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Abstract

Hepatocellular carcinoma (HCC) is the dominant histologic type of liver cancer, accounting for 

75% of cases. Growing evidence suggests that the cross-talk between the gut microbiome and 

metabolome (i.e., gut-liver axis) are related to the development of hepatic inflammation, and 

ultimately, HCC. Bile acids are metabolites, derived from cholesterol and synthesized in the liver, 

which may have a critical role in regulation of the gut-liver axis. We investigated whether 

prediagnostic circulating bile acids were associated with HCC risk, using the Risk Evaluation of 

Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-Hepatitis B Virus (HBV) 

and -Hepatitis C Virus (HCV) cohorts from Taiwan. Fifteen bile acids were quantitated using 

liquid chromatography, from 185 cases and 161 matched controls in REVEAL-HBV and 96 cases 

and 96 matched controls in REVEAL-HCV. Odds ratios (ORs) and 95% confidence intervals (CIs) 

for associations between bile acid levels and HCC were calculated using multivariable-adjusted 

logistic regression. Higher levels of glycine and taurine conjugated primary bile acids were 

associated with a 2–8-fold increased risk of HBV- (e.g., glycocholic acid 

ORQ4vsQ1=3.38,95%CI:1.48–7.71,ptrend<0.003) and HCV-related HCC (e.g., 

OR=8.16,95%CI:2.21–30.18,ptrend<0.001). However, higher levels of the secondary bile acid 

deoxycholic acid were inversely associated with HBV-related HCC risk (OR=0.41,95%CI:0.19–

0.88,ptrend=0.02). This study provides evidence that higher concentrations of bile acids—

specifically, conjugated primary bile acids—are associated with increased HCC risk. However, this 

study does not support the hypothesis that higher levels of secondary bile acids increase liver 

cancer risk; indeed, deoxycholic acid may be associated with a decreased HCC risk.
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Introduction

Primary liver cancer, the major histology of which is hepatocellular carcinoma (HCC), is the 

second leading cause of cancer death worldwide.1 Major risk factors for HCC, including 

hepatitis B virus (HBV), hepatitis C virus (HCV), aflatoxin, excessive alcohol consumption, 

smoking, obesity and diabetes, all contribute to chronic hepatic inflammation.2 HCC risk 

factors such as obesity and alcohol abuse, as well as other insults, can trigger intestinal 

dysbiosis (i.e., altered microbiota composition and decreased bacterial diversity).3, 4 As the 

liver receives approximately 70% of its blood supply from the portal vein,5 growing 

evidence suggests that the gut microbiome, and the cross-talk between the microbiome and 

metabolome (i.e., gut-liver axis), are critically related to the development of hepatic 

inflammation, liver disease, cirrhosis, and liver cancer.6–9

Primary bile acids are derived from cholesterol and synthesized in the liver. They are then 

conjugated with glycine or taurine, excreted with bile, and stored in the gallbladder. After 

food ingestion, they are excreted into the intestinal tract to facilitate lipid absorption. 

Approximately 90–95% of bile acids are reabsorbed in the ileum and enter the enterohepatic 

circulation, whereby they are transported back to the liver to be recirculated. The remaining 

5–10% of bile acids flow into the large intestine, where they are converted to secondary bile 

acids (e.g., deoxycholic acid [DCA]), by gut microbes. The majority of the secondary bile 

acids are absorbed by the colonocytes and are returned to the liver for recirculation.8, 10

In experimental models, blocking DCA production or reducing the gut microbes that create 

DCA has been shown to prevent liver cancer development in obese mice.11 Additionally, 

ursodeoxycholic acid (UDCA), another secondary bile acid, has been shown to increase 

elimination of DCA in mice and prevent liver cancer development.11 UDCA is approved by 

the US Food and Drug Administration for treating certain liver diseases12 and has been 

extensively studied as a potential chemopreventive agent,13 as it has been shown to inhibit 

cellular proliferation 14 and suppress DCA-induced apoptosis.15, 16

Three recent prospective epidemiologic studies of untargeted metabolomics have reported 

that glycine and/or taurine conjugates of primary and secondary bile acids were associated 

with an increased risk of liver cancer.17 However, no prospective studies have examined a 

comprehensive targeted panel of primary and secondary bile acids. Thus, to examine 

circulating bile acids in relationship to risk of liver cancer, we leveraged the Risk Evaluation 

of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-HBV and -HCV 

cohorts from Taiwan.
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Methods

