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Abstract

Purpose—To develop a fast and accurate convolutional neural network based method for 

segmentation of thalamic nuclei.

Methods—A cascaded multi-planar scheme with a modified residual U-Net architecture was 

used to segment thalamic nuclei on conventional and white-matter-nulled (WMn) magnetization 

prepared rapid gradient echo (MPRAGE) data. A single network was optimized to work with 

images from healthy controls and patients with multiple sclerosis (MS) and essential tremor (ET), 

acquired at both 3T and 7T field strengths. WMn-MPRAGE images were manually delineated by 

a trained neuroradiologist using the Morel histological atlas as a guide to generate reference 

ground truth labels. Dice similarity coefficient and volume similarity index (VSI) were used to 

evaluate performance. Clinical utility was demonstrated by applying this method to study the 

effect of MS on thalamic nuclei atrophy.

Results—Segmentation of each thalamus into twelve nuclei was achieved in under a minute. For 

7T WMn-MPRAGE, the proposed method outperforms current state-of-the-art on patients with ET 

with statistically significant improvements in Dice for five nuclei (increase in the range of 0.05–

0.18) and VSI for four nuclei (increase in the range of 0.05–0.19), while performing comparably 
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for healthy and MS subjects. Dice and VSI achieved using 7T WMn-MPRAGE data are 

comparable to those using 3T WMn-MPRAGE data. For conventional MPRAGE, the proposed 

method shows a statistically significant Dice improvement in the range of 0.14–0.63 over 

FreeSurfer for all nuclei and disease types. Effect of noise on network performance shows 

robustness to images with SNR as low as half the baseline SNR. Atrophy of four thalamic nuclei 

and whole thalamus was observed for MS patients compared to healthy control subjects, after 

controlling for the effect of parallel imaging, intracranial volume, gender, and age (p<0.004).

Conclusion—The proposed segmentation method is fast, accurate, performs well across disease 

types and field strengths, and shows great potential for improving our understanding of thalamic 

nuclei involvement in neurological diseases.

Keywords

Convolutional neural network; Thalamic nuclei segmentation; Clinical analysis; White-matter-
nulled MPRAGE

1. INTRODUCTION

The thalamus is a deep brain gray matter structure that relays information between various 

subcortical areas and the cerebral cortex [1] and plays a critical role in regulating sleep, 

consciousness, arousal, and awareness [2–4]. It is subdivided into multiple nuclei with 

varying functions. Thalamic involvement has been reported in schizophrenia [5,6], alcohol 

use disorder (AUD) [7,8], Parkinson’s disease [9], multiple sclerosis (MS) [10], essential 

tremor [11–13] and Alzheimer’s disease [14]. These pathologies affect different thalamic 

nuclei differently and, therefore, accurate volumetry of thalamic nuclei can be beneficial for 

tracking disease progression and treatment efficacy [14,15].

Manual delineation of thalamic nuclei from in-vivo scans is very tedious and requires 

specialized knowledge [16,17]. Due to low intra-thalamic contrast [18], thalamic nuclei are 

not easily distinguishable in conventional T1- and T2-weighted magnetic resonance images. 

As a result, most structural MRI based automated methods have only segmented the whole 

thalamus as part of subcortical brain segmentation [19–23].

Diffusion tensor imaging (DTI) based methods that use either local or global properties of 

the diffusion tensor have been more popular for thalamic nuclei segmentation. Behrens et al. 

[24] used tractography of cortical projections to the thalamus to segment thalamic regions, 

but this method requires precise knowledge of neuroanatomy to identify the relevant cortical 

regions. More automated, computationally efficient methods have been proposed that use k-

means clustering of the dominant diffusion orientation to achieve thalamic parcellation [25–

27]. To date, the most consistent DTI-based method [28] uses spherical harmonic 

decomposition based orientation distribution functions to achieve robust segmentation of 

seven thalamic nuclei. However, the low spatial resolution of echo-planar imaging which 

underlies DTI and the predominance of gray matter in the thalamus which results in low 

anisotropy make these DTI-based methods suboptimal [29], often resulting in segmentation 

of only the larger thalamic groups. Advanced techniques such as susceptibility-weighted 

imaging (SWI) [30] can provide better intra-thalamic contrast and have been used for 
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segmentation of thalamic nuclei at 7T [31,32]. However, these methods have found limited 

application in presurgical targeting, focusing mainly on the VIM nucleus. Hybrid 

approaches that combine DTI with T1 weighted imaging have also been proposed [33,34].

