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Abstract

Objective: Subgroup analyses of clinical trial data can be an important tool for understanding 

when treatment effects differ across populations. That said, even effect estimates from pre-

specified subgroups in well-conducted trials may not apply to corresponding subgroups in the 

source population. While this divergence may simply reflect statistical imprecision, there has been 

less discussion of systematic or structural sources of misleading subgroup estimates.

Study Design/Setting: We use directed acyclic graphs to show how selection bias caused by 

associations between effect measure modifiers and trial selection, whether explicit (e.g. eligibility 

criteria) or implicit (e.g. self-selection based on race), can result in subgroup estimates that do not 

correspond to subgroup effects in the source population. To demonstrate this point, we provide a 

hypothetical example illustrating the sorts of erroneous conclusions that can result, as well as their 

potential consequences. We also provide a tool for readers to explore additional cases.

Conclusion: Treating subgroups within a trial essentially as random samples of the 

corresponding subgroups in the wider population can be misleading, even when analyses are 

conducted rigorously and all findings are internally valid. Researchers should carefully examine 

associations between (and consider adjusting for) variables when attempting to identify 

heterogeneous treatment effects.
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Background/Aims

A common sight in the published results of a randomized controlled trial is a forest plot 

showing the treatment effect in trial participants separately for two or more groups: for 

example, for men and women, or for those over and under the median age of participants, or 

for smokers and non-smokers. The expectation is that the treatment effect within each 

subgroup shows the effect in that type of participant, because randomization is maintained 

within subgroups.1, 2

Unfortunately, these simple analyses can lead to inaccurate conclusions about the benefits to 

patients in the corresponding subgroups in the source population.3–6 One subtle fact is that 

subgroup estimates can become misleading when trial participation depends on multiple 

factors, even when not all of these factors are associated with the outcome in the source 

population. This occurs whether factors are explicitly associated with participation (e.g. 

through eligibility criteria) or implicitly by virtue of self-selection (e.g. through lower 

participation of older patients or people of color).

Here, we use causal graphs to help explain this problem, and walk through an example of a 

potentially misleading subgroup analysis. We also provide a tool for researchers to construct 

and examine additional scenarios that may be relevant to their specific area of study and 

show that appropriately adjusted subgroup analyses can yield more informative results.

Methods

Theoretical Framework

Suppose we are planning a randomized controlled trial of a treatment X on an outcome Y 

(say, mortality). We are interested in examining whether the effect of X differs depending on 

the level of another categorical variable, V1, in the source population: that is, not just in the 

sample in which our study is conducted, but in the population which gave rise to our study 

sample (sometimes known as the target population).7 For example, if V1 is self-reported 

race, then our question is whether the effect of treatment is the same in each racial group. In 

this example, we assume that there is no effect of V1 on Y, no common causes of V1 and Y, 

and no effect measure modification of the treatment effect by V1 in our target population; 

i.e., that the effect of X on Y on the scale of interest is the same at both levels of V1. If the 

probability of participation for those with V1 is equal to the probability of participation for 

those without V1, each subgroup defined by V1 will yield an unbiased estimate of the 

treatment effect in the corresponding portion of the source population in expectation.

However, when V1 and another variable V2 (say, severity of illness) are both associated with 

study participation a problem can arise. Consider the directed acyclic graphs in Figure 1.8 

The arrows from V1 and V2 into participation on the left represent the fact that altering 

either of the variables changes the chances of trial participation. This might be the case if 

Black adults and adults with more severe illness were less likely to participate in the trial.9 

Variable V1 and V2 also share no common causes-meaning that there are no other variables, 

measured or unmeasured, that cause both V1 and V2. Because of this, there is only one 

causal path from V1 to Y in the source population in Figure 1A: the path from V1 -> 
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Participation <- V2 -> Y. This path is blocked, however, because participation is a collider 

(so-called because the arrows from V1 and V2 “collide” at participation).10 As a result, we 

expect to see no association between V1 and Y in the full population and V1 should not 

modify the effect of X on Y.11

Of course, when we conduct a trial, the trial population naturally restricts to those who were 

recruited into the study - we cannot study people who were not recruited or did not 

participate. This leads to the situation shown in Figure 1B. Conditioning on the participation 

collider opens up an association between its parents, V1 and V2, in at least one stratum of 

participation. This means that we can expect V1 to be associated (via V2) with the outcome 

in the trial; if we look for variation of the effect of X on Y by levels of V1 within the trial 

participants we might well find it and, indeed, will find it on at least one of the relative (i.e. 

risk ratio) and absolute (i.e. risk difference) scales.11, 12 We put numbers to an example 

scenario.