Study Population

The REVEAL-HBV and -HCV cohort studies are based in the same community-based 

survey, which was conducted to examine the characteristics and risk factors for HCC.
12, 18, 19 Between 1991–1992, 23,820 participants aged 30 to 65 years old from seven 

townships in Taiwan enrolled in the study, completed questionnaires, and underwent health 

examinations. Of the study participants, 4,155 were hepatitis B virus surface antigen 

(HBsAg) seropositive and 1,095 were anti-HCV seropositive. In subsequent years, these two 

groups were followed as part of either the REVEAL-HBV or REVEAL-HCV cohorts, 

respectively, which were designed as complementary but discrete cohort studies. Regular 

examinations consisting of blood collection and abdominal ultrasonography occurred every 

6–12 months through December 31, 2008.12, 20, 21 All participants gave written, informed 

consent at study enrollment, and the study was approved by the Institutional Review Board 

of the College of Public Health, National Taiwan University in Taipei.

Case Ascertainment

Diagnosis of HCC was established by ultrasound and α-fetoprotein testing or by data 

linkage to the Taiwan National Cancer Registry.12, 18 All cases diagnosed through 2012 were 

confirmed by medical record verification.18 Cirrhosis status was ascertained either by 

ultrasound or data linkage to the National Health Insurance profiles in Taiwan.12 Ultrasound 

testing was conducted using high-resolution, real-time ultrasound scanners and was scored 

according to a previously published and validated algorithm.22

In REVEAL-HBV, 185 participants developed HCC during a mean follow-up of 13.0 years. 

Controls (n=161) were frequency matched to HCC cases on age (5-year categories), sex, and 

HBV DNA copies at baseline (<10,000, 10,000-<1,000,000, ≤1,000,000 copies/mL).

In REVEAL-HCV, 96 participants developed HCC during a mean follow-up of 14.9 years. 

Controls (n=96) were individually matched to HCC cases on age (5-year categories), sex, 

cirrhosis, and HCV-RNA positive rate (undetectable – <25 IU/mL and detectable – ≥25 

IU/mL, matched to a control with the closest HCV RNA level).

Laboratory Methods

Prior to shipping, serum samples were stored at −70°C at the Academia Sinica in Taipei, 

Taiwan. The samples were analyzed at Metabolon, Inc. (Morrisville, NC) for measurement 

of primary and secondary bile acids, as well as their glycine and taurine conjugates, using 

liquid chromatography with tandem mass spectrometry (LC-MS/MS; Agilent 1290/Sciex 

QTrap 6500). The analytes measured were cholic acid (CA), chenodeoxycholic acid 

(CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), 

glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid 

(GDCA), glycoursodeoxycholic acid (GUDCA), taurocholic acid (TCA), 

taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA), taurolithocholic 

acid (TLCA), tauroursodeoxycholic acid (TUDCA), and glycolithocholic acid (GLCA). 

Briefly, a solution of labelled internal standards for each of the bile acids was spiked into the 
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serum samples and then subjected to protein precipitation with acidified methanol. Samples 

then underwent centrifugation, and a portion of the clear supernatant was evaporated in 

nitrogen at 40°C. The dried extract was then reconstituted, and an aliquot was injected onto 

an LC-MS/MS, equipped with a C18 reverse phase HPLC column in negative ion mode. 

Using internal standards prepared for each run to normalize metabolite concentrations, the 

assay provided absolute quantitation.

Blinded quality control (QC) samples served as duplicate control samples. One QC sample 

was included in each batch (n=24 total QC samples), with the matched control sample, to 

examine within-batch coefficients of variation (CV). Within-batch CVs were less than 19% 

(range: 4.9–18.8%). The exception was LCA (21.5%), but the CV was similar after batch 21 

was excluded (15.4%). Excluding this batch from the analysis did not alter estimates of 

association (data not shown).

