
CoMNRank: an integrated approach to extract and prioritize 
human microbial metabolites from MEDLINE records

QuanQiu Wang1, Rong Xu1,*

1Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve 
University, Cleveland, Ohio 44106, United States.

Abstract

Motivation: Trillions of bacteria in human body (human microbiota) affect human health and 

diseases by controlling host functions through small molecule metabolites. An accurate and 

comprehensive catalog of the metabolic output from human microbiota is critical for our deep 

understanding of how microbial metabolism contributes to human health. The large number of 

published biomedical research articles is a rich resource of microbiome studies. However, 

automatically extracting microbial metabolites from free-text documents and differentiating them 

from other human metabolites is a challenging task. Here we developed an integrated approach 

called Co-occurrence Metabolite Network Ranking (CoMNRank) by combining named entity 

extraction, network construction and topic sensitive network-based prioritization to extract and 

prioritize microbial metabolites from biomedical articles.

Methods: The text data included 28,851,232 MEDLINE records. CoMNRank consists of three 

steps: (1) extraction of human metabolites from MEDLINE records; (2) construction of a weighted 

co-occurrence metabolite network (CoMN); (3) prioritization and differentiation of microbial 

metabolites from other human metabolites.

Results: For the first step of CoMNRank, we extracted 11,846 human metabolites from 

MEDLINE articles, with a baseline performance of precision of 0.014, recall of 0.959 and F1 of 

0.028. We then constructed a weighted CoMN of 6,996 nodes and 986,186 edges. CoMNRank 

effectively prioritized microbial metabolites: the precision of top ranked metabolites is 0.45, a 31-

fold enrichment as compared to the overall precision of 0.014. Manual curation of top 100 

metabolites showed a true precision of 0.67, among which 48% true positives are not captured by 

existing databases.
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Conclusion: Our study sets the foundation for future tasks of microbial entity and relationship 

extractions as well as data-driven studies of how microbial metabolism contributes to human 

health and diseases.

*Graphical Abstract

1 Introduction

Human microbiota is an important modifiable environmental factor and a part of the 

ecosystem of human body (Turnbaugh et al., 2007). These microbiota exists in symbiotic 

relation with human hosts by controlling both the metabolism and immune balance of the 

human body (Gill et al., 2006; Cho et al., 2012; Sommer et al., 2013; Gilbert et al., 2018). 

Strong evidence shows that the metabolism of human microbiota influences human health 

and well-being (Gill et al., 2006; Tremaroli et al., 2012; Nicholson et al., 2012; Trompette et 
al., 2014; Koppel et al., 2017; Tang et al., 2018). Recent studies showed that gut microbial 

metabolites are involved in many common complex diseases, including cardiovascular 

diseases (Tang et al., 2018; Brown et al., 2018), metabolic syndrome (Canfora et al., 2019), 

neuropsychiatric disorders (Hsiao et al., 2013; Smith., 2015; Valles-Colomer et al., 2019), 

cancers (Smith et al., 2013; Schwabe et al., 2013; Louis et al., 2014), and immune disorders 

(Rooks et al., 2016; Marino et al., 2017; Jangi et al., 2016; Haase et al., 2018).

We have recently developed data-driven computational approaches to understand how 

microbial metabolites contribute to human diseases, including colorectal cancer (Xu et al., 
2015; Wang et al., 2018), Alzheimer’s disease (Xu et al., 2016), psoriasis (Wang et al., 
2017), and rheumatoid arthritis (Wang et al., 2017, 2019). We used 172 known microbial 

metabolites from the Human Metabolome Database (HMDB), which is currently the most 

comprehensive human metabolome database of over 114,100 small molecule metabolites 

found in the human body (Wishart et al., 2013). Our studies have shown that the interactions 

of microbial metabolites with human host genetics have long-ranging systematic effects on 

intestine, joints, skin and brain. For example, our studies revealed strong mechanistic links 

between trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and 

fat, and both colorectal cancer (Xu et al., 2015) and Alzheimer’s diseases (Xu et al., 2016). 

These computation-based findings were verified by other studies showing that patient 

plasma level of TMAO is positively associated with colorectal cancer risk (Bae et al., 2014) 

and that TMAO is elevated in the cerebrospinal fluid of Alzheimer’s disease patients (Vogt 

et al., 2018). Our previous data-driven studies critically depended on the coverage of 

microbial metabolites from HMDB.