Recently, high spatial resolution structural MRI has been investigated for thalamic nuclei 

segmentation. The most widely used T1-weighted structural MRI sequence is magnetization 

prepared rapid gradient echo (MPRAGE), where the cerebrospinal fluid (CSF) is nulled. We 

refer to this method as CSFn-MPRAGE. Iglesias et al. [23] proposed a probabilistic atlas 

constructed using manual delineation of 26 thalamic nuclei per thalamus on six autopsy 

specimens and used Bayesian inference to segment 3T MPRAGE images into 26 nuclei per 

side [35,36]. However, this method is very time consuming, requiring multiple hours for the 

segmentation of one subject and has not been thoroughly validated against manual 

segmentation [23]. Liu et al. [33,37] segmented thalamic nuclei from 3T T1-weighted MRI 

data using an atlas developed from multiple MPRAGE and SWI sequences acquired at 7T. A 

multi-atlas label fusion and statistical shape modeling algorithm was used to transfer from 

7T to 3T. Variants of the MPRAGE sequence have been proposed to better visualize the 

intra-thalamic structures [38,39]. Su et al. [29] used a WMn-MPRAGE sequence that is 

optimized for intra-thalamic contrast [18] in conjunction with a multi-atlas technique, called 

thalamus optimized multi-atlas segmentation (THOMAS), to segment the thalamus into 12 

nuclei. The performance of this based method hinges on the accuracy of a computationally 

expensive registration step [23,40]. This method has only been validated on specialized 

WMn-MPRAGE data.

Convolutional neural networks (CNNs) are a class of deep learning techniques that use 

convolutional kernels to capture the non-linear mapping between an input image and its 

segmentation labels. Unlike atlas-based segmentation techniques, CNNs do not depend on 

image registration and manual feature extraction [41]. While many studies have explored the 

advantages of using CNNs for subcortical segmentation [42–45], those studies are limited to 

the whole thalamus. Due to a paucity of training data and the high computational and 

memory requirements of 3D analysis, most proposed methods make use of 2D CNNs [44]. 

However, the use of 2D networks does not fully exploit the anatomical information present 

in 3D MRI data. Alternatively, multi-planar techniques that make use of 2D CNNs along the 

three orthogonal planes have been shown [43,46–48] to improve segmentation performance 

with lower computational cost than a full 3D analysis. Transfer learning techniques have 

also been investigated to mitigate the lack of sufficient training data [49].

In this work, we propose the use of a modified residual U-Net in a cascaded multi-planar 

scheme for thalamic nuclei segmentation. We first demonstrate this method for WMn-

MPRAGE [18] data, evaluating it on data from 7T as well as 3T. We then extend this work 

to the more commonly acquired CSFn-MPRAGE by fine tuning the network trained on 

WMn-MPRAGE data. The performance of both networks is validated on healthy subjects 

and patients with MS and ET and compared to current state-of-the-art segmentation 

methods. Finally, robustness of the proposed method to SNR and its applicability to data 

from patients with multiple sclerosis are investigated.
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2. METHODS

2.1 Network Architecture

The proposed method uses a modified residual U-Net architecture (mRU-Net) for 2D 

thalamic nuclei segmentation as shown in Figure 1 (top panel). The conventional U-Net [50] 

uses a contracting (encoder) layer and an expanding (decoder) layer for multiresolution 

feature extraction and synthesis. To improve the convergence performance and reduce 

overfitting, we incorporated batch normalization [51] and dropout [52] layers into the 

network. Residual convolutional blocks [53] were included to mitigate the problem of 

vanishing and exploding loss function gradients. Each convolutional block consists of 2D 

convolution units followed by a batch normalization and a leaky rectified linear unit [54] 

(leakage factor 0.1). A 1×1 convolution with a sigmoid activation function maps the final 

feature maps into the desired number of classes, generating a probability map for each class.

For thalamic segmentation, we use a two-step cascaded approach [55], as shown in Figure 1 

(bottom panel). A first mRU-Net initially segments the whole thalamus, and this guides a 

second mRU-Net, which segments the different thalamic nuclei. Pre-processed 2D images 

(see section 2.3 for details) along with their manual segmentation masks are used to train the 

first network to segment the whole thalamus. A bounding box encompassing the whole 

thalamus is used to crop the input image (and its corresponding manual segmentation masks) 

before it is input to the second network to perform thalamic nuclei segmentation. Note that 

an optional pre-processing cropping step (“Cropping 1” in Figure 1) is also added prior to 

inputting images to the first network.

Due to the limitation in the number of labeled datasets available, training a generalizable 3D 

CNN which can exploit the 3D structure is infeasible. In order to overcome this limitation, 

and take advantage of the spatial information present in an isotropic-resolution 3D MRI 

dataset, we use a multi-planar [48] approach as shown in Figure 2. The input 3D dataset is 

pre-processed, reformatted into three orthogonal orientations (axial, coronal, and sagittal), 

and the resulting 2D images are fed into three cascaded 2D networks (from Figure 1) to take 

advantage of the complementary information from each orientation. For each cascaded 

network, the output segmentations are reformatted to the original imaging orientation and 

then fused using voxel-wise majority voting.