Statistical Analysis

Participant characteristics were examined by calculating frequencies (for categorical 

variables) or means and standard deviations (for continuous variables). Spearman correlation 

coefficients were examined for each pairing of bile acids. Missing data for the following 

covariates were imputed using the PROC MI procedure in SAS (SAS Institute Inc., Cary, 

NC): body mass index (n=3), alcohol consumption (n=3), and smoking status (n=3). To 

further examine and adjust for HBV- and HCV-specific markers, imputation was also 

performed in REVEAL-HBV for hepatitis B e-antigen (HBeAg) serostatus (n=3), which is a 

marker of active viral replication. For REVEAL-HCV, imputation was also performed for 

HCV genotype (n=35), as genotype 1 is associated with an increased likelihood of 

developing HCC.

For analysis, the bile acids were categorized into quartiles. To examine the relative 

concentrations of secondary to primary bile acids, the ratios of LCA/CDCA and DCA/CA 

were calculated. Additionally, three bile acid scores were calculated by summing 1) all 

primary bile acids, 2) secondary bile acids, and 3) total bile acids. In the main analysis, any 

bile acid value below the lower limit of quantitation (LLOQ) was assigned to the lowest 

quartile. Unconditional (REVEAL-HBV) and conditional (REVEAL-HCV) logistic 

regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) of the 

association between bile acids and risk of HCC.23 Tests of linear trend were performed using 

quartile-specific log-transformed bile acid concentration medians in the logistic models.

Alcohol consumption (no, yes), education status (illiterate, elementary school, junior high 

school, high school, college or more), diabetes (yes/no), alanine transaminase (ALT, 

continuous U/L), and matching factors were included as covariates a priori. Additional 

potential covariates were examined for evidence of confounding by determining whether 1) 

each covariate was associated with the exposure in the general population (i.e., the controls) 

and 2) each covariate was associated with liver cancer among the unexposed (i.e., the lowest 

quartile of bile acid concentration). Finally, covariates that met both criteria were removed 

one at a time from the fully-adjusted model to determine whether the covariate altered the 

log(OR) by at least 10%.24 Fully-adjusted models included age (5-year categories), sex, 

smoking status (no, yes), baseline cirrhosis status (no, yes), alcohol habit (no, yes), and body 
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mass index (BMI; continuous kg/m2). Models of REVEAL-HBV data were further adjusted 

for number of HBV DNA copies at baseline (<10,000, 10,000–<1,000,000, ≤1,000,000) and 

HBeAg serostatus (negative, positive), while REVEAL-HCV was further adjusted for HCV 

genotype (1, non-1). Effect measure modification by sex, smoking status, diabetes, and BMI 

was assessed. Departures from the null were examined using likelihood ratio tests to 

compare regression models with and without a multiplicative interaction term.24 There was 

no evidence of effect measure modification (Ps≥0.05). All tests for significance were 2-

sided. Analyses were conducted using SAS, version 9.4 (SAS Institute Inc., Cary, NC).

Sensitivity Analyses

In both REVEAL-HBV and REVEAL-HCV cohorts, sensitivity analyses were performed, 

excluding any bile acid value below the LLOQ. Five bile acids had >10% of values below 

the LLOQ: GLCA, LCA, TDCA, TLCA, and TUDCA. To examine potential reverse 

causation, analyses were performed excluding any case with an HCC diagnosis within 5 

years of baseline date.

Results

As shown in Table 1, HBV- and HCV-related HCC cases had higher BMI, higher ALT 

levels, and were less educated than controls. HBV-related HCC cases were also more likely 

to have a diabetes diagnosis, while HCV-related HCC cases were more likely to be smokers. 

Examining the bile acid pairings, significant correlations were noted between the primary 

bile acids (i.e., CA and CDCA, ρ=0.800) and their taurine and glycine conjugates (e.g., 

GCA and GCDCA, ρ=0.869) (Supplemental Table S1). Additionally, CDCA was highly 

correlated with its epimer secondary bile acid UDCA (ρ=0.806). Circulating concentrations 

were higher in HCC cases, compared to controls, for almost all bile acids examined (Table 

2).