The field of microbiome research is fast moving with an increasing number of microbial 

metabolites being identified and published in the literature. During our previous studies, we 

found that many microbial metabolites have been reported in biomedical literature, but not 

captured by HMDB. For example, the sentence “The dietary treatment also boosted serum 
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concentrations of bacterial metabolites, including choline, glycerophosphorylcholine, 

dimethylamine, trimethylamine, trimethylamine-N-oxide, lactate, and succinate.” (PMID 

29563518). The phrase ‘bacterial metabolites’ clearly states that all seven metabolites in the 

sentence are originated in microbes. Though HMDB include all these metabolites as these 

metabolites are indeed present in human body, three of them (choline, 

glycerophosphorylcholine, and lactate) are not classified as microbial metabolites. Another 

example is the sentence “We further investigate the bioactivity of the confirmed metabolites, 

and identify two microbiota-generated metabolites 5-hydroxy-L-tryptophan and salicylate 
as activators of the aryl hydrocarbon receptor” (PMID 25411059). HMDB includes both 5-
hydroxy-L-tryptophan and salicylate but did not classify them as microbial metabolites. 

Consequently, our previous studies missed these five microbial metabolites, even though 

they are shown to be involved in important biologic process and human diseases (Hinz et al., 
2012; Pincemail, 1995). Therefore, an accurate and comprehensive catalog of microbial 

metabolites that are also present in human body (“human microbial metabolites”) is the key 

to data-driven studies of how human microbial metabolism affects human health.

2 Approach

Microbial metabolites are defined as metabolites produced, but not necessarily exclusively, 

by microbes. While some microbial metabolites are exclusively produced by microbes, 

many others are produced by both human hosts and microbes. The large number of 

published biomedical research articles is a rich resource for building a catalog of human 

microbial metabolites as shown by above two examples. Automatic extraction of biomedical 

entities and relationships from free-text biomedical documents is in general a difficult 

task(Xu et al., 2013; Wang et al., 2013; Xu et al., 2014; Wang et al., 2018). Compared other 

biomedical natural language processing (NLP) tasks, extraction of machine-understandable 

knowledge of microbiome in human diseases from published biomedical research articles is 

a challenging task and less explored (Badal et al., 2019). Recently, researchers developed 

natural language processing and text mining techniques to extract disease-microbe (bacteria) 

relationship from published biomedical literature (Ma et al., 2019; Janssens et al., 2019). 

However, currently no research efforts have been devoted to extract microbial metabolites 

from biomedical literature. Compared to other biomedical entity extractions, extracting 

human microbial metabolites from free-text faces special challenges. First, metabolites 

found in human body can originate from many different resources, including human hosts, 

plants, foods, microbes, toxins, pollutants, cosmetics, drugs, among others. Metabolites 

originated from human microbiota constitute only a very small portion of human 

metabolome. For example, the list of 172 microbial metabolites in HMDB constitutes only 

0.15% of 114,100 human metabolites. Second, the majority of metabolites from biomedical 

articles are not of microbial origin. Consequently, automatically extracting microbial 

metabolites from a large number of biomedical articles and differentiating them from other 

human metabolites is a challenging “finding a needle in haystack” task.

The goal of this study is to automatically prioritize microbial metabolites among all human 

metabolites in HMDB by leveraging their occurrence in biomedical literature. In this study, 

we developed an integrated approach called Co-occurrence Metabolite Network Ranking 

(CoMNRank) by combining named entity extraction (NER), network construction and topic 
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sensitive network-based signal prioritization to extract and prioritize microbial metabolites 

from over 28 million MEDLINE reicords. As shown in the above two examples (PMID 

29563518, PMID 25411059), the five missed microbial metabolites are included in HMDB 

indicating that they are present in human body, but they are not classified as microbial 

origin. We leveraged the large list of human metabolites from HMDB and performed a 

dictionary-based NER to extract tens of thousands of human metabolites from MEDLINE 

records. Though this baseline NER had low precision, it had a high recall. Importantly, this 

human metabolome-based NER step ensures extraction of only metabolites present in 

human body and exclusion of metabolites only present in soil, oceans, among others 

(“Human Metabolites vs Other”).

Since the majority of human metabolites extracted from published biomedical articles are 

not microbial metabolites, we then constructed a co-occurrence metabolite network (CoMN) 

and developed a topic sensitive network-based approach to further differentiate microbial 

metabolites from other metabolites (“Human Microbial Metabolites vs Other”). The 

CoMN-based ranking algorithm is based on three hypotheses: (1) if an article contains a 

known microbial metabolite (e.g., butyric acid, trimethylamine n-oxide), then the article is 

likely related to microbial metabolism (“Implicit Text Classification”); (2) other metabolites 

extracted from microbial metabolism-related articles are likely microbial metabolites 