In the bottom panel of Figure 1, the first network (whole thalamus segmentation) uses a Dice 

[56] loss function along with sigmoid activation. For the second network, we investigated 

two different loss functions with a one-hot encoding approach in treating multiple classes: a) 

Weighted cross-entropy and b) Dice (see Appendix).

Two instances of the cascaded multi-planar network were implemented: a WMn network for 

segmenting WMn-MPRAGE images, and a CSFn network for segmenting CSFn-MPRAGE 

images.

2.2 Datasets and Labels

To evaluate thalamic nuclei segmentation of WMn-MPRAGE images, we used data from 40 

subjects (13 healthy subjects, 15 patients with MS, and 12 patients with ET) acquired on a 
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7T scanner. We used data from the 12 ET patients rescanned on a 3T scanner to extend this 

work to 3T. To evaluate thalamic nuclei segmentation of CSFn-MPRAGE images, we used 

data from 33 subjects (6 healthy subjects, 15 patients with MS, and 12 patients with ET) 

scanned with both WMn-MPRAGE and CSFn-MPRAGE pulse sequences on a 7T scanner. 

A separate dataset consisting of 93 WMn-MPRAGE images from a 3T scanner was used just 

for the purpose of network initialization (referred to as initialization dataset); this included 

patients with alcohol use disorder (AUD) and healthy control subjects. Note that data from 

AUD patients (whose images are similar to healthy subjects except for slight atrophy [57]) 

was used solely to obtain initialization weights for the WMn network to help accelerate 

network convergence. All subjects were scanned on GE (General Electric Healthcare, 

Waukesha WI) 7T and 3T scanners after obtaining prior informed consent and adhering to 

institutional review board protocols. The pulse sequence parameters for both the WMn-

MPRAGE and CSFn-MPRAGE pulse sequences are listed in Supporting Table S1.

Reference labels for WMn-MPRAGE images were generated using manual segmentation of 

thalamic nuclei, performed by a trained neuroradiologist using the Morel histological atlas 

[58] as a guide. Eleven thalamic nuclei, the whole thalamus, and the mammillothalamic tract 

(MTT) were delineated using freehand spline drawing tools to build the 3D vector-based 

model of each structure.

The eleven delineated nuclei are grouped as follows:

i. medial group: mediodorsal (MD), centromedian (CM), habenula (Hb)

ii. posterior group: pulvinar (Pul), medial geniculate nucleus (MGN), lateral 

geniculate nucleus (LGN)

iii. lateral group: ventral posterolateral (VPL), ventral lateral anterior (VLa), 

ventral lateral posterior (VLp), ventral anterior nucleus (VA)

iv. anterior group: anteroventral (AV)

Very small nuclei such as ventral posteromedial, centrolateral, and the intralaminar nuclei 

which are part of the Morel atlas could not reliably visualized and segmented by the 

neuroradiologist and were, hence, omitted. As a result, there are lacunae in the gold standard 

reference labels. Reference labels for CSFn-MPRAGE images were obtained by affine 

registering WMn-MPRAGE images to the corresponding CSFn-MPRAGE images for each 

subject and warping the labels using nearest-neighbor interpolation. Reference labels for the 

initialization dataset were obtained using THOMAS segmentation [29]. Due to the laborious 

nature of manual segmentation, only left thalamic nuclei were manually segmented. As a 

result, all networks were trained only on left thalamic nuclei. To delineate the right thalamic 

nuclei, the input images were flipped in the left-right direction and segmented using the 

networks trained on the left manual segmentation labels. Following the segmentation of the 

flipped images, both the images and the predicted labels were flipped back to their original 

orientation.
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2.3 Network Training

All networks were implemented in Python and Keras [59] with a TensorFlow backend using 

an NVIDIA P100 GPU with 16 GB GDDR5 RAM (source code available at https://

github.com/artinmajdi/Thalamic-Nuclei-Segmentation). The WMn network was trained 

using combined 3T and 7T data. The CSFn network was initialized using this WMn 

network, and then fine-tuned (i.e. re-trained using WMn labels registered to CSFn data) to 

adapt to CSFn-MPRAGE contrast. The networks were trained using Adam optimizer [60] 

with 300 epochs and a batch size of 100. Network performance was evaluated for both 

weighted cross entropy and Dice loss functions. The number of layers, number of 

convolutional feature maps, and learning rates were chosen based on hyper-parameter 

tuning. Further, a scheduler was used to set the learning rate in each epoch, starting from an 

initial value of 0.001 that reduces by a factor of 0.5 if the validation Dice plateaus for 15 

epochs. In the multi-planar approach, after a series of hyperparameter tuning, the number of 

feature maps in the first layer was set to 40, 30, and 20 for the sagittal, coronal and axial 

networks, respectively. The number of feature maps in each succeeding layer was increased 

by a factor of two as proposed in the conventional U-Net [50]. For the WMn and CSFn 

networks, 20% and 25% of data were randomly selected for validation, while the remaining 

80% and 75% were used for training, respectively.