Little to no association was found between unconjugated primary bile acids and risk of 

HBV-related HCC (OR per one unit change in log2 CA=1.19, 95% CI: 0.98–1.43 and OR 

for CDCA=1.17, 95% CI: 0.94–1.45) (Table 3). Conversely, the highest quartiles of CA and 

CDCA were associated with a 3-fold increased risk of HCV-related HCC (OR=3.40, 95% 

CI: 1.16–9.97, ptrend=0.03 and OR=4.25, 95% CI: 1.54–11.70, ptrend=0.02). A doubling of 

all glycine and taurine conjugates of primary bile acids were associated with 24–91% 

increased risk of HBV- and HCV-related HCC (e.g., OR per one unit change in log2 

GCDCA for HCV-related HCC=1.91, 95% CI: 1.29–2.83). Similarly, examining the fourth 

quartile compared to the first, glycine and taurine conjugates of primary bile acids were 

associated with a 2–8-fold increased risk of HBV- and HCV-related HCC (e.g., OR GCA for 

HCV-related HCC=8.16, 95% CI: 2.21–30.18, ptrend<0.001).

Among the secondary bile acids, DCA was inversely associated with HBV-related HCC risk 

(OR Quartile 4 vs. 1 DCA=0.41, 95% CI: 0.19–0.88) (Table 4). The highest quartile of 

circulating LCA was associated with a 3-fold increased HCV-related HCC risk, but the CI 

was wide (OR=3.33, 95% CI: 1.20–9.26, ptrend=0.03). Similar associations were observed 

for TDCA, GLCA, and TUDCA. However, power was limited to examine the majority of 

secondary bile acids, as >10% of samples were below the limit of quantitation for GLCA, 
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LCA, TDCA, TLCA, and TUDCA. Circulating GUDCA was associated with an increased 

risk of HBV-related HCC (OR per one unit change in log2 GUDCA=1.33, 95% CI: 1.05–

1.68), but not HCV-related HCC (OR=1.21, 95% CI: 0.91–1.60).

Examining the ratio of secondary to primary bile acids, higher relative concentrations of 

DCA/CA were associated with a decreased risk of HBV-related HCC (OR per one unit 

change in log2 DCA/CA=0.81, 95% CI: 0.69–0.96), but not HCV-related HCC (Table 4). 

Summing across bile acids, the primary bile acid score was associated with an increased risk 

of HBV- (OR=1.34, 95% CI: 1.07–1.69) and HCV-related HCC (OR=1.95, 95% CI: 1.30–

2.94; Supplemental Table S2). The secondary and total bile acids scores were only 

associated with HCV-related HCC (OR=1.55, 95% CI: 1.01–2.38 and OR=2.10, 95% CI: 

1.32–3.36, respectively).

Excluding bile acid values below the LLOQ from quartile one resulted in minimally altered 

estimates (Supplemental Table S3). Similarly, when we conducted lag analyses excluding 

cases diagnosed in the first five years of follow-up, the results were similar (Supplemental 

Table S4).

Conclusion

In this study leveraging data from two well-characterized prospective cohort studies, we 

report that a doubling in the circulating concentrations of glycine and taurine conjugated 

primary bile acids were associated with a 24–91% increased risk of viral hepatitis-related 

HCC. Conversely, higher levels of the secondary bile acid DCA were associated only with a 

decreased risk of HBV-related HCC.

Mechanisms underlying the bile acid-liver cancer association are not fully understood. 