(“Implicit Microbial Metabolite Classification”); and (3) if a metabolite co-occurs with 

multiple known microbial metabolites many times, the metabolite is more likely a microbial 

metabolite than others co-occurring with none or few known microbial metabolites few 

times in the entire MEDLINE collection (“Prioritization”). For example, the sentence “The 

dietary treatment also boosted serum concentrations of bacterial metabolites, including 

choline, glycerophosphorylcholine, dimethylamine, trimethylamine, trimethylamine-N-
oxide, lactate, and succinate.” (PMID 29563518) contains a well-known microbial 

metabolite “trimethylamine-N-oxide”. Based on our assumption, this sentence is likely from 

a microbial metabolism-related study. Other metabolites (choline, 

glycerophosphorylcholine, dimethylamine, trimethylamine, lactate, and succinate) from this 

sentence are likely microbial metabolites. Indeed, all seven metabolites from this sentence 

are of microbial origin and only 4 are captured in HMDB as microbial metabolites.

CoMNRank consists of three steps: NER, network construction and prioritization. After the 

baseline NER step (human metabolite extraction of low precision and high recall), we built a 

weighted co-occurrence metabolite network (CoMN) where nodes are metabolites that have 

appeared in MEDLINE, and edges represent the number of MEDLINE articles where any 

two metabolites co-occurred. We then used known microbial metabolites as seeds to 

prioritize other microbial metabolites from the weighted CoMN. We demonstrated the 

robustness of this approach by investigating how different seeds affected the overall 

performance. We manually curated top ranked metabolites and built a list of true microbial 

metabolites.

In summary, CoMNRank will set the strong foundation for future tasks of microbial 

metabolite entity and relationship extractions. A comprehensive list of human microbial 

metabolites will greatly facilitate data-driven studies of how human microbial metabolism 

contributes to human health and diseases as demonstrated in our study.
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3 Methods

CoMNRank consists of three steps: (1) human metabolite extraction; (2) construction of Co-

occurrence Metabolite Network (coMN); and (3) priorization of microbial metabolites from 

CoMN. We evaluated the comparative performance of different algorithm configurations for 

both metabolite extraction and prioritization using known microbial metabolites. We 

performed manual curation to calculate the true precision of top ranked metabolites.

3.1 Human metabolite extraction and evaluation

3.1.1 Human metabolite extraction—A total of 28,851,232 MEDLINE records 

(published up to July, 2018) were downloaded from the National Library of Medicine 

(MEDLINE., 2018). The MEDLINE fields of Title, Abstract, MeshHeadings, Keywords, 

and Chemicals, separately or combined, were used for metabolite extraction. We performed 

dictionary-based NER to extract human metabolites and to exclude metabolites present in 

soil, oceans and others. We built a lexicon consisting of all human metabolites from HMDB 

(Wishart et al., 2013), including preferred names (e.g., butyric acid) and their synonyms 

(e.g., 1-butanoate, butyrate). We experimented with two versions of HMDB: the year 2017 

version and the most updated year 2018 version. The lexicon based on the 2017 version 

comprised of 42,003 unique metabolite concepts, 188,153 synonyms and 365,632 

synonym→concept mappings. The lexicon based on the 2018 version is significantly larger 

and contains 114,100 unique metabolites, 510,603 synonyms and 11,131,600 

synonym→concept mappings. Both versions of metabolite lexicons were used to recognize 

metabolites and their synonyms from MEDLINE records. Extracted entities were 

normalized by mapping synonyms to their preferred names (e.g., butyrate→butyric acid).

3.1.2 Evaluation of NER—We evaluated the performance of the baseline NER using 

the 172 known microbial metabolites from HMDB. Standard measures of precision (fraction 

of recognized entities as positive that are truly positive), recall (true positive rate) and F1 

(harmonic average of the precision and recall) were calculated and compared. Since many 

microbial metabolites are reported in literature but not captured by the list of 172 microbial 

metabolites from HMDB, the calculated precision significantly underestimated the true 

precision. Therefore, these 172 known microbial metabolites were used to compare relative 

performances of different approaches (not for true precision calculation). We investigated 

which fields of MEDLINE records and which version of the HMDB-based metabolite 

lexicons to be used for microbial metabolite extraction. We evaluated the coverage of 172 

known microbial metabolites from HMDB in each of the MEDLINE field. The fields with 

maximal coverage were used for subsequent NER, CoMN construction and prioritization. 

For example, the field “MeshHeadings” of all 28,851,232 MEDLINE records captured 

31.5% of the 172 known microbial metabolites. The field “Chemicals” captured 70.9% and 

the combined all five fields captured as much as 95% of known microbial metabolites. We 

also compared the coverage of NER using the two versions of HMDB-based metabolite 

lexicons and the one with better performance was used subsequently.
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3.2 Construct co-occurrence metabolite network (CoMN)

We built a weighted co-occurrence metabolite network (CoMN). Nodes on CoMN represent 

metabolites that appeared in MEDLINE records. The edge between two metabolites 

represents the number of MELDINE records in which these two metabolites appeared 

together. To investigate how the edge weighting affects subsequent prioritization, we also 

constructed a unweighted CoMN, where the edge (with weight of 1) represents the fact that 

two metabolites co-occurred at least once.