2.4 Pre- and Post-Processing

All input images were pre-processed by performing N4 bias-field correction and zero mean 

unit standard deviation normalization. They were then reformatted to a standard imaging 

plane and resolution (axial with 0.7 × 0.5 × 0.7 mm3). To ensure enough variability, the 

training data were augmented using random in-plane rotations of up to ±7° in three different 

planes, creating six new images in each orientation and a net increase in the number of 

training data by a factor of 18. To reduce the memory and computation power requirements, 

a cropping step was added to the pre-processing as an extra option. To automate this 

cropping step, we employed a WMn-MPRAGE template created from mutual registration 

and averaging of 20 prior WMn-MPRAGE datasets as described in Su et al. [29]. A 

bounding box covering both thalami was manually drawn once, on this template and warped 

into the input image space by affine registering the template with the input image. The pre-

processing steps are shown in Figure 1 (bottom panel). Typical input sizes for the original, 

pre-processed (input to the first whole thalamus network), and cropped images (input to the 

second nuclei segmentation network) were 256 ×373 × 256, 97 × 94 × 63, and 52 × 84 × 48, 

respectively.

2.5 Performance Evaluation Measures

The automated segmentation performance was evaluated with respect to the manual 

delineations using Dice similarity coefficient [61], and volume similarity index (VSI) [29]. 

The Dice similarity coefficient (shortened as Dice) shown in Eq.A2. measures overlap 

between the manual segmentation and the automated segmentation computed by the 

network. The volume similarity index is defined as
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VSI(A, B) = 1
C ∑ 1 − Ai − Bi

Ai + Bi
(1)

where Ai and Bi are the automated and manual segmentations for nucleus i with a VSI of 1 

indicating identical volumes.

The outputs from the network were binarized using thresholds computed from precision-

recall curves. The threshold (0.7) was determined by finding the tradeoff between values of 

precision and recall that would correspond to the lowest false positive and false negative 

rates.

2.6 Experiments

2.6.1 Network Optimization—To potentially reduce memory and computational 

burden, we explored an additional step to crop the input images of the first thalamus 

segmentation network (“Cropping 1” in the lower panel of Figure 1). The performance of the 

cascaded scheme was also compared to a non-cascaded scheme which is a network similar 

to the proposed cascaded scheme with the exception of removing the second network’s 

cropping step (“Cropping 2” in Figure 1)). Finally, the effect of network initialization was 

studied by training two separate networks, one using random initialization and the other 

initialized using weights from a separate network that was trained on 3T WMn-MPRAGE 

data with THOMAS reference labels (3T initialization network). Lastly, to find the optimal 

loss function, two networks were trained separately using weighted binary cross entropy and 

Dice loss functions, respectively. All the above experiments were performed on a subset 

(n=11) of subjects randomly chosen from the WMn-MPRAGE dataset and equitably 

distributed across control subjects and disease types, except for cropping experiments which 

were done on the entire dataset (n=40).

2.6.2 Network Performance—To evaluate the segmentation performance of the 

optimized multi-planar cascaded networks, a 4-fold and 8-fold cross validation was 

performed using approximately 20% (out of 52 cases) and 25% (out of 33 cases) for each 

fold on WMn-MPRAGE and CSFn-MPRAGE data, respectively. Data in cross validation 

folds were equitably distributed with respect to control/disease type. To extend the 

applicability of the CNN based method to 3T, data from the 12 ET patients rescanned on a 

3T scanner were used as part of the cross validation along with all of the 7T WMn-

MPRAGE data. The segmentation results of our method were compared to THOMAS and 

FreeSurfer based segmentations for WMn-MPRAGE and CSFn-MPRAGE images, 

respectively using Dice and VSI measures.

2.7 Network Robustness to Noise

Many factors influence the MR image signal-to-noise ratio (SNR) including the receiver coil 

resistance, inductive losses in the sample [62], image voxel size, receiver bandwidth [63], 

and pulse sequence parameters. To study the robustness of our method to different levels of 

SNR, randomly generated noise was incorporated using Eq (5) into a WMn-MPRAGE 

magnitude image I (resulting in a Rician noise corrupted image I′).
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I′ = I+nreal
2 + nimag

2 (2)

where nreal and nimag are independent Gaussian distributed random variables N(0, σ2),. 

