined in detail above.

Obstructive pulmonary diseases continue to represent leading causes of morbidity and 

mortality. Current bronchodilatory treatments for asthma and COPD leverage cAMP 

signaling. The fact that roflumilast, a PDE4 inhibitor, is an effective add-on therapy for 

COPD and asthma shows the importance of the cAMP pathway and the utility of enhancing 

these signals via inhibition of PDE activity. However, broad inhibition of an entire PDE 

family, such as PDE3 or PDE4, will have numerous effects based on the widespread 

expression of these isoforms in many cells and tissues. Therapeutics that specifically inhibit 

limited PDE isoforms, such as PDE3A or PDE4D, will likely enjoy greater clinical benefits 

with fewer adverse effects. Furthermore, certain lung pathologies may alter PDE expression 

or localization, causing degradation of cAMP signals to be distorted. As discussed above, 

many lung pathologies show altered PDE expression upon exposure to cigarette smoke. 

Such changes would mean the current therapies can’t reach full therapeutic potential in some 

patients, but they may also provide therapeutic opportunities if highly specific inhibitors can 

be developed to target upregulated PDE isoforms in the critical cell type and avoid inhibition 

of other isoforms.

In addition to improving specificity of PDE inhibitors, more research into how specific PDE 

isoforms play key roles in distinct subcellular compartments is needed. As discussed above, 

PDE isoforms PDE3A, PDE4D and PDE8A are differentially expressed in distinct lung 

compartments. It is likely that other isoforms also have specific localization. It is our thesis 

that inhibiting a specific PDE isoform that resides in a distinct locale would increase 

intracellular cAMP signaling that couples to a subset of all possible effects of cyclic 

nucleotides. This targeted action would have more specific therapeutic effects but would also 

boost the effectiveness of existing therapies. To reach these goals we need to fully define the 

molecules in each cAMP signaling microdomain (including GPCR, AC isoforms, AKAPs 

and PDEs), characterize the cellular functions that each microdomain regulate, and 

understand the role each one plays in lung pathophysiology. Targeting of subcellular cAMP 

domains using a variety of cAMP sensors has been achieved [35•] and the use of peptide 

disruptors has provided the proof-of-concept of therapeutic approaches that focus on subtype 

specific targeting of PDEs [40•]. Completing our understanding of cAMP signaling 

microdomains and the PDE isoforms therein should then provide impetus to develop new 

drugs with PDE isoform selectivity.
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Figure 1. 
PDE inhibition in obstructive lung diseases.

Pulmonary diseases such as COPD, asthma and IPF are characterized a certain degree of 

airway obstruction, chronic inflammation and airway remodeling. Global PDE inhibition 

increases cyclic nucleotide signaling and therefore provides therapeutic benefit. However, 

the widespread expression of PDEs in all types of lung cells causes broad inhibition of a 

family of isoforms and eventually also leads to unwanted side effects. Specific inhibitors of 

single PDE isoforms, particularly those acting specifically in particular subcellular signaling 
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microdomains, have the potential to be more effective and specific. See text for further 

detail.
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Figure 2. 
PDEs facilitate formation and maintenance of cAMP signaling compartments.

Individual PDE isoforms are expressed in discrete subcellular locations where they regulate 

cyclic nucleotide signaling in specific signaling compartments. Some of these specific 

findings are illustrated here. Understanding the microdomains where these PDEs are 

expressed and the cellular functions they regulate can lead to more specific therapeutic 

approaches. See text for further detail.
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