3.3 CoMN-based prioritization and evaluation

The majority of metabolites extracted from MEDLINE records are not microbial 

metabolites, meaning that the baseline NER without further prioritization will have an 

extremely low precision. We developed a topic sensitive CoMN-based approach to prioritize 

microbial metabolites from extracted metabolites. We used known microbial metabolites as 

seeds (i.e.,”microbial metabolism topic”) to prioritize other microbial metabolites from 

CoMN.

3.3.1 CoMN-based prioritization—The input to the prioritization algorithm is a vector 

consisting of one or more known microbial metabolites. A probability of 1.0 is assigned to 

the input seed if the input vector consists of one metabolite and 0.25 if the input vector 

consists of 4 seeds. The output is a list of metabolites prioritized based on their co-

occurrence relevance to the input seeds. We used the standard network-based ranking 

algorithms, which we previously applied to prioritize disease genes (Chen et al., 2015, 

2017), drug candidates (Xu et al., 2015, 2016; Wang et al., 2018), drug targets (Zhou et al., 
2018), and disease-microbial metabolite associations (Xu et al., 2015, 2016). Given an input 

vector consisting of known microbial metabolites, the ranking scores for all metabolites on 

the CoMN are iteratively updated by:

S k + 1 = αMTSk + 1 − α S0 (1)

where S(k+1) is the score vector at step k + 1, S0 is the initial vector, and 1 – α is the 

restarting probability, M is the transition matrix of the CoMN, with normalized edge 

weights. We used the restarting probabilities α of 0.7, which was used in our previous 

studies. We also experimented with different restarting probabilities α and found that there 

were no significant difference on the overall performance. We also experimented with (1) 

different types of seeds (microbial metabolite seeds, non-microbial metabolites, and no 

seeds); (2) seeds with different MEDLINE frequency; (3) different number of microbial 

metabolites as seeds; and (4) weighted vs un-weighted CoMNs. The performances of 

CoMNRank with these different configurations were evaluated and compared.

3.3.2 Evaluation of prioritization—We used Precision-Recall (PR) curves (instead of 

receiver operating characteristic curve, or ROC curve) to evaluate and compare different 

prioritization methods. PR curves are often used to evaluate ranked results in information 

retrieval and classification (Manning et al., 2008; Davis et al., 2006). Since microbial 

metabolites constitutes only a tiny portion of all extracted human metabolites, PR curves 

provides a more informative and accurate measure of the algorithm performance than ROC 
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curves for any highly skewed dataset (Davis et al., 2006). A PR space is defined as precision 

and recall as x and y axes, respectively. Using the 172 microbial metabolites from HMDB as 

the evaluation dataset, we calculated precisions at 11 different recall cutoffs (0.05, 0.1, 0.2, 

… 1.0) and plotted the PR curves for CoMNRank of different configurations. Since many 

microbial metabolites from literature are not captured by these 172 microbial metabolites, 

PR curves calculated with this evaluation dataset likely underestimate true performance of 

ranking algorithms. Therefore these 172 microbial metabolites were only used to compare 

relative performances of different approaches.

3.4 Manual curation and evaluation

We manually curated top 100 metabolites by the two authors reading the MEDLINE articles 

where the metabolites appear. The PubMed identifiers (PMIDs) of the MEDLINE articles 

with supporting evidence were extracted and associated with each identified microbial 

metabolites. The manual curation was labor-intensive requiring reading thousands of 

articles, therefore we only manually curated top 100 ranked metabolites. After we 

demonstrated that CoMNRank was able to enrich true positive among top as evaluated with 

the 172 known microbial metabolites, the goal of manual curation is to calculate the true 

precision of top ranked metabolites and to show that many true positives among top ranked 

metabolites are not captured by existing databases. We obtained a total of 220 microbial 

metabolites by combining 172 known microbial metabolites from HMDB with the 

additional 48 manually curated microbial metabolites. Manual curation data along with other 

data is publicly available at nlp.case.edu/public/data/CoMNRank.

4 Results

4.1 Distribution of known microbial metabolites in MEDLINE records and performance of 
the baseline extraction step

We investigated which MELDINE fields had the best coverage of known microbial 

metabolites. As expected, the best coverage was achieved when all five fields of MEDLINE 

records (MeshHeadings, Chemicals, Keywords, Title and Abstract) were used (Figure 1). A 

total of 22.0%,70.9% and 76.2% of the 172 known microbial metabolites appeared in the 

structured fields of MeshHeadings, Chemicals, and Keywords, respectively. When these 

three structured fields were combined, a coverage of 88.9% was achieved. When the free-

text fields of Title and Abstract were used in addition to the structured fields, a coverage of 

95.9% was achieved. This high coverage (or recall) demonstrates that these five fields of 

MELDLINE records captures the majority of known microbial metabolites and can serve as 

a rich resource for extracting not-yet-captured microbial metabolites.

