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SUMMARY

Cognitive maps enable model-based inferences from limited experience that can guide novel 

decisions. We tested whether the hippocampus (HC), entorhinal cortex (EC), and ventromedial 

prefrontal cortex (vmPFC)/medial orbitofrontal cortex (mOFC) organize abstract and discrete 

relational information into a cognitive map to guide novel inferences. Subjects learned the status 

of people in two unseen 2-D social hierarchies, with each dimension learned on a separate day. 

Although one dimension was behaviorally relevant, multivariate activity patterns in HC, EC and 

vmPFC/mOFC were linearly related to the Euclidean distance between people in the mentally 

reconstructed 2-D space. Hubs created unique comparisons between the hierarchies, enabling 

inferences between novel pairs. We found that both behavior and neural activity in EC and 

vmPFC/mOFC reflected the Euclidean distance to the retrieved hub, which was reinstated in HC. 

These findings reveal how abstract and discrete relational structures are represented, combined, 

and enable novel inferences in the human brain.

eTOC Blurb

Park et al. show that the human brain constructs a multidimensional cognitive map from piecemeal 

observations of the outcomes of individual decisions. The cognitive map constructed in the 
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hippocampal-entorhinal system and orbitofrontal cortex represents abstract relationships between 

discrete entities, enabling efficient inferences to guide new decisions.

INTRODUCTION

To form rich world models, sparse observations often sampled from separate experiences 

need to be integrated into a coherent representation. There has been a recent surge of interest 

in the long-standing theory that the hippocampus (HC) and entorhinal cortex (EC) may 

organize spatial and non-spatial relational information into such a ‘cognitive map’ for goal-

directed behavior (Behrens et al., 2018; Bellmund et al., 2018; Cohen, 2015; Constantinescu 

et al., 2016; Eichenbaum and Cohen, 2014; Ekstrom and Ranganath, 2018; Hafting et al., 

2005; Moser et al., 2008; O’Keefe and Nadel, 1978; Schiller et al., 2015; Schuck et al., 

2016; Tolman, 1948; Wikenheiser and Schoenbaum, 2016). While past studies have 

identified neural signals in the HC and EC indicative of a cognitive map primarily using 

continuous task dimensions with online sensory feedback during task performance (e.g. 

visual, auditory, vestibular) (Aronov et al., 2017; Bao et al., 2019; Constantinescu et al., 

2016; Doeller et al., 2010; Eichenbaum and Cohen, 2014; Hafting et al., 2005; Nau et al., 

2018; O’Keefe and Nadel, 1978; Theves et al., 2019), many important everyday decisions 

involve discrete entities that vary along multiple abstract dimensions that are sampled 

piecemeal, one experience at a time, in the absence of continuous sensory feedback, such as 

with whom to collaborate or where to eat. Whether, and if so, how the brain constructs a 

cognitive map of abstract relationships between discrete entities from piecemeal experiences 

is unclear.

A powerful advantage of a cognitive map of an environment or task is the ability to make 

inferences from sparse observations that can dramatically accelerate learning and even guide 

novel decisions never faced before (Banino et al., 2018; Behrens et al., 2018; Jones et al., 

2012; Stachenfeld et al., 2017; Tolman, 1948; Vikbladh et al., 2019), a hallmark of 

behavioral flexibility and a key challenge in artificial intelligence (Behrens et al., 2018; 

Kriete et al., 2013; Wang et al., 2018). This is in part because a cognitive map of a task 

space would in theory allows “shortcuts” and “novel routes” to be inferred, as in physical 

space. To provide a concrete example, understanding the structure of family trees allows one 

to infer new relationships, such as the following: because Sally is John’s sister and Sue is 

John’s daughter, Sue must be Sally’s niece without ever directly learning this relationship 

(Fig. 1A). Biologically inspired computational models show the map-like coding schemes 

found in the HC and EC can in principle enable agents to perform vector navigation, 

including planning new routes and finding shortcuts to a goal in physical space (Banino et 

al., 2018; Bush et al., 2015; Dordek et al., 2016; Whittington et al., 2019). In particular, so-

called place cells in HC and grid cells in medial EC contain neural codes that permit 

calculation of predicted position (Moser et al., 2008; O’Keefe and Nadel, 1978; Stachenfeld 

et al., 2017), direction (Banino et al., 2018; Chadwick et al., 2015), and Euclidean distance 

(Behrens et al., 2018; Bellmund et al., 2018; Howard et al., 2014) in physical space. Yet 

despite recent theoretical proposals (Whittington et al., 2019), empirical evidence 

concerning how neural representations of abstract cognitive maps relate to such direct novel 

inferences outside of physical space has been lacking.
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A parallel literature based on recent studies focusing on the orbitofrontal cortex (OFC) has 

motivated a related theory that the OFC represents one’s current position in a cognitive map, 

not of physical space, but of task space (Schuck et al., 2016; Takahashi et al., 2017; Walton 

et al., 2010; Wikenheiser and Schoenbaum, 2016; Wilson et al., 2014). Recent findings 

further suggest a specialized role for mOFC in representing the latent (or perceptually 

unsignaled) components of the task space that define one’s current state in the task (Muller 

et al., 2019; Schuck et al., 2016; Wilson et al., 2014). Recent studies have indeed discovered 

that the OFC represents latent task states during learning and choice in support of this theory 

(Chan et al., 2016; Schuck et al., 2016; Wikenheiser et al., 2017), yet to our knowledge there 

has been little direct evidence of map-like representations (e.g. position, direction, or 

distance) of the task space in OFC. Moreover, whether this proposed OFC function would 

extend to representing a cognitive map of an abstract social space, or whether it would 

instead transfer to areas implicated in social cognition is unclear.

In addition to representing cognitive maps, both the HC and OFC have been implicated in 

model-based inference, such that distinct stimuli, or stimuli and rewards, that were not 

directly associated can be associated or integrated through an overlapping, shared associate 

(Jones et al., 2012; Koster et al., 2018; Kurth-Nelson et al., 2016; Schlichting and Preston, 

2014; Tompary and Davachi, 2017; Wimmer and Shohamy, 2012). Computational models 

have proposed how a related mechanism in the HC-EC system may additionally underlie 

transitive inferences about ordinal rank (Koster et al., 2018; Kumaran and McClelland, 

2012) (though see (Frank et al., 2005)). In addition to demonstrations that the HC-EC 

system is necessary for transitive inferences (Dusek and Eichenbaum, 1997), studies in 

animal models have demonstrated that the OFC is necessary for model-based inferences 

based on previously learned associations, but not for decisions based on directly learned 

cached values (Jones et al., 2012). While these HC-EC and OFC roles for associating or 

integrating individual items have been documented, how the brain constructs broader 

cognitive maps and makes direct inferences beyond chaining or integrating previously 

experienced elementary associations has been elusive. In particular, it is possible that similar 

mechanisms of integration, and/or distinct mechanisms that leverage an explicit 

representation of the relational structure of the space or task (Whittington et al., 2019), 

would allow for the integration of distinct relational structures into a single larger cognitive 

map from sparse observations (e.g. the integration of family trees through marriage) that 

even respects metric relationships (e.g. vector directions and distances) and enables direct 

inferences that have never been experienced before (e.g. Sue is Sally’s niece; Fig. 1A).

Here, we asked participants to learn two 2-D social hierarchies from the outcomes of binary 

decisions about individuals’ rank on either of the two dimensions, with each dimension 

learned on a different day. During fMRI participants were asked to make novel inferences 

about the relative status of a novel pair across hierarchies in only one dimension at a time. 

This manipulation meant subjects were required to flexibly switch between currently 

relevant and irrelevant social dimensions that described the same entities for decisions. We 

tested two non-mutually exclusive hypotheses concerning how the human brain could 

represent and flexibly switch between different dimensions that characterize the same 

entities to guide direct inferences. Based on previous decision-making studies showing 

behaviorally-relevant decision value signals in vmPFC/mOFC, and pending or currently 
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irrelevant value signals in separate prefrontal areas (Boorman et al., 2009, 2011; Nicolle et 

al., 2012; Park et al., 2017), one hypothesis predicts that neural activity in vmPFC/mOFC, 

and the HC-EC system (Fig. 1B), would depend on the current behaviorally relevant 

dimension alone, while other prefrontal areas may simultaneously reflect the currently 

irrelevant dimension (Fig. 1C). On the other hand, if relationships between people are 

projected into a unitary space defined by their respective values on two independent 

dimensions, then we would predict a single neural representation in vmPFC/mOFC and the 

HC-EC system such that behavioral and neural activity reflect the Euclidean distance over a 

2-D space between entities, rather than the behaviorally relevant 1-D rank alone (Fig. 1D).

RESULTS

Participants learned relational maps of two 2-D social hierarchies and used hubs between 
them to make inferences between novel pairs of individuals

We asked participants to learn the status of unfamiliar people in two separate groups 

organized hierarchically on two orthogonal dimensions: competence and popularity (Fig. 

2A). Importantly, participants never saw the 1- or 2-D hierarchies. Instead, they were able to 

learn the relative ranks of neighboring people who differed by only one level on one 

dimension at a time through a series of feedback-based dyadic comparisons and use 

transitive inferences to infer the remaining ranks (see (Kumaran et al., 2012)).

During the first two days of training (Fig. 2C), participants learned the relative status of two 

groups of 8 “entrepreneurs” separately, on only one dimension per day (Fig. S1A for Day 1 

and Fig. S1B for Day 2 training). For the third day of training, fMRI participants learned 

from select hubs enabling between-group comparisons between people in each group for the 

first time (Fig. S1C). By limiting between-group comparisons only to hubs (Fig. S1D and 

S1E), we were able to create comparative paths connecting each of the individuals in 

different groups, which could be leveraged to perform inferences between novel pairs 

between groups.

We analyzed fMRI data acquired from 27 subjects who successfully learned the relative 

ranks of the two social hierarchies (> 85% performance criterion in both dimensions, tested 

on Day 2 training). In each fMRI trial, participants were asked to make a binary decision 

about who was higher rank in one or the other dimension between a first face (F1) and 

second face (F2) presented sequentially (Fig. 1F). These faces were selected from different 

groups and were not hubs in the relevant dimension (non-hubs; Fig. S1F), meaning they had 

not been previously compared. Successful inferences, therefore, could rely on building an 

internal representation of the social hierarchies and a relational memory of the relative 

positions of F1, F2, and the hub. We predicted that the inference is made along a trajectory 

connecting the two individuals via the (unseen) hub (Fig. 2D).

Participants were able to successfully infer the relative position of these novel pairs of 

individuals (mean accuracy ±s.e.m.=93.6±0.77%). Nonetheless, the shorter the distance 

between individuals, the more difficult the decision about relative positions in the hierarchy. 