Thalamic SNR is measured as the ratio of the mean thalamic signal to standard deviation of 

the noise from two region of interests (ROIs) placed over the thalamus and the image 

background. Starting from the original acquired WMn-MPRAGE images (nominal thalamic 

SNR of 23.5), noise with increasing standard deviation σ was added to produce 10 images 

with an SNR in the range of 23.5–8 (i.e. ~ 3X degradation in thalamic SNR).

2.8 Clinical Analysis in Multiple Sclerosis

To assess the effect of multiple sclerosis on specific thalamic nuclei, analysis of covariance 

(ANCOVA) was performed to compare thalamic nuclei volumes between healthy controls 

and patients with MS, controlling for age, gender, parallel imaging (PI), and intracranial 

cavity volume (ICV). The estimated total intracranial volume (eTIV) from FreeSurfer 

segmentation was used for ICV to account for differing head sizes. Left and right thalamic 

nuclei were segmented from 7T WMn-MPRAGE data acquired on 15 MS patients (13 

patients had relapsing-remitting MS, while 2 patients had secondary-progressive MS) and 13 

healthy subjects (free of neurologic, psychiatric, or systemic diseases, and drug or alcohol 

abuse). A Bonferroni corrected p-value of 0.05/11=0.005 (to account for multiple 

comparisons of the 11 nuclei) was used.

3. RESULTS

3.1 Network Optimization

Training Time—The training time required on one NVIDIA P100 GPU card for the whole 

thalamus and multi-class thalamic nuclei segmentation was 1 hour and 1.5 hours, 

respectively, for a single imaging orientation. The cumulative training time for the multi-

planar cascaded scheme was (1 + 1.5) × 3 = 7.5 hours (accounting for axial, coronal, and 

sagittal orientations). This number can be reduced to 2.5 hours if the training in each 

orientation is performed in parallel (three GPUs, one for each orientation). The time required 

for pre-processing and segmentation of each subject in the testing phase of the final multi-

planar scheme was 3 min. and 1 min., respectively. The use of the cascaded scheme reduced 

the required memory for training by up to 86%, enabling the use of augmented data during 

the training process. Even though the cascaded scheme was trained in the presence of 15 × 

augmented data, the number of epochs and overall time of convergence during training was 

reduced by 66% and 21%, respectively, in comparison to the non-cascaded algorithm.

Cropping, Initialization, Loss Function—For the 40 test subjects (13 control, 15 MS, 

12 ET subjects), no statistical difference in average Dice was observed between using 

uncropped and cropped input images to the thalamic segmentation network (Figure 1) while 

a 93% reduction of memory requirements was achieved using the initial cropping step 

(“Cropping 1” in Figure 1). Following this experiment, all remaining experiments included 

this initial cropping step as part of pre-processing.
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The WMn network initialized using weights from a 3T initialization network showed a 

significant improvement in Dice for two nuclei (VA, and Hb) and an increase in convergence 

rate compared to random initialization (Supporting Figure S1). Following this, all 

experiments on WMn-MPRAGE data were performed using this initializing step. For the 

WMn network, the use of the Dice loss function showed a statistically significant 

improvement in Dice for the whole thalamus and 4 nuclei (VPl, LGN, CM, MGN) compared 

to a weighted cross entropy loss function (Supporting Table S2). Further, it reduced the 

overall number of epochs, required training time (per epoch) and convergence time by 32%, 

16%, and 43%, respectively. As a result, the Dice loss function was used for all further 

experiments.

3.2 Network Performance

Figure 3 compares shows Dice for (a) WMn-MPRAGE data segmented using the proposed 

method (blue) and THOMAS (red) and (b) CSFn-MPRAGE data segmented using the 

proposed method (blue) and FreeSurfer (red). Note that this aggregates the Dice over 

control, MS, and ET cases (WMn: n=40 and CSFn: n=33). Our proposed CNN-based 

method shows improved Dice over THOMAS and FreeSurfer for seven and ten nuclei, 

respectively.

WMn-MPRAGE Data—Table 1 reports average Dice and VSI for the proposed method 

against THOMAS on WMn-MPRAGE data separately for control subjects (n=13), MS 

patients (n=15) and ET patients (n=12). Note that the thalamic nuclei are arranged in 

descending order of size with the smaller nuclei (<200 mm3) shaded in gray. This format is 

used for all subsequent tables. Average Dice for the ET subjects showed significant 

improvements for the whole thalamus and 5 nuclei compared to THOMAS, ranging from 

0.02 (whole thalamus) to 0.17 (VLa). Average VSI showed improvements for 4 nuclei, 

ranging from 0.05 (VLp) to 0.18 (VLa). For the control and MS subjects, the Dice and VSI 

were largely comparable, with a modest but statistically significant improvement in average 

Dice over 5 nuclei (range 0.03–0.06) and 3 nuclei (0.01–0.04) for control and MS subjects, 

respectively. Average VSI showed improvements for 2 nuclei (0.11) while performing worse 

for 1 nucleus (0.03) for control subjects and no differences for MS patients.