Table 1 shows the performance of the dictionary-based NER (baseline approach) from the 

combined five fields of MEDLINE records. A total of 11,846 unique metabolites were 

extracted. The recall is high (0.959) and the precision is extremely low as evaluated with the 

172 known microbial metabolites. These results demonstrates that (1) MEDLINE records is 

a comprehensive resource for microbial metabolite extraction (high recall); and (2) microbial 

metabolites constitute only a small portion of all extracted metabolites (low precision), 

therefore further prioritization of microbial metabolites among all extracted human 
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metabolites is necessary. Also shown in the table, though the 2018 version of HMDB-based 

lexicon contains significantly more metabolites than the 2017 version, extraction based on it 

had both lower coverage and precision. One reason if the low precision is due to the 

mapping errors in HMDB lexicon. For example, in the mapping “HMDB0000958- trans-

aconitic acid - acid”, the general term ‘acid’ is mapped to the specific term ‘trans-aconitic 

acid’. The term ‘acid’ appeared in MEDLINE 1317752 times. When it was extracted from 

MEDLINE, it was incorrectly mapped to the concept “trans-aconitic acid”. While both 

versions of HMDB contain these mapping errors, the version of HMDB may have more 

errors due to its much large size of mappings (11,131,600 versus 365,632 mappings). The 

lower coverage of 2018 version HMDB as compared to 2017 version HMDB may due to the 

fact that many concepts in 2018 version HMDB may not appear in MEDLINE. Therefore, 

subsequent CoMN construction and prioritization were based on metabolites extracted using 

the 2017 version lexicon.

4.2 CoMNRank effectively prioritized microbial metabolites

We further prioritized extracted metabolites in order to enrich true microbial metabolites 

among top. When a known microbial metabolite (butyric acid or trimethylamine n-oxide) 

was used as the seed, top ranked metabolites were highly enriched with known microbial 

metabolites (Figure 2).

For example, when the seed “butyric acid” was used, the top ranked metabolites (at recall of 

0.05) has a precision of 0.185, representing a 12.2-fold enrichment as compared to the 

overall precision of 0.014 (at recall of 1.0). When the microbial metabolite seed 

“trimethylamine n-oxide” was used, the top ranked metabolites (at recall of 0.05) has a 

precision of 0.209, which represents a 13.9-fold enrichment as compared to the overall 

precision of 0.014. On the other hand, when a non-microbial metabolite seed (mercury or 

valdecoxib) or no seed (pure frequency-based ranking) was used, the top ranked metabolites 

are not enriched with known microbial metabolites (Figure 2). These results support our 

hypotheses that (1) if an article contains a known microbial metabolite (e.g., butyric acid, 

trimethylamine n-oxide), then the article is likely related to microbial metabolism study 

(“Implicit Text Classification”); (2) other metabolites extracted from microbial 

metabolism-related articles are likely microbial metabolites (“Implicit Microbial 
Metabolite Classification”).

4.3 The weighted CoMN has better overall performance

We investigated how the edge weights of CoMN affect the overall performance. When the 

unweighted CoMN was used, the performance was not as good as that for the weighted 

CoMN (Figure 3). For example, when the seed “butyric acid” was used for the unweighted 

CoMN, the top ranked metabolites (at recall of 0.05) has a precision of 0.125, which 

represents a 7.9-fold enrichment as compared to the overall precision of 0.014. When the 

seed “trimethylamine n-oxide” was used, the top ranked metabolites (at recall of 0.05) has a 

precision of 0.132, which represents a 8.4-fold enrichment as compared to the overall 

precision of 0.014. These results support our hypothesis that if a metabolite co-occurs with 

known microbial metabolites many times (captured by the edge weights), then the 
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metabolite is more likely a microbial metabolite than those co-occurring with known 

microbial metabolites few times.

4.4 The frequency of seeds affects the overall performance

Here we investigated how the frequencies of seeds in the entire MEDLINE collection (well-

known/studied vs. less known/studied microbial metabolites) affected the performance of 

CoMNRank. We used 12 microbial metabolite seeds with different frequency and 12 non-

microbial metabolite seeds with matching frequency (Table 2). Butyric acid is one of the 

most abundant short chain fatty acids (SCFAs) and the primary end-products of fermentation 

of non-digestible dietary fiber by the gut microbiota (Rooks et al., 2016). Trimethylamine n-

oxide (TMAO) is a gut microbial metabolite of red meat and high fat diet (Tang et al., 2018; 

Brown et al., 2018).