Hypothetical Example

Suppose researchers are conducting a placebo-controlled trial of a novel therapeutic agent, 

Fakeium (X), that may reduce the 5-year risk of all-cause mortality (Y) after myocardial 

infarction when added to standard treatment. To achieve power to address a safety concern 

that has been seen in other drugs in the class, they had to recruit 89,375 patients from a 

source population of 1,000,000. Knowing that minority populations and people of color are 

often underrepresented in clinical trials and unsure about whether they may benefit more or 

less from treatment,13, 14 they pre-specified subgroup analyses of those who identified as 

Black and those who did not (they anticipated being underpowered for any analyses in 

smaller ethnic groups).

One-quarter of patients in the source population are Black (V1), half of the myocardial 

infarctions (MIs) in the source population are less severe and half were more severe (V2), 

and race and MI severity are independent. Severity modifies treatment effect in that Fakeium 

is effective only in those with less severe MIs: these patients had a 30% chance of death in 

the placebo arm and a 25% chance of death in the Fakeium arm, while higher severity 

patients have a 40% chance of death regardless of treatment status. Race, however, does not 

modify treatment effect, and is not associated with the outcome. In the study, patients with 

severe myocardial infarctions had a 2% chance of being recruited if Black and a 10% chance 

of being recruited if non-Black. If the infarction was less severe, patients were more likely to 

participate regardless of race, with participation rates of 11% in non-Black and 8% in Black 

participants.

Table 1 shows the expected distributions of race and myocardial infarction severity in the 

source population and the trial population. While the odds for mild infarction are identical in 

Black and non-Black participants in the source population, they differ substantially in the 

trial because both race and MI severity have an effect on study sampling. This has direct 

consequences for the trial subgroup analyses. Table 2 presents the expected results of 1) an 

imaginary study and subgroup analyses conducted on the source population and 2) a study 

conducted in the trial population.
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Two conclusions might be drawn from the trial results. First, that Fakeium protects against 

mortality in the overall trial population (number needed to treat, NNT, of 30). Second, that 

Fakeium has a substantially more potent protective effect in those that identify as Black than 

those that do not (NNT of 21 in those patients versus NNT of 32 in the remaining patients). 

The p-value for heterogeneity between the two groups is 0.06. With these results Fakeium 

might be used more often in Black patients than non-Black patients, especially if it is 

expensive or has a burdensome side effect profile.

Of course, as discussed above and shown in the full population data, Fakeium is equally 

effective in Blacks and non-Blacks in the source population (the p value for interaction there 

is 1.00); when we do not condition on trial participation, only myocardial infarction severity 

modifies the effect of Fakeium.

This finding is not the result of statistical noise or hunting for significant p values but instead 

the result of conditioning on a collider inflating the prevalence of lower severity myocardial 

infarctions among black trial participants. Even if we repeated the trial an infinite number of 

times, or tripled the trial enrollment, estimated benefits in Blacks would still be exaggerated 

in this analysis in the trial population; the problem arises from the causal structure of 

selection from the source population into the trial, not from random chance.

Generally, this type of non-random selection requires external data from the source 

population to recover unbiased effects in said source population.15, 16 Here, however, we can 

account for this non-random selection by performing a subgroup analysis that adjusts for 

both race (V1) and MI severity (V2) by fitting a multivariable identity-link linear regression 

with a term for treatment, a term for race, a term for MI severity, and an interaction term 

between race and treatment.

Because MI severity is now being held constant, the interaction between race and treatment 

will appear to be null (even though the lack of an interaction term between MI severity and 

treatment means the model is technically misspecified). If we instead fit a regression that 

includes a term for treatment, a term for MI severity, an interaction term between the two, 

and a term for race, we can see that the treatment effect varies across MI severity even if 

race is held constant. Including these predictors of the outcome in the model also has the 

advantage of helping reduce the impact of chance imbalances between study arms and 

between subgroups.17 By looking at the full constellation of variables that might impact 

treatment effect at once (the trees, collectively) instead of just looking at them one by one 

(the forest), it can become much clearer which variables are associated directly with better 

or worse treatment effects in the trial.