Average Dice and VSI for the proposed method on 3T WMn-MPRAGE data from ET 

patients (same patients that were scanned at 7T) showed no statistically significant 

differences in Dice or VSI between the 7T and 3T data, attesting to the ability of the network 

to be useful in clinically relevant field strengths.

Figure 4 shows segmentation results from a patient with ET scanned on a 7T (top panel) and 

a 3T MRI scanner (bottom panel) using WMn-MPRAGE. Representative axial and coronal 

slices with automated segmentation labels overlaid for both the left and right thalamus are 

shown on the right. The increased SNR and B1 inhomogeneity in the 7T image (white 

arrow) can be clearly seen at the periphery while the inter-nuclear contrast seems 

comparable. The Dices (and hence the segmentations) are virtually identical as shown in 

Table 1.
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CSFn-MPRAGE Data—Table 2 shows the average Dice and VSI for the proposed method 

and FreeSurfer on CSFn-MPRAGE data separately for 6 healthy control subjects, 15 patients 

with MS, and 12 patients with ET. The proposed method significantly outperformed 

FreeSurfer on all nuclei and disease types with an average improvement in Dice of 0.33, 

0.26, and 0.30 for control, MS, and ET subjects, respectively. VSI showed improvements 

over 3, 6, and 4 nuclei with an average improvement of 0.39, 0.37, and 0.23 over control, 

MS, and ET subjects, respectively.

Images from a representative MS patient acquired using two different contrasts (WMn-

MPRAGE and CSFn-MPRAGE) along with their overlaid segmentations are shown in 

Figure 5. We can clearly see that the network segmented the thalamic nuclei fairly accurately 

in the CSFn-MPRAGE image, despite its seemingly poor intra-thalamic contrast. For the 

larger nuclei, Dice values for these two subjects ranged from 0.69–0.86 and 0.66–0.89 for 

WMn-MPRAGE and CSFn-MPRAGE, respectively, and for the smaller nuclei, Dice values 

ranged from 0.73–0.82 and 0.61–0.81, respectively. Note also that the presence of MS 

lesions (arrows) has not affected the network performance, attesting to the robustness of the 

training process which included healthy and MS patients.

3.3 Network Robustness to Noise

Figure 6 shows the effect of noise addition on the performance of the proposed method. It 

can be seen that even though there is a gradual decline in Dice for whole thalamus and all 

nuclei (except for VPL and LGN), there is no significant reduction in accuracy until SNR = 

11.4 (i.e. reduced ~ 2X from the baseline), showing that further acquisition speed-up (which 

usually comes at the cost of SNR) can be achieved. From SNR of 11.4 to SNR of 8 (~3X 

reduction from baseline), two nuclei (MTT and LGN) and the whole thalamus show 

significant decline whilst the remaining show a more modest decline.

3.4 Clinical Analysis in Multiple Sclerosis

Two-tailed t-test analyses showed no statistically significant difference between the 

automatically segmented nuclei volumes of left and right thalami except for MTT, and thus 

the average volume of left and right thalami was used for the analysis. An ANCOVA was 

conducted to compare absolute bilateral thalamic nuclear volumes between the two groups, 

controlling for age, gender, ICV, and PI. There was significant atrophy in MS patients in 

whole thalamus (F [1,22] = 9.5, p = 0.005), AV (F [1,22] = 26.6, p < 0.0001), Pul (F [1,22] = 

18, p = 0.0003), and MGN (F [1,22] = 17, p = 0.0004). These were identical to the results 

observed using THOMAS segmented data except for an additional atrophy in Hb (F [1,22] = 

9.1, p = 0.006) which did not survive significance after Bonferroni correction.

4. DISCUSSION

Many studies have explored the use of CNNs in subcortical segmentation [42–45] but we 

believe this is the first work to use CNNs to segment the thalamic nuclei from structural 

MRI data. A single network for segmentation of WMn-MPRAGE data is introduced for 3T 

and 7T as well as for healthy controls and patients with MS and ET. Twelve thalamic nuclei 

including small structures such as the MTT, habenula, and lateral and medial geniculate 
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nuclei were segmented in under a minute. A fine-tuning approach was employed to 

incorporate information learned from the WMn network to segment thalamic nuclei from 

CSFn-MPRAGE images, which have poor intra-thalamic contrast. While the Dice values 

were slightly lower than those from the corresponding WMn-MPRAGE images acquired on 

the same patients, they were significantly improved compared to FreeSurfer with 

significantly reduced processing times (1 minute vs. several hours). The proposed method 

also exhibited robustness to noise (up to 2X lower SNR compared to baseline).