As shown in Figure 4, MEDLINE frequency of the input seed affected the overall 

performance. When rare microbial metabolite seeds (e.g., n2-succinyl-l-ornithine, 

chenodeoxycholic acid 3-sulfate, indole) were used, the performance is not as good as that 

for frequent seeds. For example, when n2-succinyl-l-ornithine (appeared once in the 

MEDLINE collection) was used as the input seed, the top ranked metabolites (at recall of 

0.05) has a precision of 0.086, a 5.1-fold enrichment as compared to the overall precision of 

0.014. On the other hand, when p-cresol sulfate (appeared in 311 times in MEDLINE) was 

used, the top ranked metabolites (at recall of 0.05) has a precision of 0.278, an 18.8-fold 

enrichment over the overall precision of 0.014. However, the performance is not proportional 

to seed frequency. For example, acetic acid appeared in 135,678 MEDLINE articles. When 

acetic acid was used as the seed, the precision at recall of 0.05 is 0.143, which is lower than 

that for less frequent seeds such as butyric acid, propionic acid, TMAO or p-cresol. One 

explanation is that when acetic acid, a very general term, is mentioned in MEDLINE, it 

often does not specifically refer to microbiota-derived metabolite, therefore the articles it 

appears are often not microbial metabolism-related. CoMNRank using the frequency-

matched non-microbial metabolite seeds in general was not able to enrich true positives 

among top. (Figure 5).

4.5 Combined seeds further improved performance

We investigated how combining different types of microbial metabolite seeds affected the 

overall performance. Butyric acid and propionic acid are both short chain fatty acids 

(SCFAs) produced by the gut microbiota in fermentation of non-digestible dietary fiber 

(Rooks et al., 2016). Trimethylamine n-oxide (TMAO) is a gut microbial metabolite of red 

meat and high fat diet (Tang et al., 2018; Brown et al., 2018). P-Cresol is an end-product of 

protein breakdown and microbial metabolites produced from tyrosine (Verbeke et al., 2015). 

SCFAs often co-occur together in MEDLINE articles, for example in the sentence “… as 

well as between treated CD patients and healthy adults, regarding acetic acid, propionic acid, 

butyric acid, and total SCFAs.” (PMID 22542995). When two similar seeds butyric acid and 

propionic acid were used together as seeds, the overall performance (precision of 0.184 at 

recall of 0.05) did not improve as compared to that when they were used individually 

(precision of 0.185 for butyric acid and 0.209 for propionic acid) (Figure 6).
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On the other hand, when different types of seeds were combined, the performance of 

CoMNRank improved (Figure 6). Combining butyric acid and TMAO, the precision (at 

recall of 0.05) is 0.224, which is higher than that for butyric acid (0.185) and TMAO (0.209) 

alone. By combining butyric acid and p-cresol, the precision (at recall of 0.05) is 0.346, 

which is higher than that for butyric acid (0.185) and p-cresol (0.278) alone. Combining all 

three together, the precision (at recall of 0.05) is 0.45, which is higher than that for each 

individual seed (0.185 for butyric acid, 0.209 for TMAO and 0.278 for p-cresol). When three 

SCFAs (the same type of metabolites) were used as the seeds, the precision at recall of 0.05 

is 0.170 (data not shown), which is significantly lower than that when three different types 

of seeds (butyric acid, TMAO and p-cresol) were used. These results indicate that if a 

metabolite co-occur with two or more other types of microbial metabolites, it is highly likely 

a microbial metabolite.

4.6 Manual curation and error analysis

Since many microbial metabolites are not captured by HMDB, evaluation using 172 known 

microbial metabolites from HMDB under-estimated the true precision of CoMNRank. 

Therefore we used it only to compare the performance of different configurations of 

CoMNRank (metabolite dictionary choice, different fields of MEDLINE records, weighted 

vs unweighted CoMNs, and different seeds). These evaluations showed that CoMN 

effecvtively enriched true positives among top ranked metabolites. We then manually 

curated top 100 metabolites output from CoMN with configuration of combined seeds 

(butyric acid, TMAO and p-cresol), weighted CoMN, 2017 version of HMDB lexicon, and 

five fields of MEDLINE records. We calculated the true precision of these top 100 

metabolites. Note that recall was difficult to calculate since we don’t know how many 

metabolites are produced by human microbiota. Given that CoMN has effectively enriched 

true positives among top and that manually curating all extracted 11,864 metabolites is 

extremely labor intensive, we only curated top 100 metabolites. Results in Table 1 indicate 

that MEDLINE records are indeed a comprehensive resource for known microbial 

metabolites (recall of 0.959).