To examine the effects of distance of potential trajectories on decision making, we regressed 

choice reaction times (RT) on different distance measures using a multiple linear regression 
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model, thereby allowing them to compete to explain RT variance. We included the Euclidean 

distance from the hub (H2) to F1 (EH2F1), the Euclidean distance from the other hub (H1) to 

F2 (EH1F2), the relative rank in the task-relevant dimension, which is the 1-D distance 

between H2 and F1 (DH2F1), the 1-D distance between H1 and F2 (DH1F2), (Fig. 2D), as 

well as both 1-D and 2-D distances between F1 and F2 (DF1F2 and EF1F2, respectively), 

(Fig. 2E) to control for their possible covariation with hub-related distances. We found that 

the greater the 1-D and 2-D Euclidean distance between F1 and H2 (DH2F1 and EH2F1, 

respectively), the faster the RT ( DH2F1±sem=−52.9±11.9, t26=−4.5, p=4.5e-05; 

EH2F1±sem=−49.4±5.7, t26=−8.8; p=0.003), in addition to an effect of the 1-D distance 

between F1 and F2 (DF1F2) ( DF1F2±sem=−64.6±12.5, t26=−5.3, p=0.0002), (Fig. 2F; see 

Fig S2C and S2D for confirmatory and control analyses). Our behavioral results show that 

participants preferentially recall H2 as the task-relevant hub to aid in the comparison 

between novel pairs of faces, with the Euclidean distance to H2 explaining variance over and 

above the 1-D distance alone.

Neural activity reflects the Euclidean distance to the retrieved hub during inferences

To examine whether neural activity during choices was likewise modulated by the distance 

of inference trajectories via the hub over in a 2-D space, first, we regressed BOLD activity at 

the time of the inference (F2) against the parametric regressors of Euclidean distance 

between the hub and the target face (EH2F1 and EH1F2) and their (cosine) vector angles 

(AH2F1 and AH1F2). We first tested for effects in a priori regions of interest (ROI) that 

combined multiple anatomically defined ROIs, including the bilateral HC, EC, and vmPFC/

mOFC (Fig. 1B). We found neural correlates of the Euclidean distance of the decision 

trajectory via hub H2 (EH2F1) in the vmPFC/mOFC (peak voxel [x,y,z]=[2,44,−10], t26=4.71 

for right vmPFC/mOFC; [x,y,z]=[−2,28,−4], t26=4.28 for left vmPFC/mOFC), and bilateral 

EC (at the peak level, [x,y,z]=[24,−20,−26], t26=3.81 for right EC; [x,y,z]=[−18,−10,−26], 

t26=3.49 for left EC) corrected for multiple comparisons over the combined anatomical ROI 

using permutation-based Threshold-Free Cluster Enhancement (TFCE) (Smith and Nichols, 

2009) (pTFCE<0.05). We did not find significant effects in HC (p>0.005, uncorrected).

To examine effects outside of our a priori ROIs, we performed an exploratory whole-brain 

analysis. These analyses showed the right lateral OFC (lOFC, [x,y,z]=[30,34,−18], 

t26=4.12,) also reflected the Euclidean distance to the context-relevant latent hub H2 (Fig. 

3A). For exploratory analyses we apply whole-brain TFCE corrections at the threshold 

pTFCE<0.05 (see Table S1 for a full list of brain areas surviving correction). No significant 

effects were found for the alternative metric terms including the vector angle AH2F1, or for 

metrics associated with the alternative hub, H1 (EH1F2 and AH1F2) at these thresholds (Fig. 

3A; Fig. S3). These analyses show that activity in vmPFC/mOFC, lOFC, and the EC, but not 

HC, reflects the Euclidean distance of the trajectory via Hub 2 (EH2F1), but not Hub 1 

(EH1F2), consistent with choice behavior.

Next, we investigated our competing hypothesis that the brain flexibly switches between 

behaviorally relevant and irrelevant dimensions with simultaneous coding of both 

dimensions, but in different brain regions. Specifically, we tested whether the current 

behaviorally relevant rank distance (DH2F1) and the behaviorally irrelevant rank distance 
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(IH2F1) better explain neural activity in the same ROIs, or elsewhere in the brain (GLM2). 

This analysis revealed positive effects of both DH2F1 and IH2F1 in vmPFC/mOFC (Fig. 3A; 

Table S1) (DH2F1: [x,y,z]=[−2,32,−6], t26=5.25, and [x,y,z]=[4,30,−6], t26=4.96, and IH2F1: 

[x,y,z]=[6,36,−6], t26=3.73, [x,y,z]=[−4,30,−4], t26=3.48) (pTFCE<0.05). We found similar 

effects in the EC (DH2F1: [x,y,z]=[24,−20,−32], t26=3.84 and IH2F1: [x,y,z]=[22,−14,−42], 

t26=3.46) at the uncorrected threshold of p<0.001, but they did not survive TFCE correction. 

Consistent with our analysis of EH2F1, we did not find any effects of DH2F1 and IH2F1 in the 

HC even at a reduced threshold (p>0.005, uncorrected). To test whether any areas 

preferentially encoded task-relevant (DH2F1) or irrelevant (IH2F1) distances, we also directly 

contrasted these distance terms. Effects in the vmPFC/mOFC and EC were not significant 

when contrasting DH2F1 over IH2F1 and IH2F1 over DH2F1 (Fig. S2E). Importantly, we did 

not find evidence to support the hypothesis that the task-relevant distance (DH2F1) was 

encoded in one set of brain regions and the task-irrelevant distance (IH2F1) was 

simultaneously encoded in a different set of brain regions, even at a liberal threshold 

(p<0.01, uncorrected) (Fig. S2E).

To examine whether the brain preferentially encodes the Euclidean distance of the decision 

trajectory (EH2F1) over and above the rank difference in the 1-D social hierarchy (DH2F1), 

we conducted several additional analyses (see methods for details). First, we confirmed the 

effect of EH2F1 in vmPFC/mOFC ([x,y,z]=[6,42,−14], t26=3.75, and [x,y,z]=[−12,24,−20], 

t26=3.72) and EC ([x,y,z]=[30,- 14,−30], t26=3.35), even after partialling out the 1-D task-

relevant distance, DH2F1 (pTFCE<0.05) (Fig. S2F). Second, if the vmPFC/mOFC and EC 

reflect EH2F1, we would expect to find the effects of DH2F1 and IH2F1 in the same voxels 

(though the effects of DH2F1 and IH2F1 would be expected to be weaker compared to EH2F1 

because EH2F1 is factorized into vectors DH2F1 and IH2F1 and each of these only partially 

explain the variance in EH2F1; Fig. S2E). Note, the objective of this analysis is to examine 

what combination of D and I are reflected in vmPFC/mOFC and EC activity, rather than test 

the hypothesis that these areas independently code for both D and I. If a brain area encoding 

EH2F1 assigns equal or similar weights to DH2F1 and IH2F1 during decision-making, we 

would expect that a conjunction null analysis (Nichols et al., 2005) would reveal overlapping 

effects of DH2F1 and IH2F1. We found inclusive masking between DH2F1 and IH2F1 (at 

t26>2.78, p<0.005) in the vmPFC/mOFC and EC (Fig. 3C). Collectively, the results of these 

analyses support the interpretation that vmPFC/mOFC and EC activity encodes or reflects 

EH2F1, which is composed of similar weighting of DH2F1 and IH2F1 (Fig. 3D), during novel 

inferences, consistent with a direct inference over the 2-D space (see Fig. 1A and 1D).

Finally, to formally arbitrate between different possible decision trajectories, we used 

Bayesian model selection (BMS) to compare 2-D and 1-D metrics for different possible 

trajectories. This formal comparison revealed clear evidence in favor of the Euclidean 

distance through hub H2 (EH2F1) in the EC and vmPFC/mOFC, supporting the hypothesis 

that the relevant latent hub H2 is used for model-based inference using a 2-D cognitive map 

(exceedance probability=0.82 in left EC; 0.91 in right EC; 0.89 in left vmPFC/mOFC;0.85 

in right vmPFC/mOFC; Fig. 3B; Table S2). Taken together, our findings show that EC and 

vmPFC/mOFC compute or utilize Euclidean distances over the 2-D social space to guide 

inference decisions.
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HC reinstates the hub to guide inferences

The behavioral and neural analyses presented so far provide independent and convergent 

evidence that the context-relevant hub is retrieved from memory to guide inferences. We 

therefore searched for neural evidence of a reinstatement of the latent hub along this 

trajectory to guide decisions. Given the well-established role of the HC in episodic memory 

retrieval (Diana et al., 2007; O’Reilly et al., 2014), we predicted that the HC specifically 

would reinstate the context-relevant hub to guide inferences between two faces that had 

never been compared before. To address this question, we adopted a variant of repetition 

suppression (RS) (Barron et al., 2016; Boorman et al., 2016), but for a retrieved rather than 

explicitly presented item. During F3 presentation, participants were exposed to one of eight 

hub individuals matched for presentation frequency and win/loss history (Fig. S1G). We 

hypothesized that if the relevant hub that bridges F1 and F2 in the given dimension is 

presented during F3 presentation, directly after participants retrieve the relevant hub, then 

the BOLD signal in areas reinstating that hub should be suppressed compared to other trials 

presenting matched but non-relevant hubs.

We found that the right HC (peak voxel [x,y,z]=[38,−22,−12], t26=3.41, pTFCE<0.05 

corrected in our bilateral HC ROI showed greater suppression, specifically for the relevant 

H2 presentations ( =−0.46±0.13) compared to all non-relevant hub presentations ( =

−0.19±0.11) (t26=4.54, p<0.001, paired t-test in the independent, anatomically defined ROI) 

(Fig. 4; Fig. S4). Furthermore, in an exploratory whole-brain analysis, we confirmed that the 

right HC was the only brain area showing this suppression effect at this threshold. Control 

analyses indicated this effect was specific to H2 and ruled out distance confounds (Fig. S4) 

Taken together, these findings show that HC reinstates the behaviorally relevant hub H2 to 

guide model-based inferences between distinct relational structures.

HC, EC, and vmPFC/mOFC represent social hierarchies in a 2-D space

To directly examine the cognitive map’s representational architecture, we measured the 

pattern similarity between different face presentations during F1 and F2. Under the 

hypothesis that more proximal positions in the cognitive map will be represented by 

increasingly similar patterns of neuronal activity, we used representational similarity 

analysis (RSA) to test the extent to which patterns of activity across voxels in the HC, EC 

and vmPFC/mOFC are linearly related to the Euclidean distance between faces in the true 4-

by-4 social network. We reasoned that if the cognitive map of the social network is 

characterized by two independent dimensions represented in a 2-D space, the level of 

dissimilarity between neural representations evoked by each face (Fig. 5A) should be 

explained by pairwise Euclidean distances (E) (Fig. 1D), in addition to the pairwise rank 

differences in the task-relevant dimension (D) (Fig. 1C).