Previous neuroimaging studies, albeit confined to the whole thalamus, have shown evidence 

of thalamic involvement in MS. Planche et al. [64] recently demonstrated atrophy of specific 

thalamic nuclei due to MS. Our method showed a statistically significant atrophy in patients 

with MS compared to healthy subjects for the whole thalamus as well as for AV, MGN, and 

pulvinar nuclei, comporting well with the results of Planche et al. [64]. The antero-ventral 

nucleus is a critical component in episodic memory and the circuit of Papez [1]. Our 

network successfully segmented this nucleus with a mean Dice of > 0.71 for both WMn-

MPRAGE and CSFn-MPRAGE. The latter is of critical relevance for analyzing public 

databases such as the Alzheimer’s disease neuroimaging initiative (ADNI) (which only has 

conventional CSFn-MPRAGE data), to study the effect of Alzheimer’s disease on nuclei 

such as AV and MD, that are critically involved in episodic memory. Fast and accurate 

segmentation of the VIM nucleus by the proposed method will enable integration of our 

work with clinical applications such as deep brain stimulation surgery [11–13] and high-

intensity focused ultrasound treatment of essential tremor [65], which target the VIM 

nucleus. The use of conventional MPRAGE in neuroimaging protocols as well as the recent 

availability of WMn-MPRAGE across major vendor platforms should enable faster clinical 

adoption of our technique. We have optimized the 3T WMn-MPRAGE pulse sequence to 

perform comparably to 7T, with some time penalty [66]. While we have shown comparable 

segmentation performance between 7T and 3T WMn-MPRAGE data in a small cohort of 

patients in this study, more validation studies at 3T with different disease populations would 

be needed to establish the sufficiency of 3T imaging. A larger study is currently underway to 

test the ability of our method to detect atrophy in AUD and dementia patients, especially 

using conventional 3T MPRAGE.

The recent shape-based segmentation method of Liu et al. [67] is one of the few methods 

that segment MPRAGE data using the Morel atlas convention. While their method generated 

23 nuclei, the lateral and medial geniculate nuclei were notably absent in their output. 

During manual segmentation, we chose to merge some of the smaller nuclei with larger 

contiguous nuclei, resulting in a smaller number of reported nuclei compared to their 

method (e.g. MD is combined with Pf, and the pulvinar complex is segmented as a single 

nucleus in our manual segmentation). Our method’s performance on the WMn-MPRAGE 

data shows comparable Dice values for most nuclei, lower Dice for VPL and VA nuclei and 

higher Dice for CM nucleus and MTT, compared to Liu’s shape-based method. However, 

our network’s performance on CSFn-MPRAGE data shows lower accuracy in comparison, 

presumably due to the lack of shape information, which could help in the face of poor intra-

thalamic contrast. Our analysis had a much larger spread of cases encompassing healthy 

controls (n=13) as well as patients with ET (n=12) and MS (n=15), compared to 9 healthy 

subjects in Liu et al. The proposed method shows dramatically improved Dice accuracy over 
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the Bayesian atlas-based method of Iglesias et al. [23] for all nuclei and disease types while 

significantly shortening processing times to under a minute from several hours.

The proposed CNN-based method has limitations that are common to most deep learning 

methods. Data diversity during the training phase is critical in creating a generalizable 

network. The current network was trained using images acquired from 3T and 7T and 

patients with MS and ET in addition to healthy subjects. However, since the network has not 

been exposed to images with metal artifacts from surgical clips or deep brain stimulation 

electrodes, it is likely to fail under those conditions and will require special training. The 

performance of this network on other diseases such as Alzheimer’s disease needs to be 

evaluated. Limitations specific to our implementation include not taking advantage of 3D 

data; with sufficient 3D training data and memory, a 3D cascaded network will likely 

improve the accuracy of our method by fully leveraging the 3D structural information. Due 

to lack of manual segmentation data, the performance of the proposed method on 3T CSFn-

MPRAGE data was not investigated. We also observed a slight reduction in performance in 

the CSFn-MPRAGE dataset compared to the WMn-MPRAGE dataset for the smaller nuclei. 

This could partly be due to the inherently lower intra-thalamic contrast in conventional 

CSFn-MPRAGE images. Future work will explore synthesizing WMn-MPRAGE images 

from CSFn-MPRAGE using contrast synthesis methods and then applying the WMn-

MPRAGE optimized network for better accuracy.