A total of 67 out of the top 100 metabolites are true positives, including 19 from HMDB and 

additional 48 microbial metabolites that are reported in MEDLINE but not captured in 

HMDB. The true precision of top 100 metabolites is 0.67, which is significantly higher than 

the estimated precision of 0.19 evaluated using 172 microbial metabolites from HMDB. This 

manual curation demonstrates that (1) the ranking algorithm indeed significantly enriched 

true positives among top (67% are true positives); (2) the majority (as much as 48%) of 

microbial metabolites have not been captured by HMDB; and (3) the 28 million MEDLINE 

records are indeed a rich resource for microbial metabolite extraction.

We performed error analysis of five highly ranked non-microbial metabolites (trans-aconitic 
acid, sodium, alpha-amyrin acetate, oxygen, omeprazole). The three non-microbial 

metabolites (Trans-aconitic acid, alpha-amyrin acetate, omeprazole) ranked highly due to 

synonym mapping errors from HMDB. Based on HMDB, trans-aconitic acid (HMDB00958) 

has 13 synonyms, among which is an incorrect synonym mapping “acid!trans-aconitic acid”. 

The term “acid” frequently appears in MEDLINE and does not refer to “trans-aconitic acid”. 
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During the metabolite extraction and mapping process, the common term “acid” was 

extracted and incorrectly mapped to the concept “trans-aconitic acid”. Since the term “acid” 

universally appeared in MEDLINE articles and often co-occurs with many known microbial 

metabolites, its mapped term “trans-aconitic acid” was ranked highly when microbial 

metabolite seeds were used. The same mapping errors occurred for “alpha-amyrin acetate” 

(“alpha→alpha-amyrin acetate”) and “omeprazole” (“result→meprazole”). Both terms 

“alpha” and “result” frequently appeared in MEDLINE records. The other two top ranked 

non-microbial metabolites (sodium and oxygen) ranked highly not due to mapping errors but 

to their high frequencies in MEDLINE.

5 Discussion

We developed an integrated approach CoMNRank by combining named entity recognition, 

network construction and network-based prioritization to extract and prioritize microbial 

metabolites from over 28 million MEDLINE records. A few points warrant further 

discussion and future investigation.

This study was motivated by our previous studies showing that the list of microbial 

metabolites from HMDB had limited coverage and that an accurate and comprehensive 

catalog of microbial metabolites that are also present in human body is the key to data-

driven studies of how human microbial metabolism affects human health. While the main 

goal of this study is to demonstrate the novel algorithm CoMNRank in prioritizing microbial 

metabolites by leveraging their occurrences in biomedical literature, our next step is to 

demonstrate how the newly extracted microbial metabolites facilitate data-driven analysis of 

microbial metabolism related to human diseases. For this purpose, the extracted metabolites 

need further manual curation. CoMNRank prioritized true positives among top, which will 

greatly facilitate the manual curation process.

In this study, we used the fields of Title, Abstract, MeshHeadings, Keywords, and Chemicals 
of MEDLINE records and showed that these fields captured as much as 95.9% of the 172 

known microbial metabolites from HMDB. While important findings are often captured by 

these fields, it is likely that some microbial metabolites are listed in full-text fields, including 

embedded tables or even supplementary data. In our future works, we will investigate if 

using full-text archive from PubMed Central (PMC., 2018) can identify additional microbial 

metabolites.

During the error analysis, we found that many non-microbial metabolites ranked highly 

because of the synonym mapping errors from HMDB. Given the large number of 

synonym→concept mappings (365,632) in HMDB, manual curation of all mappings is not 

feasible. Discarding common terms is also not a good option since some true microbial 

metabolites (e.g., hydrogen, urea, and acetic acid) frequently appear in MEDLINE. One 

possible solution is to only manually curate mappings containing frequent terms. These 

common synonyms, when incorrectly mapped, will have big impact on the overall 

performance given their frequent appearances in MEDLINE. Incorrect mappings containing 

rare terms will not have big effect on overall performance since these terms will not be 

ranked highly from the weighted CoMN. In our previous study, we curated five Million 
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UMLS Metathesaurus Terms based on their appearances in all MEDLINE articles (Xu et al., 
2010). In our future studies, we will first find the frequencies of all metabolite terms (names 

and synonyms) in the entire MEDLINE collection and then manually curate mappings 

containing top frequent terms.