In hypothesis-driven analyses, we first analyzed data from our a priori selected anatomical 

ROIs (Fig. 1B), including the bilateral HC, EC, and vmPFC/mOFC. The representational 

dissimilarities estimated in the ROIs were explained both by the model representational 

dissimilarity matrix (RDM) of pairwise Euclidean distance in 2-D space (E; Fig. 5B) and, in 

a separate RDM, by the pairwise rank difference in the task-relevant distance (D; Fig. 5B) 

between individuals (one-sided Wilcoxon signed rank test, df=26, pFWE<0.05 
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HolmBonferroni correction for multiple comparisons across numbers of model RDMs (n=4) 

and bilateral ROIs (n=6)). Based on demonstrations that amygdala activity (Kumaran et al., 

2012) and gray matter density (Bickart et al., 2011; Noonan et al., 2014; Sallet et al., 2011), 

correlate with social dominance status, we also tested anatomically defined amygdala ROIs 

(Tzourio-Mazoyer et al., 2002). The amygdala pattern similarity was neither explained by E 

nor by D, even at a reduced threshold (p>0.05, uncorrected) (Fig. 5C). As a control region, 

we also tested the pattern similarity in primary motor cortex (M1) (Glasser et al., 2016), 

which was not explained by either predictor (p>0.05, uncorrected), (Fig. 5C).

Notably, the pattern similarity in HC, EC, and vmPFC/mOFC was not explained by the 

behavioral “context” of the task-relevant dimension (C, defined as popularity or competence 

trials; Fig. 5B), nor whether individuals belonged to the same group or not during training 

(G; Fig. 5B), (p>0.05, uncorrected), (Fig. 5C; Table S3). Importantly, the predictor of 

pairwise Euclidean distance (E) still significantly accounted for the pattern similarity in HC, 

EC, and vmPFC/mOFC (Rank correlation τA =0.045±0.005 for HC; τA =0.027±0.007 for 

EC; τA=0.048±0.006 for vmPFC/mOFC; pFWE<0.001) after partialing out its shared 

correlation with rank distance (D) to ensure that D alone was not driving the pattern 

similarity effects (Fig. S5B). To confirm that the pattern similarity truly reflected E, we 

tested for separate effects of D and I. Decomposing E into the terms D (Fig. 5E) and I (Fig. 

5F) revealed a linear relationship between pattern similarity and both distance components 

(See Table S3 for mean rank correlations τA; all pFWE<0.05 with Holm-Bonferroni 

correction). These analyses show that, in addition to D, I contributed significantly to 

representations in these regions, supporting the interpretation that the social hierarchy was 

represented in 2-D, even though only one dimension was behaviorally relevant.

A natural question arises from this finding: Why do participants need to retrieve the hub for 

inferences if they have already integrated the two hierarchies into a single cognitive map? 

We reasoned that if the two 2-D maps, one for each group, had not yet been fully integrated 

into a single map, then the effect of E should be weakest for different members who had 

never been compared during training. We found that the effect of E was strongest for within-

group pairs (i.e. individuals who were part of the same group during training; Fig. 5G; Fig. 

S5D) and for between-group pairs involving hubs (i.e. individuals and their hubs who were 

compared during between-group learning in day 3 training; Fig. 5G; Fig. S5E), and weakest 

for never-compared between-group pairs of non-hubs (Fig. 5G; Fig. S5F) in the bilateral 

HC, EC and vmPFC/mOFC (pFWE<0.001, two-sided Wilcoxon signed-rank test; Fig. 5G; 

mean rank correlations τA are shown in Table S3). Notably, however, the effect of E was still 

significant, though weaker, for never-compared between-group pairs of non-hubs in HC 

alone, suggesting that HC integration may lead EC and vmPFC/mOFC, since there was no 

significant effect for these novel pairs in these latter regions. As an alternative, we tested for 

individual differences in the level of hub reinstatement and found that it could not account 

for the strength of neural representations (Fig. S5G). These findings suggest that the 

previously experienced pairs may have been fully integrated into a single map in each 

region, but that the novel unlearned pairs were not as accurately integrated, and only present 

in the HC (Fig. S5D-G).
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In addition to these hypothesis-driven analyses, we also performed whole-brain exploratory 

analyses to test whether the neural representation of the social network extends to a broader 

set of regions. Specifically, we measured the extent to which each predictor (the model 

RDM of E and D) explains the pattern similarity measured from searchlight-based pattern 

analyses across the whole brain. This analysis revealed that the pairwise Euclidean distance 

(E) significantly explained the representational similarity between faces in HC and EC, as 

shown by the ROI analyses, and also in medial, central, and lateral OFC, among other areas 

(pTFCE<0.05; Fig. 5H; Table S4). A separate RDM based on the pairwise 1-D rank distance 

(D) significantly explained representational similarity between activity patterns in the lateral 

OFC, medial prefrontal cortex (mPFC), and posterior cingulate cortex (PCC) (pTFCE<0.05; 

Fig. S5A; Table S4). Furthermore, partialing out D from the RDM for E revealed significant 

effects in these same areas of HC, EC, and central/medial OFC, confirming that these 

representations were not simply driven by D alone (Fig. 5I; Table S4). Our findings suggest 

that the HC, EC and vmPFC/mOFC do not treat dimensions separately when representing 

individuals in a social network space. Instead, representations vary along a multidimensional 

cognitive map even when only one dimension is relevant to current behavioral goals.

DISCUSSION

The HC formation is thought to contain relational codes of our experiences that integrate 

spatial and temporal dimensions into a multidimensional representation (Buzsáki, 2013; 

Eichenbaum, 2017a; Eichenbaum and Cohen, 2014; Konkel and Cohen, 2009). Memories of 

place and their spatial relationship are key elements to constructing a cognitive map of 

physical space (Butler et al., 2019; Kropff et al., 2015; Moser et al., 2008). In humans, the 

ability to construct an accurate cognitive map of relationships between abstract and discrete 

information is proposed to be critical for high-level model-based decision making and 

generalization (Behrens et al., 2018; Bellmund et al., 2018; Vikbladh et al., 2019). We show 

that the HC and EC, which are well known for their proposed roles in the ability to navigate 

physical space (Moser et al., 2008; O’Keefe and Nadel, 1978) and simultaneously their roles 

in episodic memory (Eichenbaum et al., 2007; Ekstrom and Ranganath, 2018), contribute in 

a more general way to the organization and ‘navigation’ of social knowledge in humans 

(Cohen, 2015; Rubin et al., 2014; Tavares et al., 2015). Although participants were never 

asked to combine the two social dimensions, we found that the brain spontaneously 

represents individuals’ status in social hierarchies in a map-like manner in 2-D space. Such a 

cognitive map can be used to compute routes through the 2-D space and corresponding 

distances (Behrens et al., 2018), which we found were computed or used to guide inferences 

in EC and interconnected vmPFC/mOFC, a region known to be important for value-based 

decision making (Boorman et al., 2009; FitzGerald et al., 2009; Hunt et al., 2012; Lim et al., 

2011; Nicolle et al., 2012; Noonan et al., 2011, 2017; Papageorgiou et al., 2017; Rushworth 

et al., 2011; Strait et al., 2014). Moreover, our results show that the HC-EC system did not 

selectively represent the task-relevant information in our task, but the relative positions in 

the multidimensional space. More broadly, these findings support the HC-EC system’s role 

in representing a cognitive map of abstract and discrete spaces to guide novel inference 

decisions that relied on that cognitive map.
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We found that during novel inferences, RTs and neural activity in EC, vmPFC/mOFC, and 

lOFC reflected the Euclidean distance of navigational trajectories on 2-D space via relevant 

hubs, over and above the behaviorally-relevant 1-D ranks. We interpret these findings as 

reflecting a decision process that uses a vector over the 2-D cognitive map. We note that, 

depending on how certainty is defined, this univariate effect may also be interpreted as 

reflecting the certainty of the decision. This interpretation is consistent with an attractor 

decisionmaking network whose speed of accumulation to an attractor state will reflect the 

decision certainty, as has been proposed previously for vmPFC/mOFC in the context of 

value-based decision making (Hunt and Hayden, 2017; Hunt et al., 2012). That EC also 

reflects the same term suggests that, unlike in most value-based decision-making studies, it 

also contributes to the decision computation when based on a relational cognitive map. 

Notably, previous findings using human fMRI have reported that EC activity increases with 

longer Euclidean distances of planned and taken routes and reflects the planned direction of 

future routes during spatial navigation tasks (Chadwick et al., 2015; Doeller et al., 2010; 

Howard et al., 2014). Moreover, the global relational codes provided by grid cells can be 

used for straightforward computation of Euclidean distance from grid fields (Behrens et al., 

2018; Bush et al., 2015), and has been interpreted as a mechanism, in combination with 

other neural codes in EC and HC, for vector navigation to goals during planning (Banino et 

al., 2018; Behrens et al., 2018). This view suggests that greater EC activation for greater 

Euclidean distances may reflect this computation for the inferred vectors that guide 

inferences for non-spatial decision making, in concert with choice selection processes in 

vmPFC/mOFC.

We found that the pattern similarity between faces in HC, EC, and in vmPFC/OFC was 

robustly and linearly related to the true Euclidean distance between faces in the 4-by-4 social 

network, such that closer faces in the abstract space were represented increasingly more 

similarly. This finding is striking for two reasons: first, the two dimensions never had to be 

combined to perform the task accurately; and second, the true structure was never shown to 

participants, but had to be reconstructed piecemeal from the outcomes of binary 

comparisons between neighbors in each dimension separately learned on separate days. 

There are several strategies that could, in principle, be used to solve this task that do not rely 

on a 2-D representational space. For example, the task-relevant and irrelevant dimensions 

could be represented in separate brain areas, a hypothesis for which we did not find support. 

Alternatively, each person’s rank could have been represented by a linear (or logarithmic) 

number line, such as that found in the bilateral intraparietal area (Piazza et al., 2004), or as a 

scalar value that is updated using model-free mechanisms. That the neural representation in 

the HC, EC, and vmPFC/OFC areas automatically constructed the 2-D relational structure in 

our tasks instead suggests that the brain may project people, or perhaps any entities, into a 

multidimensional cognitive or relational space such that the entity’s position is defined by 

the relative feature values on each dimension (Bellmund et al., 2018; Buzsáki and Tingley, 

2018; Eichenbaum, 2017a). It is unclear from our study whether this finding is specialized to 

representing people, who are likely to be ecologically perceived as coherent entities over 

time, and characterized by multiple attributes, or more general to representing any entity. 