However, two potential mechanisms include immune homeostasis and metabolic effects 

mediated by the gut microbiome via the gut-liver axis. The microbiota is the community of 

microorganisms, including viruses, fungi, and bacteria, that reside within human tissues and 

biofluids. Dysbiosis (i.e., altered microbiota abundance and composition), observed during 

HBV25 and HCV26, 27 infections, is associated with a dysfunctional intestinal barrier and 

can lead to bacterial translocation beyond the gut, potentially contributing to 

hepatocarcinogenesis.28, 29 Specifically, dysbiosis can lead to the release of cancer-

promoting and senescence-promoting metabolites, including the secondary bile acids. In 

experimental models, blocking DCA production or reducing the gut microbes that create 

DCA has been shown to prevent liver cancer development in rodents.11 However, bile acid 

composition varies substantially between mice and humans.30–32 In humans, healthy 

controls have higher levels of autochthonous bacteria (e.g., Blautia, Ruminococcaceae, and 

Lachnospiraceae), which are correlated with higher levels of secondary bile acids and higher 

secondary/primary bile acid ratios.33 Conversely, patients with liver disease (e.g., HBV, 

HCV, cirrhosis, and non-alcoholic fatty liver disease) display overgrowth of potentially 

pathogenic bacteria (e.g., Enterobacteriaceae),25–27, 33, 34 which are correlated with higher 

levels of primary bile acids.33 Thus, in liver disease-related dysbiosis, we would expect 

higher levels of primary bile acids in circulation, which we observed for both HBV- and 

HCV-related HCC.
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Bile acids may also be associated with liver cancer risk via metabolic regulation. The 

primary function of bile acids is to act as a surfactant that emulsifies dietary fats, allowing 

for digestion and absorption. However, bile acids also have metabolic effects, regulating 

glucose, lipids, and energy homeostasis. Specifically, two bile acid receptors modulate the 

metabolic effects of bile acids – the nuclear farnesoid X receptor (FXR) and the membrane-

bound Takeda G protein-coupled receptor (TGR5).35 Primary bile acids function as the main 

agonists of FXR, which regulates accumulation of fat and inflammation in the liver and lipid 

storage in white adipose tissue. The secondary bile acids (i.e., LCA and DCA) function as 

agonists of TGR5, activation of which increases insulin sensitivity and energy expenditure.35 

Further, bile acids enhance HBV and HCV replication through FXR36, 37 and high levels of 

bile acids have been correlated with poor response to interferon-based therapy for HCV.38–41 

Few studies have examined the association between bile acids and direct-acting antiviral 

(DAA) therapy,42, 43 likely because new DAA therapies can cure nearly all HCV infections.
44

Herein, we comprehensively examined 15 circulating bile acids using targeted metabolomics 

in relation to viral hepatitis-related HCC. Two recent studies conducted in European cohorts, 

Alpha-Tocopherol, Beta-Carotene Cancer Prevention study (ATBC) and European 

Prospective Investigation into Cancer and Nutrition (EPIC), have examined the association 

between untargeted metabolomics and risk of liver cancer.45, 46 Similar to the current report, 

both studies reported that GCA and GCDCA were associated with an increased risk of liver 

cancer. Another cohort study from South Korea (Korean Cancer Prevention Study-II, KCPS-

II) utilized an untargeted metabolomic approach and also reported that GCA was 

upregulated in HCC cases compared to controls. Additionally, the authors’ found that 

GUDCA and TUDCA were upregulated in cases.17 However, all three of these prospective 

studies utilized an untargeted platform. Thus, they were unable to comprehensively evaluate 

all primary and secondary bile acids and their conjugates. While our current study provides 

the most information to-date on the association between circulating concentrations of bile 

acids and risk of viral hepatitis-related HCC, we see similar associations across differing 

etiologies of liver cancer, specifically for conjugated primary bile acids. For ATBC, EPIC, 

and KCPS-II, 1.7%, 16.8%, and 70.5% of liver cancer cases were HBV-positive, while 

5.0%, 21.8% and 0.0% were HCV-positive, respectively.17, 45, 47 In REVEAL and KCPS-II, 

unconjugated primary bile acids, specifically GCA, were associated with an increased liver 

cancer risk, suggesting an etiologic pathway specific to viral hepatitis-related liver cancer. 

However, the associations with unconjugated primary bile acids were stronger for HCV-

related HCC. These associations for CA and TCA were not observed in prior studies, which 

may suggest that this is an etiologic pathway specific to HCV-related HCC (of which there 

have been few cases in prior prospective studies). Similarly, several of the secondary bile 

acids (e.g., LCA) were associated with HCV-related HCC, although power was limited, but 

there was little to no association with HBV-related HCC.