CONCLUSION

We have proposed the use of a CNN-based cascaded multi-class multi-planar method for the 

segmentation of thalamic nuclei and evaluated it on images with different contrasts, and 

magnetic field strengths for both healthy and diseased populations. This method has been 

applied successfully to both advanced MR acquisition techniques with high intra-thalamic 

contrast (WMn-MPRAGE) and the more commonly used low intra-thalamic contrast 

sequences (CSFn-MPRAGE). Further, the effectiveness of this method in real-life 

applications has been investigated via a clinical analysis of volume atrophy in patients with 

MS.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Loss Functions

Dice loss function is defined as follows:
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Loss = 1
C ∑

i = 0

C − 1
1 − Dice Ai, Bi (3)

Dice Ai, Bi = 2 Ai ∩ Bi
Ai ∪ Bi

(4)

where Ai and Bi are the automated and manual segmentations for nucleus i and |·| is the 

cardinality of a set (i.e., number of pixels). Note that the different classes are implicitly 

weighted when using a Dice-based loss function [68,69]. A weighted cross entropy was used 

to mitigate the effect of class imbalance, where the weight for each class is defined as the 

ratio of the number of foreground to background voxels in the manual segmentation mask. 

The weighted cross-entropy loss is defined as

Loss = − ∑
i = 0

C − 1
wi qilog pi + 1 − qi log 1 − pi (5)

where C is the number of classes including the background (2 for the whole-thalamus 

network or 13 for the subsequent thalamic nuclei segmentation network for 12 nuclei), 

pi = exp yi /∑k = 0
C − 1exp yk  is the posterior probability for class i obtained by applying the 

sigmoid function to the network’s final feature maps yi, wi represents the weight for class i, 

and qi is the ground truth for class i.

ABBREVIATIONS

AV Anteroventral nucleus

CM Centromedian nucleus

DTI Diffusion tensor imaging

Hb Habenular nucleus

LGN Lateral geniculate nucleus

MD Mediodorsal nucleus

MGN Medial geniculate nucleus

MTT Mammillothalamic tract

Pul Pulvinar nucleus

VA Ventral anterior nucleus

VIM Ventralis intermedius nucleus

VLa Ventral lateral anterior nucleus

VLp Ventral lateral posterior nucleus
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VPL Ventral posterolateral nucleus

WM White matter

WMn White matter nulled

CSF Cerebrospinal fluid

CSFn Cerebrospinal fluid nulled

MPRAGE Magnetization-prepared rapid gradient echo
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Figure 1: 
Top panel shows the mRU-Net architecture, where normalization and residual blocks are 

added to a standard U-Net. Bottom panel shows the proposed cascaded network for thalamic 

nuclei segmentation. Following pre-processing, mRU-Net1 is trained to segment the whole 

thalamus. The output of this network is used to find a bounding box (red square) that 

encompasses the left thalamus. The cropped inputs are used to train a second network 

(mRU-Net2) to segment the thalamic nuclei.
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Figure 2: 
Schematic of the multi-planar scheme, based on the cascaded network of Figure 1. The 3D 

input image is reformatted to sagittal, coronal, and axial planes and fed as 2D inputs to three 

separate cascaded networks. The segmentations from the three 2D networks are fused using 

majority voting to generate the final 3D thalamic nuclei segmentation.
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Figure 3: 
Comparison of average Dice for a) WMn-MPRAGE and b) CSFn-MPRAGE for the 

proposed method (blue) and THOMAS/FreeSurfer (red), aggregated over all cases. Dice 

values segregated by disease type is shown in Tables 1 and 2.
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Figure 4: 
WMn-MPRAGE images from a patient with ET acquired at 7T (top left) and 3T (bottom 

left). The zoomed inset images on the right show representative axial and coronal sections 

with and without automated segmentation overlays. The automated thalamic nuclei 

segmentations are almost identical to the manual segmentation shown for the left thalamus 

in outlines. Note the clear visualization of small structures like the MTT and habenula on 

both sets of images. The increased B1 heterogeneity at 7T can be clearly seen (white arrow) 

but the cropped images are comparable.
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Figure 5: 
WMn-MPRAGE (top left) and CSFn-MPRAGE (bottom left) images from a patient with 

MS acquired at 7T. The zoomed inset images on the right show representative axial and 

coronal sections with and without automated segmentation overlays with manual 

segmentation shown for the left thalamus in outlines. Note the comparable thalamic nuclei 

segmentations for both cases despite the poor intra-thalamic nuclear contrast in the CSFn-

MPRAGE image. MS lesions are shown as white arrows in the top inset image.
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Figure 6: 
Effect of noise addition on the performance of the proposed method. Note the excellent 

performance on most nuclei for 2X lower SNR (SNR = 11.4) compared to baseline (SNR = 

23).
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