Precisely how this construction takes place and its generality will be an important topic for 

future studies to investigate.
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Our findings suggest that the brain may utilize the same neural system for representing and 

navigating continuous space to code the relationships between discrete entities in an abstract 

space. Following recent theoretical proposals (Eichenbaum and Cohen, 2014; Whittington et 

al., 2019), we hypothesize that subjects abstract structural representations from the ordinal 

comparisons about rank in the social hierarchy, which, by virtue of the inferred structure, 

allows efficient direct inferences to be made from limited observations. Further, our findings 

suggest that accurate inferences about relative ranks of novel pairs of individuals may 

depend on the ability to find a direct “route” in this multidimensional space. This vector-

based navigation over the cognitive map may be critical for efficient decision making and 

knowledge generalization. Moreover, accurate knowledge about the position of others in a 

social space should provide a solid foundation for sound inferences, thereby supporting 

effective model-based decision making. We found that the same cognitive map constructed 

by the HC-EC system is present in other brain areas, including the interconnected vmPFC/

mOFC (Barbas and Blatt, 1995; Eichenbaum, 2017b; Insausti and Muñoz, 2001; Preston and 

Eichenbaum, 2013; Wikenheiser and Schoenbaum, 2016) and neighboring central/lateral 

OFC, generally supporting the theory that OFC represents a cognitive map of task space 

(Baram et al., 2019; Schuck et al., 2016; Wikenheiser et al., 2017; Wilson et al., 2014), 

though in our study not only of the behaviorally relevant task space, but also the broader task 

space. Moreover, we show here that the OFC’s representation of the task space respects 

map-like Euclidean distances of vectors through that space and that OFC activity reflects 

these distances to latent hubs retrieved from memory to guide inference. These findings thus 

cast light on why the OFC plays a critical role in model-based inference on the one hand 

(Jones et al., 2012), and damage to the HC-EC system also impairs model-based decision 

making on the other (Dusek and Eichenbaum, 1997; Gupta et al., 2009; Miller et al., 2017; 

Vikbladh et al., 2019).

Finally, we suggest that the HC-EC system may play a key role in constructing a global map 

from local experiences, which may guide model-based decisions in vmPFC/mOFC, a region 

previously implicated in value-guided choice (Boorman et al., 2009; Chib et al., 2009; 

Grabenhorst and Rolls, 2011; Hunt et al., 2012; Lim et al., 2011; Papageorgiou et al., 2017; 

Strait et al., 2014). This same cognitive map appears to further guide how humans integrate 

knowledge in the social domain, a critical ability for navigating our social worlds (Kaplan 

and Friston, 2019; Kumaran et al., 2012, 2016; Tavares et al., 2015).

STAR★METHODS

Lead Contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Seongmin A. Park (seongmin.a.park@gmail.com).

Participants

A total of 33 participants (16 female, age range: 19–23, normal or corrected to normal 

vision) were recruited for this study via the University of California, Davis online 

recruitment system. Six participants were excluded due to strong head movements larger 

than the voxel size of 3 mm. In total, 27 participants entered the analysis (mean age: 
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19.37±0.26, standard error mean (SEM)). The study was approved by the local ethics 

committee, all relevant ethical regulations were followed, and participants gave written 

consent before the experiment.

Stimulus

The stimuli consisted of 16 grayscale photographic images of faces (Strohminger et al., 

2016) and two colored cues (red and blue squares). Each of the colored cues indicated the 

taskrelevant dimension of the social hierarchy for the current trial. The red square indicated 

the competence hierarchy for one-half of participants and the popularity hierarchy for the 

other half. All images were adjusted to the same mean grayscale value. The inter-trial 

fixation target was a white cross in the middle of a black screen. For hub learning and the 

fMRI experiment, the interstimulus fixation target was a purple cross (between F1 and F2) 

and a green cross (between F2 and F3) in the middle of a black screen, which indicates the 

progress of each trial to participants. The stimuli were presented to participants through a 

mirror mounted on the head coil. Note that face stimuli presented in this paper are license-

free images for display purposes. Prior to the experiment on the first day of training, 

participants performed a 1-back task where they viewed each individual face three times to 

minimize stimulus novelty effects.

Social hierarchies

Participants were asked to learn the relative ranks of 16 individuals (face stimuli) in two 

dimensional social hierarchies defined by popularity and competence. The 16 face stimuli 

were introduced as entrepreneurs; participants were asked to learn about which individuals 

were more capable to attract crowd funds (labelled popularity) and which individuals had 

higher technical proficiency (labelled competence) and used this information to guide 

investment decisions.

Each hierarchy has four levels of ranks. Four individuals were allocated at the same rank at 

each level of the hierarchy. Therefore, the structure of multidimensional social hierarchies is 

4×4 (Fig. 2A). The rank of an individual in one dimension was not related to his/her rank in 

the other dimension. For instance, the rank of four individuals who are at the 1st rank in the 

popularity dimension are the 1st, the 2nd, the 3rd, and the 4th, respectively in the competence 

dimension. During first two days of training, the relative status of one individual is only 

compared to one-half of the other face stimuli, which implicitly creates two groups in which 

each group comprised eight individuals (Fig. S1). In each group, two individuals were 

allocated into the same rank of each of the dimensions (2 × 4 ranks = 8 individuals). The 

sub-group structure is shown in Fig. 2A. The allocation of each face to the position in the 

social hierarchies was pseudo-randomized, in order to make sure that any visual features of 

the face (gender, race, and age) were not associated with the rank of the individuals. To do 

this, we prepared eight stimuli sets. Each of the stimuli sets comprise 16 different faces. A 

stimuli set was randomly assigned across participants.

Task instruction and experiment procedures.

Participants were instructed to imagine that they were a venture capitalist and decide where 

to invest after learning the relative ranks of 16 entrepreneurs in two independent dimensions 
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− competence and popularity. Participants were asked to learn which individual was better in 

technical proficiency – competence hierarchy, and which individual was better in attracting 

crowd funding – popularity hierarchy. During the learning block, participants were presented 

with two face stimuli of entrepreneurs with a contextual cue indicating the task-relevant 

dimension, chose the higher rank individual in the given dimension, and received feedback 

at the end of every trial. Participants were told that they would need to use the knowledge 

acquired during the learning block to decide in which entrepreneur they would want to invest 

when the ability in only one social hierarchy dimension is important. During the test block, 

participants chose one of two face stimuli who they believed was higher in the given 

dimension. They did not receive any feedback during test block trials.

Before training, the following instructions were clearly given to participants: (1) two 

entrepreneurs presented in the learning block have one rank difference whereas two 

entrepreneurs presented in the test block can have one or more rank differences. (2) Multiple 

individuals could be allocated to the same rank. Importantly, participants were never given 

any information implying the structure of social hierarchies, such as the total number of 

ranks in each dimension, or the number of individuals allocated into the same rank and were 

never asked to solve the task spatially. Each subject participated in behavioral training across 

three separate days, at least 48 hours apart. After the behavioral training on the third day, 

subjects participated in the fMRI experiment.

Behavioral training

During the first two days of training, participants learned the relative status of two groups of 

8 “entrepreneurs” separately, on only one dimension per day (Fig. S1A for Day 1 and Fig. 

S1B for Day 2 training), such that people in a group were only compared against others 

belonging to the same group (two groups of 8 entrepreneurs, Fig. 2A). At the end of Day 2, 

test trials without feedback ensured subjects could make transitive inferences to determine 

the status of remaining members within a group, on each dimension separately (test2 in Fig. 

S1B), indicating they had learned the two 1-D hierarchies for both groups. Importantly, 

participants were never asked to combine the two dimensions in either group. We included 

four rank levels per dimension to ensure that differences between rank levels 2 and 3 could 

not simply be explained by differences in win frequency, since these people each “won” and 

“lost” on ½ of trials. For the third day of training, fMRI participants learned from select 

between-group comparisons for the first time (Fig. S1C). That is, participants only learned 

the relative rank of selected entrepreneurs in each group referred to as ‘hubs’, who were 

paired against both group members (Fig. S1D and S1E). By limiting between-group 

comparisons only to hubs, we were able to create comparative paths connecting each of the 

individuals in different groups, which could be leveraged to perform model-based inferences 

between novel pairs of entrepreneurs between groups.

The behavioral training comprised ‘learning’ blocks and the ‘test’ blocks (Fig. 2C). Training 

began with learning block mini-blocks. In the beginning of each of the mini-blocks, 

participants were presented which block they were in (competence or popularity). The 

purpose of the learning blocks was to provide an experimental setting in which participants 
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would gradually acquire knowledge of two social hierarchies (one per group) through 

piecemeal experiences of comparisons for pairs with only one rank-level difference.

For the test blocks during training, participants were asked to infer the relative rank between 

any two individuals. To perform correctly, therefore, participants need to make successful 

transitive inferences. If they adopted an alternative learning strategy, such as model-free 

learning – i.e. comparing the values assigned to each of the face stimuli according to their 

number of wins/loses − participants should not be able to distinguish the second and third 

rank individuals, since their number of wins/loses were equal (though see (Frank et al., 

2005)). Participants who successfully distinguished the second and third rank individuals 

above chance while also reaching above 85% accuracy overall in each test block were 

invited to continue participating in the fMRI experiment.

It is important to note that, during three days of training, each of the 16 individuals was 

presented the same number of times to participants. For trials in which participants 

responded too slowly (>2s), feedback was not given and the missing trial was tested again 

after a random number of trials to ensure all participants could in principle acquire the same 

level of knowledge. Importantly, participants were never asked to combine individuals’ 

ranks in both dimensions to make decisions, and they were never shown either the one-

dimensional (1-D) or two-dimensional (2-D) social hierarchies.

Learning blocks of day 1 and day 2 training: Learning relative ranks of within-
group members—During learning blocks, participants were presented two face stimuli 

having one rank difference on a black screen with a colored contextual cue indicating which 

was the task-relevant dimension in the current trial (learning block in Fig. S1A). They were 

asked to indicate who was superior in the given social dimension. Participants learned the 

relative status of all possible one rank difference pairs with feedback in random order. 