This study has several strengths, including use of targeted metabolomics for quantification 

of bile acid levels in serum samples collected prior to the diagnosis of cancer. Prior 

prospective studies have utilized untargeted metabolomics. Utilizing targeted metabolomics 

allows for absolute quantification of bile acid levels, through the use of optimized sample 

preparation and internal standards. Additionally, this allows for a comprehensive 
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examination of the bile acid metabolome, whereas using untargeted metabolomics would 

only allow examination of a subset of identified bile acids. All serum samples were collected 

pre-diagnostically, which ensures that the observed associations are not an artifact of the 

carcinogenic process. Finally, the REVEAL-HBV and REVEAL-HCV studies are long-

standing, population-based cohorts that have been well-characterized for liver disease, 

including information on the number of HBV DNA copies, HBeAg status, HCV genotype, 

and cirrhosis.

The primary limitation of this study is generalizability of the population, as the REVEAL 

cohorts are limited to persons who are chronic viral carriers. In addition, the cohorts were 

started prior to widespread use of nucleos(t)ide analogues as treatment for HBV infection or 

DAAs as treatment for HCV infection. Thus, it is unclear how these results may translate to 

populations that are not virally infected or populations where HBV and HCV treatment are 

more common. However, the results of the current study are similar to the results of two 

recent untargeted metabolomic studies from Europe. Additionally, our findings are similar to 

the untargeted metabolomics study from Korea, which was more recently recruited (i.e., 

2004–2013 vs. 1991–1992 for REVEAL). Another limitation was that >10% of participants 

had levels of five bile acids below the LLOQ, which limited our ability to examine them. 

However, this is not surprising as these bile acids, particularly taurine conjugates of the 

secondary bile acids, are found in low concentrations in humans.32

In conclusion, our study found that conjugated primary bile acids were associated with 

increased risk of HBV- and HCV-related HCC. However, higher levels of secondary bile 

acids were not associated with an increased risk of HCC; indeed, DCA may be associated 

with a decreased risk of HBV-related HCC. Thus, this study does not support the hypothesis 

that higher levels of secondary bile acids increase liver cancer risk among humans. While 

intriguing, these findings need to be replicated in other populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ALT alanine transaminase

ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention

CA cholic acid

CDCA chenodeoxycholic acid

CV coefficients of variation
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Cis confidence intervals

DCA deoxycholic acid

DAA direct-acting antiviral

EPIC European Prospective Investigation into Cancer and Nutrition

FXR farnesoid X receptor

GCA glycocholic acid

GCDCA glycochenodeoxycholic acid

GDCA glycodeoxycholic acid

GLCA glycolithocholic acid

GUDCA glycoursodeoxycholic acid

HBV hepatitis B virus

HBeAg hepatitis B e-antigen

HBsAg hepatitis B virus surface antigen

HCV hepatitis C virus

HCC hepatocellular carcinoma

KCPS-II Korean Cancer Prevention Study-II

LC-MS/MS liquid chromatography with tandem mass spectrometry

LCA lithocholic acid

LLOQ lower limit of quantitation

ORs odds ratios

QC quality control

REVEAL Risk Evaluation of Viral Load Elevation and Associated Liver 

Disease/Cancer

TGR5 Takeda G protein-coupled receptor

TCA taurocholic acid

TCDCA taurochenodeoxycholic acid

TDCA taurodeoxycholic acid

TLCA taurolithocholic acid

TUDCA tauroursodeoxycholic acid
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UDCA ursodeoxycholic acid
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NOVELTY AND IMPACT

Evidence suggests that the gut microbiome, including gut-derived circulating secondary 

bile acids, is related to the development of liver cancer. In this study, higher 

concentrations of glycine and taurine conjugated primary bile acids were associated with 

a 2–8-fold increased risk of HBV- and HCV-related HCC. However, this study does not 

support the hypothesis that higher levels of secondary bile acids increase liver cancer 

risk; indeed, deoxycholic acid may be associated with a decreased HCC risk.
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Table 1.