Discussion

In our sample case, taking marginal subgroup analyses at face value was dangerous even 

when the analysis was pre-specified. Considering this finding through the lens of collider 

bias-a problem much discussed as a threat to internal validity10, 18-helped clarify both why it 

occurred and how it might be resolved. This potential bias extends to many other scenarios 

where multiple variables are associated with trial participation, which we explored with the 
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help of an Excel spreadsheet (eSupplement 1) that readers can use themselves as well. These 

associations can be implicit (via cultural or institutional norms related to trial participation) 

or explicit (via inclusion and exclusion criteria).

This work is not meant to discourage researchers from conducting subgroup analyses or 

attempting to identify heterogeneity of treatment effect across different groups; identifying 

and understanding interaction, particularly additive-scale interaction, is vital for public 

health.7, 19 Rather, it seeks to encourage researchers to move beyond simple stratification 

and to think deeply about the relationships between various subgroups, trial participation, 

and the outcome. They can then conduct adjusted subgroup analyses that inform later 

research using statistical methods (like outcome modeling or weighting) to generalize or 

transport treatment effects to other target populations.20, 21

From experimentation with the spreadsheet, the magnitude of the V1-V2 association that is 

created by conditioning on participation varies heavily depending on the strength of the 

individual V1 and V2 causal effects on participation, as well as whether they interact with 

one another with respect to participation. In fact, if their effects on participation are perfectly 

multiplicative and V1 and V2 are independent, no V1-V2 association is present within the 

trial sample (though one is created in the unsampled individuals). For the most part, this type 

of exact mathematical cancellation (called unfaithfulness in the world of causal diagrams) is 

not likely to occur naturally.22, 23

If there are multiple explicit inclusion criteria that can overlap, such as requiring at least one 

of hypertension and diabetes after myocardial infarction in cardiovascular trials, the bias is 

present in the subgroups that do not possess one of the inclusion criteria (e.g. those without 

hypertension and those without diabetes). This occurs because hypertension only has a 

causal effect on participation in those without diabetes and diabetes only has a causal effect 

on participation in those without hypertension; the result is that the collider-generated 

association is only present in those strata. When the associations are due to implicit factors, 

as in our example, subgroups across levels of V1 are all potentially misleading.

Notably, even if V1 does modify the treatment effect (Figure 2), the subgroup effects in the 

trial can still become a biased estimate of the effects in the source population. Additionally, 

any subgroup analyses for V2 will now differ as well. The collider-induced association could 

push the difference between groups either further from or closer to the null, depending on 

the direction of the modification and the specific relationships between the variables and 

participation. Changes in subgroup composition and participation across attempts to 

replicate the subgroup results could result in failure to reject null hypotheses of 

homogeneity, even when real effect measure modification does exist.

We used a hypothetical example because that was the only way to know and tweak the input 

parameters; that said, we think this problem may occur frequently. With respect to explicit 

associations with participation, trials (especially cardiovascular trials like AFCAPS1 or the 

trials of direct-acting oral anticoagulants in atrial fibrillation24–26) often only enroll patients 

with a high enough risk based on some risk score, and then stratify by the components of the 

risk score in subsequent subgroup analyses. While it is more difficult to assess the 
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prevalence of the implicit associations with participation, demographic factors such as sex, 

race, and age (which have historically been associated with trial participation)27 may impact 

participation differently in those with and without various chronic conditions. In either case, 

these risk factors or variables associated with the outcome will act as effect measure 

modifiers on the additive (i.e. risk difference) or relative (i.e. risk ratio) scale, if not both.12 

The final result is misleading subgroup effects across the demographic factors, the chronic 

conditions, or (most likely) both.

There are several important limitations to this work. The extent of this problem can vary 

substantially depending on the underlying causal relationships between variables. The 

degree to which the results are misleading largely depends on whether and by how much V2 

modifies the treatment effect of interest-if it only modifies the risk difference, the subgroup 

risk ratios can be unbiased, and vice versa (and unfortunately, whether a variable modifies 

the risk difference, risk ratio, or both cannot be derived from a directed acyclic graph).28 

Another limitation is that we only explored binary variables; while these findings likely 

generalize to multilevel categorical or continuous variables, their magnitude and severity 

may differ. Our spreadsheet worked with relatively few potential effect modifiers, examining 

at most three modifiers simultaneously (V1, V2, V3). That said, with a larger covariate space, 

this phenomenon becomes more and more likely to occur.