Feedback (correct/ incorrect) followed at the end of all responded trials. For the learning 

block of day 1 training, participants learned the relative status of an eight-individual group in 

one of two social hierarchies for the first mini-block (e.g. the hierarchy in the competence 

dimension for group 1 individuals). For the second mini-block, they learned the relative 

status of the other eight-individual group in the other social hierarchy (e.g. the hierarchy in 

the popularity dimension for group 2 individuals). For the learning block of day 2 training 

(the learning block in Fig. S1B), they learned the relative status of each group individuals in 

the unlearned hierarchy dimension (e.g. the hierarchy in the popularity dimension for group1 

individuals and the competence dimension for group2 individuals). After two days of 

training, in principle participants could have learned the two different 2-D social hierarchies 

(one per group). The right panel in Fig. S1A and B shows the hypothesized structure of the 

cognitive map that participants could have built at the end of each training day. For both day 

1 and day 2 training, participants completed eight mini-blocks in the learning blocks (Fig 

2C). One-half of participants learned the relative ranks of group 1 in the competence 

dimension for the first day and the other half of participants learned the relative ranks of the 

group 1 in the popularity dimension for the first day.

Test blocks of day 1 and day 2: Transitive Inferences—After the learning block, we 

tested whether participants could generalize their knowledge to infer the relative status 
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between individuals having one or more rank-level differences. This test block followed 

each learning mini-block (the test blocks in Fig. S1A and B). During the test block, all 

possible pairs of within-group individuals were presented to participants except for the pair 

of individuals who are at the same rank in the given dimension (meaning there was always a 

correct answer). In each trial, participants were choosing the superior face in the given 

dimension. Participants were instructed that their choices would count towards their final 

payout (the greater the payout when overall accuracy >90%). No feedback was given during 

test blocks to prevent further learning.

Test 2 blocks of day 2: Flexible inferences in intermixed behavioral contexts—
At the end of the second day of training, an additional test block was presented. During this 

test 2 block, trials asking the relative rank of group 1 individuals and group 2 individuals 

were intermixed, as was the task-relevant dimension (the test 2 block in Fig S1B). 

Otherwise, these trials were identical to the other test blocks.

Hub learning block of day 3: Learning ‘hubs’ between-groups—On the third day 

of training, participants learned the relative ranks of pairs of between-group individuals for 

the first time. Importantly, the purpose of the hub learning was to provide limited experience 

about relative ranks of certain between-group individuals. That is, participants did not learn 

the relative rank of all pairs of between-group individuals but only the relative rank of 

selected pairs of between-group individuals.

During the hub learning block, participants learned the relative status between one individual 

in one group (hub) and another individual in the other group (non-hub) with one rank level 

difference in the given dimension (Fig. S1C). In each group, four individuals (two per group) 

were selected as hubs in one dimension. In the other dimension, a different four individuals 

played a role as hubs (eight hubs in total; Fig. S1G). For those two hubs in each group, one 

was at the second rank, and the other was at the third rank in the given dimension. Each of 

the hubs was paired with four different individuals in the other group (See the possible pairs 

in S1D and S1E). With this procedure, all eight individuals in one group (non-hub; Fig S1F) 

were paired with two selected individuals in the other group in one dimension (they were 

never paired with the other six individuals who were not selected as hubs). In particular, a 

hub in group 1 who was at the third-rank in the dimension was paired with four non-hub 

individuals in group 2 including two second-rank individuals and two fourth-rank 

individuals (the top panel in Fig. S1D). The other hub in group 1 who was at the second-

rank in the given dimension was paired with the other four individuals in group 2 including 

two first-rank individuals and two third-rank individuals (the bottom panel in Fig. S1D). 

This is also true for hubs in group 2 (Fig. S1E). During hub learning, participants have 

therefore learned the relative rank of some pairs of between-group individuals who have one 

rank difference, as they learned for the pairs of within-group individuals during the previous 

learning blocks. The hub learning block allowed us to create a unique “path” between 

members of different groups. That is, each of 12 non-hubs individuals (six per each group; 

Fig. S1F) has a unique connection to a specific hub in the other group (one among eight 

hubs in Fig. S1G) in one of two hierarchy dimensions. Note that the hubs in competence 

dimension differed from the hubs in popularity dimension (e.g. Fig S1H).
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For each trial in the hub learning block, three face stimuli (F1, F2, and F3) were presented 

for 2 s sequentially after the presentation of a conditional cue (1 s) indicating the task-

relevant dimension of the current trial (Fig. S1C). Participants were asked to indicate one 

who is superior rank between F1 and F2 in the given dimension while F2 was presented. 

Feedback (correct/ incorrect) followed after each decision (2 s). Between F1 and F2, one 

was the hub in the given dimension and the other was a non-hub in the different group who 

has one rank difference from the hub. A third face (F3) was presented (2 s) at the end of 

every trial, and participants were asked to press a button indicating the gender of the F3 face 

stimuli. F3 was selected from 12 non-hubs in the given dimension (Fig. S1F). By presenting 

non-hub faces at the F3, we controlled the number of presentations of each of the face 

stimuli to be equivalent. No feedback was given for the gender discrimination task. The 

inter-stimulus interval (ISI) was 2 s and the inter-trial interval (ITI) was 4 s. While learning 

between-group relationships via hubs, participants simultaneously became familiar with the 

task procedure that we used for the fMRI experiment (Fig. 2B).

Sample size calculation and participant retention—The sample size was 

determined on the basis of a power calculation using G*Power assuming a medium to large 

effect (d = 0.6), and resulting in a sample size of 24 to achieve a statistical power of 80% (α 
= 0.05, two-tailed test).

For the behavioral training, we recruited 282 participants. They received course credit as 

compensation. Among participants who completed the two days of training, 82 participants 

achieved a higher accuracy than our threshold during the ‘flexible inferences’ block in day 2 

(participants who successfully distinguished the second and third rank individuals above 

chance while also reaching >85% accuracy overall). We included a high-performance 

threshold because we needed to ensure accurate representations of cognitive maps, should 

they exist, to be able to measure them reliably. Moreover, the relatively high drop-out rate in 

part reflects difficulties retaining subjects for three-day studies, variable performance due in 

part to using course credit as incentives (e.g. many students had achieved full credits for 

their courses before the end of Day 2 training), and true variability of task performance.

Among 65 participants who agreed to continue on Day 3 training with monetary 

compensation, 51 participants made correct inferences during the hub learning more than at 

chance level during the last training session of the day 3 training. Of these 51 participants, 

33 further participated in the fMRI experiment and 18 participated in a behavioral version of 

the inferences task (see Fig. S3A and S3B).

Behavioral version of the inferences task—To ensure that this procedure of 3 days of 

behavioral training was sufficient to construct the hierarchies for both groups, a separate 

behavioral experiment after Day 3 training, conducted on different participants, showed that 

they had successfully learned the four levels for each dimension in the social hierarchy, and 

importantly, could accurately differentiate between rank levels 2 and 3 for both dimensions 

(Fig. S3A and S3B).
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fMRI experiment

The purpose of the fMRI experiment paradigm was to test whether and how participants 

represent their knowledge of social hierarchies of the two groups of individuals and make 

inferences about relative ranks of novel pairs of individuals. Fig. 2B illustrates an example 

trial of the fMRI experiment. In each trial, three face stimuli (F1, F2, and F3) were shown 

sequentially following a conditional cue (1 s) with an inter-stimuli fixation cross (1.5 s). The 

color of a square shown as the conditional cue indicated the relevant dimension of the 

current trial. These conditions were equated and randomly interleaved. Each face stimulus 

was shown for 2 s. Between face stimuli, we presented a fixation cross for inter-stimuli-

intervals (ISI) which were jittered between 2 ~ 5 pulses (TR=1200ms). The first decision 

was made during the F2 presentation. Participants were asked to press a button to indicate 

who is superior rank between F1 and F2 in the given social hierarchy dimension. They were 

asked to respond as quickly as possible but also as accurately as possible. No feedback was 

given. The second decision was made during the F3 presentation. Participants were asked to 

press a button to indicate the gender of F3 as quickly as possible. The F3 was included to 

test for hypothesized fMRI suppression of the relevant latent hub, relative to other matched 

but non-relevant hubs, that may have been retrieved from memory to guide model-based 

inferences. The buttons allocated to indicate the gender of presenting face stimuli were 

counterbalanced across participants. If the response was missed in the inference decision due 

to a slow response, we showed a ‘missed’ sign and proceeded to the next trial. The missed 

trial was then tested again after a random number of trials, which allowed us to collect 

responses to all trials from all participants.

The following was not told to participants: (1) during the fMRI experiment, F1 and F2 were 

selected from different groups among 12 non-hubs individuals in the given dimension (Fig. 

S1F) – F1 was selected from group 1 for one-half of trials and F2 was selected from group 1 

for the other half; (2) F3 was selected from among eight individuals who played a role as 

hubs regardless of the social hierarchy dimension (Fig. S1G).

All eight hubs were shown the same number of trials at the time of the F3 presentation. 

Participants were asked to make the same type of decisions as they did for the third-day 

behavioral training (i.e. choosing a higher rank individual between the first two faces in the 

given context dimension and indicating the gender of the third face). However, unbeknownst 

to participants, all pairs were novel (i.e. they had never been compared before). This 

manipulation meant we were able to test whether and how participants make inferences 

about the relative rank of unlearned pairs of individuals. The fMRI experiment comprised 

two blocks. Each block included 104 trials which included all possible between-group pairs 

of non-hubs who have different ranks in the given dimension. Note that, during the fMRI 

experiment, all F1-F2 pairs were also presented in reverse order in both context dimensions. 

The order of the trials was randomized across participants.

Inferences of relative status of unexperienced pairs via hubs—During training, 

participants never directly learned the relative status between two face stimuli (F1 and F2) 

presented during the fMRI paradigm. Instead, participants could make transitive inferences 

about relative status of unlearned pairs via one of two hub individuals (H1 and H2), (Fig. 
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2D). The hubs were two individuals (H1 and H2) who had been paired with both individuals 

(F1 and F2) in a task-relevant dimension. The H1 (H2) was uniquely paired with F1 (F2) in 

between-group comparisons and belongs to the same group with F2 (F1). These taskrelevant 

hubs in one dimension differ from those in the other dimension, which means that to make 

an accurate inference of the relative status of the same pair of individuals in the two different 

dimensions, participants needed to retrieve different hubs, which would alter the inference 

trajectories (e.g. Fig. S1H). Note that, for every F1-F2 pair, there were only two individuals 

(H1 and H2) that have been paired with either F1 or F2 during training in the given 

dimension. That is, H1 belonged to the same group with F2 (within-group) and had been 

uniquely paired with F1 during the hub learning block (between-group). Likewise, H2 

belonged to the same group with F1 (within-group) and had been uniquely paired with F2 

during the hub learning block (between-group). The direction and the distance of inference 

trajectories on the social cognitive map were, therefore, determined by which of the hubs 

(H1 or H2) was preferentially recalled by participants for making inferences. The between-

group relationship to the hub (F1→H1 and F2 H2) had one rank difference in the given 

dimension. If participants recalled H1, the transitive inference depended on the within-group 

distance (H1→F2), and the inference was made in the forward direction (F1→F2). If 

participants recalled H2, the inference depended on the within-group distance (H2→F1), 

and the inference was made in the backward direction (F2→F1). We examined which 

trajectory participants used for making transitive inferences by examining which unseen hub 

was selectively retrieved during inferences. This was possible because the inference 

trajectory is anchored by the position of the hub. We tracked the putative trajectory used by 

participants by examining which hub between H1 and H2 was selectively retrieved during 

inferences. Furthermore, we examined whether participants utilize only the task-relevant 

rank distance (D) or also the Euclidean distance (E) between individuals’ positions and the 

hubs in the cognitive map.