Baseline characteristics from included participants from the REVEAL-HBV and REVEAL-HCV cohorts.

REVEAL-HBV REVEAL-HCV

Covariate Controls (N=161) HCC Cases (N=185) P-value Controls (N=96) HCC Cases (N=96)
P-

value

Mean age (SD), years 50.7 (9.4) 51.3 (9.0) 0.6 54.5 (7.3) 54.4 (6.8) 0.8

Age, No. (%)

 30 – <40 24 (14.9) 24 (13.0) 4 (4.2) 4 (4.2)

 40 – <50 53 (32.9) 58 (31.4) 14 (14.6) 14 (14.6)

 50 – <60 51 (31.7) 68 (36.8) 54 (56.2) 54 (56.2)

 60+ 33 (20.5) 35 (18.9) 0.8 24 (25.0) 24 (25.0) 1.0

Sex, No. (%)

 Male 130 (80.8) 150 (81.1) 56 (58.3) 56 (58.3)

 Female 31 (19.3) 35 (18.9) 0.9 40 (41.7) 40 (41.7) 1.0

Body mass index, No. (%)

 <18.5, kg/m2 5 (3.1) 7 (3.8) 0 (0.0) 1 (1.0)

 18.5 – <23, kg/m2 68 (42.2) 52 (28.1) 45 (46.9) 28 (29.2)

 23 – <25 42 (26.1) 45 (24.3) 19 (19.8) 19 (19.8)

 ≥25, kg/m2 46 (28.6) 81 (43.8) 0.01 32 (33.3) 48 (50.0) 0.04

Alcohol consumption, No. 
(%)

 No 136 (84.5) 149 (80.5) 86 (89.6) 87 (90.6)

 Yes 25 (15.5) 36 (19.5) 0.4 10 (10.4) 9 (9.4) 0.8

Smoking status, No. (%)

 No 104 (64.6) 113 (61.1) 67 (69.8) 55 (57.3)

 Yes 57 (35.4) 72 (38.9) 0.5 29 (30.2) 41 (42.7) 0.07

Education, No. (%)

 Illiterate 20 (12.4) 24 (13.0) 35 (36.4) 39 (40.6)

 Elementary school 69 (42.9) 98 (53.0) 45 (46.9) 37 (38.6)

 Junior high school 19 (11.8) 25 (13.5) 4 (4.2) 13 (13.5)

 High school 32 (19.9) 25 (13.5) 7 (7.3) 5 (5.2)

 College or more 21 (13.0) 13 (7.0) 0.1 5 (5.2) 2 (2.1) 0.1

Mean ALT (SD), u/L 18.3 (18.4) 32.5 (44.8) <0.001 31.5 (30.7) 43.9 (42.5) 0.006

Diabetes at Baseline, No. (%)

 No 160 (99.4) 175 (94.6) 91 (94.8) 92 (95.8)

 Yes 1 (0.6) 10 (5.4) 0.01 5 (5.2) 4 (4.2) 0.7

Liver Cirrhosis at Baseline, 
No. (%)

 No 161 (100.0) 158 (85.4) 93 (96.9) 93 (96.9)

 Yes 0 (0.0) 27 (14.6) <0.001 3 (3.1) 3 (3.1) 1.0

HBeAg

 Negative 142 (88.2) 107 (57.8)

 Positive 19 (11.8) 78 (42.2) <0.001
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REVEAL-HBV REVEAL-HCV

Covariate Controls (N=161) HCC Cases (N=185) P-value Controls (N=96) HCC Cases (N=96)
P-

value

HCV Genotype

 Genotype 1 45 (46.9) 66 (68.8)

 Genotype non-1 51 (53.1) 30 (31.2) 0.002

Abbreviations: HBV=hepatitis B virus, HCV=hepatitis C virus, HCC=hepatocellular carcinoma, SD=standard deviation, kg=kilogram, m=meter.

1
P-values calculated using the Chi-square test (categorical variables) or the Wilcoxon test (continuous variables).
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