Additionally, chance imbalances between treatment arms or between subgroups are not 

captured in these types of diagrams and can also result in biased estimates, particularly in 

smaller studies.17 Finally and perhaps most importantly, we merely demonstrated the 

existence of this potential problem; further work to understand its plausibility and impact in 

different types of trials using real data and more complex simulations is necessary to 

understand its impact.

Two final notes: first, this is not an internal validity problem. The estimates within each 

subgroup are valid estimates of treatment effect for that subgroup of trial participants. There 

is no graphical basis for adjustment for V1 and V2 when estimating these internal effects. 

But if subgroup analyses are being performed to help understand differences in treatment 

effects in larger (target) populations, they can easily mislead investigators, potentially with 

significant clinical consequences.7 Second, while we presented this through the lens of 

randomized trials because of their analytic simplicity, the same types of causal relationships 

can cause problems for observational data that undergoes an analogous selection process 

(e.g. prospective enrollment or restricting to those with specific insurance plans) if 

researchers simply split the study population after adjusting for confounding.

Conclusion

It is critical to identify heterogeneity in the effects of treatments in the source population of a 

study and not just in the study population. Subgroup analyses appear to be a simple method 

of doing so, but associations between subgroup strata and trial participation can lead to 

biased and potentially dangerous conclusions about treatment effects in subgroups in the 

source population. Moving beyond crude subgroup analyses is a crucial step towards the end 

goal of estimating treatment effects in routine clinical care; glances at forest plots are poor 

substitutes for in-depth and considered examinations of the trees.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is new?

Subgroup results can be misleading for reasons based on the factors underlying trial participation.

These results can result in incorrect beliefs about the efficacy of treatments in clinical populations.

Examining multiple potential modifiers of treatment effect at once, rather than conducting multiple crude 
subgroup analyses, can yield useful information about how and why variables are associated with subgroup 
differences in treatment effects.
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Figure 1. 
Two directed acyclic graphs. Panel A shows the causal relationships between V1, V2, X, 

participation, and Y in the source population; since there is no open path from V1 to Y in 

panel A, V1 will not modify the treatment effect of X on Y. Panel B shows the causal 

relationships between the same variables in the study population. Because we are 

conditioning on study participation, which depends on V1 and V2, there is now an open path 

from V1 to Y that can make V1 act as an effect modifier in the study population.
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Figure 2. 
Directed acyclic graphs for when both V1 and V2 directly modify the treatment effect of X 

on Y. Panel A is the directed acyclic graph for the full population, while Panel B is the 

directed acyclic graph for the trial population. Both variables now have arrows indicating a 

causal effect on Y, and as a result both V1 and V2 are expected to have a different 

association with Y before and after conditioning on study participation.
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Table 1:

Expected distributions of race and myocardial infarction severity in the 1,000,000 patients in the source 

population and the 89,375 patients in the trial.

Population Severe infarctions Mild infarctions Odds of mild infarction Odds ratio of severe vs mild infarction

Source population

Non-Black race 375,000 375,000 1:1 Ref.

Black race 125,000 125,000 1:1 1.00

Trial population

Non-Black race 37,500 41,250 1:1.1 Ref.

Black race 2,500 10,000 1:4 3.63
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Table 2:

Expected results of two randomized studies, one conducted in the source population if we did not have to 

recruit participants and one conducted in the trial population under our participation criteria above.

Analysis and treatment arm Participants Deaths
Risk of five-year 
mortality

Risk difference for five-year mortality 
(95% CI)

Source population

Placebo 500,000 175,000 35.00% Ref.

Fakeium 500,000 160,000 32.00% −3.00% (−3.18%, −2.82%)

Source population Black subgroup

Placebo 125,000 43,750 35.00% Ref.

Fakeium 125,000 40,000 32.00% −3.00% (−3.37%, −2.63%)

Source population non-Black subgroup

Placebo 375,000 131,250 35.00% Ref.

Fakeium 375,000 120,000 32.00% −3.00% (−3.21%, −2.79%)

Trial population

Placebo 45,625 15,687 34.38% Ref.

Fakeium 45,625 14,150 31.01% −3.37% (−3.98%, −2.76%)

Trial Black subgroup

Placebo 6,250 2000 32.00% Ref.

Fakeium 6,250 1700 27.20% −4.80% (−6.40%, −3.20%)

Trial non-Black subgroup

Placebo 39,375 13,687 34.76% Ref.

Fakeium 39,375 12,450 31.62% −3.14% (−3.80%, −2.48%)
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