Behavioral data analysis

We analyzed the reaction times (RT) and accuracy in inferences of the relative status 

between a novel pair of individuals (F1 and F2). The choice RT was measured from the F2 

onset to the response. To make successful inferences, participants could use the cognitive 

map of social space to make inferences via an unseen hub. The inference trajectories, 

therefore, were grounded by the location of the hub. To examine whether either or both hubs 

were selected for inferences, we regressed choice RT on different distance measures of 

putative inference trajectories in the same multiple linear regression model (Fig. S2A). We 

focused our regression analysis on choice RT only because choice accuracy showed a ceiling 

effect (Fig. S2B). As regressors, we included both distances which were measured from each 

of two potential hubs: the distance between H1 and F2 and the distance between H2 and F1 

in addition to the distance between F1 and F2 by allowing them to compete to explain RT 

variance. Moreover, the distance was measured in both of the rank difference in the task-

relevant dimension (D) and Euclidean distance (E). We regressed RT of inference decisions 

on four different distance measures of trajectories via hubs, DH1F2, DH2F1,EH1F2, and EH2F1 

(Fig. 2D) and two direct distance measures between F1 and F2, DF1F2 and EF1F2 (Fig. 2E), 

(Eq. 1).
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RT = C + β1EH1F2 + β2EH2F1 + β3EF1F2 + β4DH1F2 + β5DH2F1 + β6DF1F2 Eq. 1

We performed an additional multiple linear regression as a confirmatory analysis in which 

the 1-D distances in task-irrelevant dimension (I) were entered as an alternative regressor 

instead of E (Fig. S2C). The correlation between different distance measures is shown in 

Fig. S3D. Group level effects of each of the distance measures were tested with a one-

sample t-test to account subjects as a random variable.

Functional imaging acquisition

We acquired T2-weighted functional images on a Siemens Skyra 3 Tesla scanner. We used 

gradient-echo-planar imaging (EPI) pulse sequence that sets the slice angle of 30° relative to 

the anterior-posterior commissure line, minimizing the signal loss in the orbitofrontal cortex 

region (Weiskopf et al., 2006). We acquired 38 slices, 3mm thick with the following 

parameters: repetition time (TR) = 1200 ms, echo time (TE) = 24 ms, flip angle = 67°, field 

of view (FoV) = 192mm, voxel size = 3 × 3 × 3 mm3. Contiguous slices were acquired in 

interleaved order. We also acquired a field map to correct for potential deformations with 

dual echo-time images covering the whole brain, with the following parameters: TR = 630 

ms, TE1 = 10 ms, TE2 = 12.46 ms, flip angle = 40°, FoV = 192mm, voxel size = 3 × 3 × 3 

mm3. For accurate registration of the EPIs to the standard space, we acquired a T1-weighted 

structural image using a magnetization-prepared rapid gradient echo sequence (MPRAGE) 

with the following parameters: TR = 1800 ms, TE = 2.96 ms, flip angle = 7°, FoV = 256mm, 

voxel size = 1 × 1 × 1 mm3.

Pre-processing

The preprocessing of functional imaging data was performed using SPM12 (Wellcome Trust 

Centre for Neuroimaging). Images were corrected for slice timing, realigned to the first 

volume, and realigned to correct for motion using a six-parameter rigid body transformation. 

Inhomogeneities created using the phase of nonEPI gradient echo images at 2 echo times 

were coregistered with structural maps. Images were then spatially normalized by warping 

subject-specific images to the reference brain in MNI (Montreal Neurological Institute) 

coordinates (2mm isotropic voxels). For the univariate analysis images were smoothed using 

an 8-mm full-width at half maximum Gaussian kernel (Mikl et al., 2008).

Univariate analysis

We implemented several general linear models (GLMs) to analyze the fMRI data. All GLMs 

contained separate onset regressors for the contextual cue which indicates the task-relevant 

dimension, F1, F2, and F3 stimuli presentations for each of the trials. Specifically, the F3 

onsets were separately modeled when F3 was (1) the task-relevant hub, H1, (2) the task-

relevant hub, H2, and (3) neither H1 nor H2, but the hub for other pairs of individuals (non-

relevant hub). A stick function modeled the contextual cue and the F3 presentation and a 2 s 

boxcar function modeled the presentation of F1 and F2. The F1 onset regressors were 

modulated with parametric regressors of the rank of the individual in the task-relevant 

hierarchy (F1R) and the rank in the task-irrelevant hierarchy (F1I). The F2 onset regressors 

were modulated by the rank in the task-relevant hierarchy (F2R), the rank in the task-
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irrelevant hierarchy (F2I), and additional regressors of interest representing the putative 

inference trajectories which varied according to which structure of cognitive map was tested 

(1-D or 2-D) (Fig. S3C). The onset of button presses (stick function) and the 6 motion 

parameters obtained during realignment were entered into the GLM as regressors of no 

interest. The orthogonalization function was turned off. All these regressors, except for the 

motion parameters, were convolved with the canonical hemodynamic response function in 

SPM12.

To test whether the brain encodes the trajectories via hubs over Euclidean space, for GLM1, 

we included parametric regressors of Euclidean distance and cosine angle of the vector 

between F1 and H2 and those of the vector between F2 and H1 (EH2F1, AH2F1, EH1F2, and 

AH1F2). The Euclidean distance between face stimuli was defined over the two-dimensional 

(2-D) space characterized by their relative rank in each of two social hierarchies. The cosine 

angle represents the normalized function of competence modulated by popularity. The value 

of these regressors was invariant to the relevant dimension for the current trial.

From the first-level analysis, contrast images of parameter estimates from regressors of 

inference trajectories (EH2F1, AH2F1, EH1F2, and AH1F2) at the time of F2 presentation were 

estimated from each of the participants. In addition, during the cover task (at the time of F3 

presentation), the following contrasts images were estimated for the cross stimuli 

suppression analysis: trials when F3 was the task-relevant hub, H1, compared to when F3 

was a nonrelevant hub (H1 < Non-relevant hub); and when F3 was the task-relevant hub 

(H2) compared to when F3 was a non-relevant hub (H2 < Non-relevant hub).

For GLM2, we tested whether the brain uses different cognitive maps for each dimension 

learned on a different day (popularity and competence), for which we would predict task-

modulated distance terms for current behaviorally-relevant and irrelevant task dimensions. 

We therefore inputted the rank difference in the task-relevant dimension (D) and that of the 

task-irrelevant dimension (I) as the parametric regressors, which includes the 1-D distances 

between H2 and F1 and those of H1 and F2 (DH2F1, IH2F1, DH1F2 and IH1F2), in addition to 

the other regressors not associated with the distance measures that we inputted in GLM1. 

The value of these regressors was dependent on the task-relevant dimension on the current 

trial.

For GLM3, we tested whether the brain has already integrated the cognitive map for group 1 

and that for group 2 into a combined cognitive map and encodes the inference trajectories 

between F1 and F2. We included the regressors of Euclidean distance and cosine angle of 

the vector between F1 and F2 (EF1F2 and AF1F2), in addition to the other regressors that we 

inputted in GLM1.

For GLM4, we tested whether the brain uses different combined cognitive maps for making 

inferences in different contextual dimensions. We inputted the rank difference in the task-

relevant dimension and that of the task-irrelevant dimension as 1-D distances between F1 

and F2 (DF1F2 and IF1F2) in addition to the other regressors that we inputted in GLM1. Fig. 

S3C illustrates the regressors of different models to examine how the brain constructs and 

use a cognitive map of abstract social hierarchies.
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Group-Level Statistical Inference

We perform group-level inference both on hypothesis-driven a priori ROIs in the HC, EC, 

and vmPFC/mOFC bilaterally and exploratory whole-brain analyses. For our a priori ROIs, 

we reported our results in these areas at the threshold pTFCE<0.05 using threshold-free 

cluster enhancement (TFCE) (Smith and Nichols, 2009) for correction of multiple 

comparisons within a combined ROI which integrated anatomically defined HC, EC, and 

vmPFC/mOFC in bilateral hemispheres into a single mask. For the whole brain analyses, we 

enter the individual contrast images into the second-level analysis. For the whole-brain 

analysis, we reported the whole-brain permutation-based threshold-free cluster enhancement 

(TFCE)-corrected images at the threshold pTFCE<0.05 (1000 iterations of simulation).

Model comparisons using Bayesian model selection

To formally arbitrate between different possible decision trajectories, we used Bayesian 

model selection (BMS) to compare 2-D and 1-D metrics for different possible trajectories 

(or comparisons) through the hub H1 (EH1F2, DH1F2, and IH1F2), those through the hub H2 

(EH2F1, DH2F1, and IH2F1), and also direct distances between F1 and F2, rather than 

trajectories via the hub (EF1F2, DF1F2, and IF1F2). In addition, different hypothetical 

cognitive spaces may have different underlying metrics. That is, if participants do not 

construct a cognitive map in a 2-D space, but rather a different architecture for representing 

social hierarchies, alternative distance metrics may better account for the neural data than 

the Euclidean distance. For example, if inferences were made through the sequential 

retrieval of individuals linking F1 to F2, the brain activity engaged in novel inferences 

should be better explained by the shortest number of links (L; note this is equivalent to 

1+DH2F1). Alternatively, if a cognitive map encodes only the vector angle between 

individuals in a polar coordinate system, neural activity should encode the angle between 

individuals (AF1F2, AF1H1 and AF2H1), while it should be invariant to the length. We 

formally compared GLMs including these four terms (E, D, I, and A) for three different 

possible trajectories (H1F2, H2F1, F1F2) in left and right EC and vmPFC/mOFC (Fig. 

S3C).