The main goal of this study was to identify and prioritize microbial metabolites that are 

included in HMDB but not classified as microbial origin, therefore we performed dictionary-

based NER using a lexicon constructed from HMDB. During the experiment, we noticed 

that some microbial metabolites were clearly stated in biomedical literature, but the names 

were not included in HMDB. For example, the sentence “… trans-resveratrol and 

resveratrol-derived microbial metabolites (dihydroresveratrol and lunularin) were also 

identified” (PMID 26156396) contains two microbial metabolites dihydroresveratrol and 

lunularin. None of these two metabolites are included in HMDB, therefore they were missed 

from our dictionary-based extraction. For our future studies, we will complement the 

dictionary-based NER with de-novo NER techniques, including the pattern-based iterative 

learning approaches that we previously developed for both NER (Xu et al., 2008, 2009) and 

relationship extraction (Xu et al., 2009, 2013, 2014), to further increase the recall of 

microbial metabolite extraction from biomedical literature.

Microbial metabolites in this study are defined as metabolites produced by microbes, by not 

necessarily exclusively so. The goal of this study, motivated by our previous data-driven 

studies in understanding how microbial metabolism contributed to human health and 

diseases, is to automatically prioritize microbial metabolites among all human metabolites. 

While some microbial metabolites are exclusively produced by microbes, many others are 

produced by both human hosts and microbes. It will be an interesting classification question 

to further categorize the extracted microbial metabolites into microbial only or dual 

(produced by both microbes and human hosts.

Our future directions also include metabolite-bacteria and microbial metabolite-disease 

relationship extractions. For microbial metabolite relationship extraction, a comprehensive 

and accurate lexicon of microbial metabolites is necessary. In this study, we manually 

curated top 100 ranked metabolites and demonstrated that top ranked metabolites have a 

precision of 0.68. In the future, manual curation of more top-ranked metabolites (e.g., top 

1000 metabolites) will be necessary in order to build a more comprehensive lexicon of 

microbial metabolites.

6 Conclusions

We developed an integrated approach CoMNRank to extract human microbial metabolites 

from MEDLINE records. We demonstrated that CoMNRank effectively enriched microbial 

metabolites among top. Manual curation of top ranked metabolites showed as much as 48% 

true microbial metabolites are reported in biomedical literature but have not been captured 

by existing databases. In summary, our study sets the foundation for future microbial 

metabolite relationship extraction and will facilitate data-driven studies of how gut microbial 

metabolites interact with host genetics in different human diseases.
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Highlights

• Gut microbiota is important in human health.

• Biomedical literature is a rich knowledge resource of microbial metabolites.

• We developed a novel algorithm CoMNRank to extract and prioritize 

microbial metabolites from biomedical articles.

• A comprehensive list of microbial metabolites is important for developing 

data-driven approaches in understanding microbial metabolism in human 

health.

• A comprehensive list of microbial metabolites is important for future 

microbial metabolite-related information extraction tasks from free-text 

documents.
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Fig. 1. 
Distribution of 172 known microbial metabolites in different fields of MEDLINE records 

(MeshHeadings, Chemicals, Keywords, Title, Abstract).
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Fig. 2. 
Precision-recall curves for CoMNRank from weighted CoMN with microbial metabolite 

seeds, non-microbial metabolite sees or no seed.
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Fig. 3. 
Precision-recall curves of CoMNRank from un-weighted CoMN, when a microbial or non-

microbial seed was used.
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Fig. 4. 
Precision-recall curves of CoMNRank using microbial metabolite seeds with different 

frequencies.
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Fig. 5. 
Precision-recall curves of CoMNRank using non-microbial metabolite seeds with different 

frequencies. Y-axis has the same scale with that in Figure 4.
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Fig. 6. 
Precision-recall curves of CoMNRank for combined seeds. Weighted CoMN was used. 

Evaluation dataset: 172 known microbial metabolites.
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Table 1.

Performance of the dictionary-based metabolite extraction from the combined fields of MEDLINE records.

Lexicon Precision Recall FI

2017 HMDB Lexicon

(42,003 concepts, 65,632 terms) 0.014 0.959 0.027

2018 HMDB Lexicon

(114,100 concepts, 1,131,600 terms) 0.012 0.909 0.024
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Table 2.

Microbial vs non-microbial seeds and their MEDLINE frequencies.

Microbial Seed Non-microbial Seed

Metabolite Frequency Metabolite Frequency

acetic acid 135678 valdecoxib 135362

propionic acid 27784 ampicillin 27919

butyric acid 24036 substance p 24190

trimethylamine n-oxide 1793 hydroxyzine 1793

taurodeoxycholic acid 700 6- acetylmorphine 699

p-cresol sulfate 311 ligustilide 311

n-acetylputrescine 102 pisatin 102

glycoursodeoxycholic acid 86 13-cis-retinal 86

indole 6 citalopram n-oxide 6

chenodeoxycholic acid 3-sulfate 3 pterolactam 3

n2-succinyl-l-omithine 1 momordicilin 1
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