Repetition suppression analysis

Recent findings have shown that blood-oxygen-level-dependent (BOLD) suppression can be 

measured not only to repetition of a stimulus, but also to pairs of stimuli that have been well-

learned though association and to a predicted or imagined outcome (Barron et al., 2016; 

Boorman et al., 2016). This cross-stimulus suppression (CSS) approach allows us to 

examine the underlying neural representations of retrieved memories. In the current study, if 

the relevant hub is presented during the suppression phase, at the time of F3 presentation, 

directly after participants recall the relevant hub for making inferences of relative ranks 

between faces, then the BOLD signal in the areas reinstating the relevant hub should be 

suppressed compared to the non-relevant hubs. Considering that effects of CSS did not 

depend on the responses of participants during the cover task, we included the BOLD 

responses in every F3 presentation into the analysis. Moreover, the BOLD signal should be 

suppressed specifically for the relevant and preferentially selected hub compared to the 

relevant but unselected hubs. Considering that the hippocampus (HC) was our a priori ROI, 
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we reported our results at a threshold pTFCE<0.05 using TFCE within an anatomically 

defined independent ROI that includes bilateral HC for correction of multiple comparisons.

It is important to note that the hub face in each trial was not determined by F3 stimuli but by 

the combination of task-relevant dimensions, F1 and F2. That is, the same face stimuli 

presented at F3 could be the relevant hub (e.g. H2) in one trial but it could be an alternative 

hub (e.g. H1) or non-relevant hub (the faces that have not been paired with both F1 and F2 in 

the given dimension) in other trials. Therefore, the effects of RS were not driven by the 

comparison of specific stimuli set but the comparison between conditions.

Neural model comparison

The different hypothetical structure of the cognitive map and putative inference trajectories 

cannot be accurately tested in a single GLM while there is potential multicollinearity 

between different distance measures. By definition, this was the case for some of our 

distance terms because, for example, E is correlated with D and I. The cross-correlation 

between different distance measures is shown in Fig. S3D. To formally compare the 

predictability of each distance measure in different models, we therefore used Bayesian 

model selection (BMS), (Stephan et al., 2009).

We tested whether neural activity in the vmPFC/mOFC and EC, which showed effects of the 

Euclidean distance of the inference trajectory from the hub ( ), is better explained with 

alternative distance measures of inference trajectories. To test this, we ran several GLMs in 

which the brain activity at the time of inferences (F2 presentation) was modeled with only 

one of candidate distance measures as a parametric regressor. Specifically, we compared the 

models having one of the following distance measures as parametric regressors: EH2F1, 

EH1F2, EF1F2, DH2F1, DHF1F2, AH2F1, AH1F2, and AF1F2. The inference process can 

alternatively be modeled with the link distance ( ), which indicates the minimum number of 

links between F1 and F2 in the social network. The shortest link distance, equals the sum of 

the number of links from F2 to H2 (between-group) and the number of links from H2 to F1 

(within-group). Since we controlled the between-group distances as one, the brain areas 

encoding can be estimated by the GLM which includes as a parametric regressor. In addition 

to the parametric regressors of distance, all GLMs also included the rank of the task-relevant 

dimension and the rank of the task-irrelevant dimension of presenting faces as additional 

regressors at the time of F1 and F2 presentation (F1R, F1I, F2R, and F2I). As before, the 

onsets of the contextual dimension cue, F3 presentation, and button presses were also 

entered as additional regressors in all GLMs.

For the univariate neural model comparisons, we first estimated the log-likelihood of each of 

GLMs. Following previous work (Kumaran et al., 2016; Wilson and Niv, 2015), the 

loglikelihood (LL) of each of the models was calculated (Eq.2) separately for the a priori 
anatomically defined ROIs: the EC and vmPFC/mOFC.

LL = − n ln 2πσ2 + 0.5 Eq. 2

where n is the total number of scans, and 2 is the variance of the residuals after subtracting 

the best-fit linear model. Considering that the linear model provides the maximum 
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likelihood solution to each model with Gaussian-distributed noise, the likelihood was 

computed from residuals in the ROIs after subtracting the best-fit linear model. Since all 

models had the same number of parameters, their likelihoods could be directly compared to 

ask which model accounted best for the neural activation patterns. We further entered the LL 

to Bayesian model selection (BMS) to compare the goodness of fit of the model with the 

exceedance probability (XP).

Regions of Interest (ROI) analyses

The ROIs were defined in the bilateral HC (Yushkevich et al., 2015), bilateral EC (Amunts 

et al., 2005; Zilles and Amunts, 2010), bilateral amygdala (AM) (Tzourio-Mazoyer et al., 

2002), and bilateral vmPFC/mOFC (Neubert et al., 2015) using probabilistic map of 

anatomical ROIs. We also included additional ROIs in the bilateral primary motor cortex 

(M1) (Glasser et al., 2016) as control regions. The ROIs in the HC, AM, and M1 have been 

already binarized by the authors of each study ((Yushkevich et al., 2015) for HC; (Tzourio-

Mazoyer et al., 2002) for AM; (Glasser et al., 2016) for M1). Neubert et al. also provided the 

binarized ROIs in vmPFC/mOFC (Neubert et al., 2015) and noted that they set the 

maximum threshold to 25 meaning it includes voxels that belong to any given mask in 25–

100% of participants. The EC defined by Juelich atlas (Amunts et al., 2005; Zilles and 

Amunts, 2010) allowed us to choose the threshold of images based on probability. To define 

ROIs in the EC, we binarized the probabilistic map in which the minimum threshold was 0 

and the maximum threshold was 10. Note that ROIs were independently defined from the 

current task. For display purposes, all statistical parametric maps presented in the 

manuscript are unmasked.

ROI-based representational similarity analysis (RSA)

Neural representation of social hierarchies—In hypothesis-driven analyses, we 

performed a representational similarity analysis (RSA) (Kriegeskorte, 2008; Nili et al., 

2014) to test whether the a priori ROIs contain hypothesized cognitive map structures with 

respect to the social hierarchies. To test our hypotheses, we first estimated Beta coefficients 

when each of the individual faces was shown at the time of F1 or F2 in each of our same 

anatomical ROIs in HC, EC, and vmPFC/mOFC. We then averaged the unsmoothed Beta 

maps across F1 and F2 presentations, allowing us to estimate the patterns of neural activity 

in each ROI. These patterns were separately estimated according to which social hierarchy 

dimension (competence or popularity) was relevant to the current decision. Reliability of 

data was improved by applying multivariate noise normalization (Walther et al., 2016). We 

quantified the representational similarity for the two independent fMRI blocks (i.e. runs) 

using the Mahalanobis distance between the activity patterns, which generated a 24×24 

representational dissimilarity matrix (RDM; 12 non-hub individuals were presented in each 

of two dimensions; Fig. 5A). These analysis steps were repeated per ROI.

Next, we confirmed that the RDM estimated from the brain activity patterns in each of the 

ROIs discriminated different face stimuli with good sensitivity using the exemplar 

discriminability index (EDI) (Nili et al., 2016), which is defined as the average of the pattern 

dissimilarity estimates between different stimuli compared to the average of the pattern 

dissimilarity estimates between the same stimuli. We confirm that the EDI in all ROIs was 
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positive (one-sample t-test, p<0.01) suggesting that the different sets of stimuli were 

discriminable based on their multivariate activity patterns.

We predicted the RDM estimated from the patterns of neural activity in a priori ROIs using 

several candidate model-based predictor RDMs (Model RDM; Fig. 5B). The model RDMs 

included (1) pairwise Euclidean distances between individuals in 2-D social space (E); (2) 

pairwise rank difference between individuals in the task-relevant hierarchy (D); (3) the 

context of which social hierarchy dimension (competence or popularity) the face stimulus 

was presented in (C, task-relevant dimension); (4) which group the face stimulus belonged 

to during training (G).

The extent to which the brain RDM of each ROI was explained by the model RDM was 

estimated with the rank correlation (Kendall’s A). For group-level inference, this effect was 

then compared to the permuted baseline at the group-level with the non-parametric 

Wilcoxon signed-rank test across participants (Nili et al., 2014). The ROI-based analysis 

uses the pattern of beta coefficients across voxels in the entire ROI. Therefore, correction for 

multiple comparisons was made over the number of ROIs (n=6), as well as by the number of 

model RDM comparisons (n=4). We report results corrected for family-wise error (FWE) 

with the Holm-Bonferroni method at p<0.05, but also note stronger effects with asterisks.

Partial correlation analyses—In addition to the model RDMs, using partial correlation, 

we also tested for an effect of E while controlling for the shared covariance between E and 

D. Specifically, we estimated the extent to which the RDM estimated in each ROI was 

explained by E’. E’ denotes the pairwise Euclidean distances between individuals (E) while 

regressing out its partial correlation with the pairwise rank difference in the task-relevant 

distance (D):E’ = E ‒ DD+E where D+ is the Moore-Penrose generalized matrix inverse (D+ 

= pinv(D), Fig. S5B). This partial correlation method gives an advantage over the other 

methods such as orthogonalization which often lose the original correlation structure (Fig. 

S5B). Note that, as Fig. S5B shows, E’ differs from EOrth which denotes E orthogonalized 

by D using the Gram-Schmidt method, or the pairwise rank difference in the task-irrelevant 

dimension (I). After regressing out the partial correlation, the predictors are independent 

from each other while preserving high correlation with its original correlation structure. That 

is, E’ does not correlate with D while it still highly correlates with E (Fig. S5B).

Last, we examined the relationship between pattern dissimilarities in each of the ROIs and 

pairwise Euclidean distances (E), the pairwise task-relevant rank differences (D), and the 

pairwise task-irrelevant rank differences (I) between all individual faces in the social 

cognitive map. The brain RDM of each participant was normalized into a range between 0 

and 1. The upper triangular part of the normalized 24×24 RDM was arranged according to 

the distance measure in each model RDM, providing model predictions of representational 

dissimilarity. We estimated the mean pattern dissimilarity per bin across participants. This 

analysis was only performed for visualization purposes (Fig. 5D for E, Fig. 5E for D, and 

Fig. 5F for I) Using the same methods, we also showed the effects of pairwise Euclidean 

distance (E) between faces and the pattern dissimilarity which were separately analyzed for 

within-group (E Wth; Fig. S5D) and between-group relationships considering the group 

effects (G). The between-group relationships were separately analyzed also based on 
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whether the faces had been directly compared during training (E Btw Hub; Fig. S5E) or not 

(E Btw Non; Fig. S5F). We did not make any statistical interpretation based on this analysis.

Searchlight-based RSA

Whole-brain searchlight RSA was performed to examine brain areas in which the activity 

patterns reflect the hypothesized relational structure of the social hierarchies both within and 

outside of HP, EC, and vmPFC/OFC. Moreover, the searchlight analysis allows us to 

examine to what extent the model RDM explains the neural representation dissimilarity with 

a fixed number of voxels examined across regions. We defined a sphere containing 100 

voxels around each searchlight center voxel. Consistent with the ROI analysis, we estimated 

the neural activity patterns elicited while each of the individuals was presented at the time of 

F1 or F2 from each of the searchlights. These neural representations were separately 

estimated according to which social dimension was relevant to the current task. The 

dissimilarity matrices were quantified with the Euclidean distance between neural patterns 

estimated from different blocks. For each searchlight, therefore, a 24×24 dissimilarity matrix 

was generated based on neural activity patterns elicited by each of face stimuli in two 

different task-relevant dimensions (Fig. 5A). We used the same predictors (i.e. model 

RDMs) that we used for ROI-based RSA analysis to estimate the neural representational 

dissimilarity across searchlights with Kendall’s τA rank correlation. To assess neural 

dissimilarity specific to E, we also tested the RDM E’ while partialling out its covariance 

with D. The computed Kendall’s A values were then mapped back on the central voxel, 

allowing continuous mapping of information in the whole-brain per subject. These images 

were further smoothed using an 8-mm full-width at half maximum (FWHM) Gaussian 

kernel and Fisher’s Z transformed. We further performed one-sample t tests compared to the 

permuted baseline for a group-level analysis. We corrected for multiple comparisons using 

TFCE (Smith and Nichols, 2009) with 1000 iterations of simulation. We reported the results 

corrected for family-wise error (FWE) for multiple comparisons across searchlights 

(pTFCE<0.05).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human brains map abstract relationships between entities from piecemeal 

learning

• Separately learnt dimensions are combined and represented in a 2-D social 

hierarchy

• To make novel inferences, HC reinstates a hub which connects two social 

hierarchies

• EC and vmPFC encode Euclidean distances of inferred vectors for novel 

inferences
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Figure 1. 
A. Examples of “zero-shot inferences” in physical space, transitions between objects, and 

family trees. Representing abstract relationships as a cognitive map allows making novel 

direct inferences that do not only rely on previously experienced associations. Black: 

experienced relationships; Red: inferred relationships. B. Bilateral ROIs generated 

independently from probabilistic maps. C and D. Two hypotheses concerning how the brain 

could represent and flexibly switch between different dimensions that characterize the same 

entities to guide inferences. C. The brain could construct two separate maps for representing 

each 1-D hierarchy learned on a separate day and distinct regions could encode the one-

dimensional (1-D) rank difference in the task-relevant dimension (D) and the task-irrelevant 

dimension (I). D. Alternatively, the brain could construct a unified map consisting of two 

dimensions and encode the inferred Euclidean distance (E) over the 2-D representation.
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Figure 2. 
A. Participants learned the rank of members of each of two groups (brown and gray) 

separately in two dimensions: competence and popularity. Subjects were never shown the 1- 

or 2-D structures. B. Illustration of a trial of the fMRI experiment. Participants made 

inferences about the relative status of a novel pair (F1 and F2) in a given dimension 

(signaled by the Cue color). A cover task (to indicate the gender of the face stimulus, F3) 

followed at the end of every trial. C. On day 1 and day 2, participants learned within-group 

ranks of the two groups in each of two dimensions through binary decisions about the status 

of members who differed by only one rank level in a given dimension. On day3, subjects 

learned from between-group comparisons limited to ‘hub’ individuals, which created a 

unique path between groups per person in each dimension. Subsequently, on day3, 

participants were asked to infer the unlearned between-group status while undergoing fMRI. 

D. Participants could use hubs to infer the relationship between novel pairs. Possible 

trajectories for example inferences can be shown for each trajectory: the behaviorally-

relevant 1-D distance (D, Fig.1C) and the 2-D Euclidean distance (E, Fig.1D). Subjects 

could use either of two trajectories: a forward inference from F1 to its hub (H1) that has a 

unique connection to F2 (DH1F2, EH1F2; yellow); or a backward inference from F2 to its hub 

(H2) that has a unique connection to F1 (DH2F1, EH2F1; red). E. As alternative paths, 

subjects may not use the hubs, but instead compute the distance in the relevant dimension 

between F1 and F2 directly (DF1F2), or their Euclidean distance (EF1F2) in the combined 

cognitive map of two groups (blue). F. Multiple linear regression results show that both the 

rank distance (DH2F1) and the Euclidean distance from H2 (EH2F1), but not from H1, 

significantly explain variance in RTs, in addition to the direct distance between F1 and F2 

(DF1F2), while competing with other distance terms.
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Figure 3. 
A. The bilateral entorhinal cortex (EC) and ventromedial prefrontal cortex (vmPFC/mOFC), 

pTFCE<0.05 corrected within a small volume ROI encode the Euclidean distance from the 

hub (H2) to F1 in the 2-D social space (EH2F1). Whole-brain parametric analyses showing 

neural correlates of each of the distance metrics that could theoretically drive inferences 

between pairs at the time of decisions (F2 presentation). D: 1-D rank distance in the task-

relevant dimension (DH2F1 and DF1F2); L: the shortest link distance between F1 and F2 (L 
equals to DH2F1+1); I: the 1-D rank distance in the task-irrelevant dimension (IH2F1 and 

IF1F2); A: the cosine vector angle (AH2F1 and AF1F2). For visualization purposes, the whole-

brain maps are thresholded at p<0.005 uncorrected. B. The results of Bayesian model 

selection (BMS). The exceedance probabilities revealed that the Euclidean distance from the 

hub (EH2F1) best accounted for variance in both EC and vmPFC/mOFC activity compared to 

the other distance measures, providing evidence that these regions compute or reflect a 

Euclidean distance metric to a retrieved hub (H2) in abstract space in order to infer the 

relationship between F1 and F2. C. Conjunction analysis shown in purple revealed that both 

DH2F1 and IH2F1 are reflected in the vmPFC/mOFC and the EC bilaterally. D. The effect of 

DH2F1 does not differ from IH2F1 in the EC or vmPFC/mOFC, even at a lenient threshold 
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(p>0.1), suggesting that these areas assign equal or similar weights to DH2F1 and IH2F1, 

consistent with activity reflecting EH2F1, during decision-making.
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Figure 4. 
Repetition suppression analyses. Left: When one of the eight hubs was presented randomly 

following F2 presentation, as subjects performed a cover task (F3 presentation), BOLD 

contrast of task-irrelevant hub (Non-relevant hub) > H2, displayed at p<0.005 uncorrected 

(no masking is applied to the image). The HC effect is significant at pTFCE<0.05 corrected in 

an independent anatomically defined bilateral HC ROI. Right: beta estimates from an 

independently defined right HC ROI (see Fig. 1B). The activity in the right HC differed 

significantly according to which type of hub was shown at F3 presentation (Wilks’ =.553, 

F2,25=10.11, p=0.001, repeated-measures ANOVA). Activity in the right HC was suppressed 

when the relevant hub (H2) was presented, compared to matched Non-relevant hubs 

(p<0.001). No suppression was found when the hub inferred from F1 (H1) was presented 

(p>0.05; See Fig. S4 for additional confirmatory analyses).
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Figure 5. 
Representational similarity analysis (RSA). A. The representational dissimilarity matrix 

(RDM) was computed in a priori ROIs from the pairwise Mahalanobis distance in the multi-

voxel activity patterns evoked when face stimuli were presented at the time of F1 and F2. 

People were modeled separately when they were shown in the competence (left panel) and 

popularity contexts (right panel). B. The neural RDM was tested against model predictions 

of four separate dissimilarity matrices, including pairwise differences in the rank in the task-

relevant dimension (D), pairwise Euclidean distances on the 2-D social space (E), the 

behavioral context indicating for which social hierarchy dimension the face was presented 

(C), and in which group (group 1 or 2) the face belonged during training (G). C. Kendall’s τ 
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indicates to what extent a predictor RDM explains the pattern dissimilarity between voxels 

in each of the ROIs. The model RDMs of D and E, but not C or G, show robust effects on 

the pattern dissimilarity estimated in the HC, EC, and vmPFC/mOFC but not in amygdala 

and primary motor cortex (M1) (***, pFWE<0.001 corrected for the number of ROIs as well 

as the number of comparisons with the Bonferroni-Holm method). D. The patterns 

dissimilarity in bilateral HC, EC, and vmPFC/mOFC increases in proportion to the true 

pairwise Euclidean distance between individuals in the 2-D abstract space. E and F. The 

pattern dissimilarity increases not only with the task-relevant distance (D) but also the task-

irrelevant distance (I), suggesting that the HC-EC system utilizes 2-D space (E). G. The 

effects of pairwise Euclidean distance (E) between faces and the pattern dissimilarity in the 

HC, EC, and vmPFC/mOFC were separately analyzed for within-group (E Wth) and 

between-group relationships (G). Moreover, the interaction effect between E and G were 

separately analyzed also based on whether the faces had been directly compared during 

training (E Btw Hub) or not (E Btw Non). Effects are strongest for those individuals who 

had been previously compared during training. That is, activity patterns are better explained 

by E Wth and E Btw Hub than E Btw Non (two-sided Wilcoxon signed-rank test). The 

between-group E for novel pairs is only significant in HC. Multiple comparisons are 

corrected with the Holm-Bonferroni method (***, pFWE<0.001). H. Whole-brain searchlight 

RSA indicates effects of E in the HC, EC, mOFC (a part of vmPFC), central OFC, and 

lateral OFC, among other regions (pTFCE<0.05). I. The activity patterns in the HC, EC, and 

central and medial OFC are still explained by the model RDM for pairwise Euclidean 

distance (E) after partialling out its correlation with the model RDM for D (pTFCE<0.05; Fig. 

S5B). For visualization purposes, the whole-brain searchlight maps are thresholded at 

p<0.005 uncorrected.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB ver.2018a Mathworks https://www.mathworks.com

Presentation Ver. 21.0 Neurobehavioral Systems http://www.neurobs.com/

Psychopy 3 Peirce et al., 2019 https://www.psychopy.org/

SPM12 Penny et al., 2007 https://www.fil.ion.ucl.ac.uk/spm/software/

MarsBaR Ver. 0.44 Brett et al., 2002 http://marsbar.sourceforge.net/

RSA toolbox Nili et al., 2014 https://git.fmrib.ox.ac.uk/hnili/rsa

Other

The MR2 (Facial stimuli) Strohminger et al., 2016 http://ninastrohminger.com/the-mr2
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