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Abstract

Teeth are comprised of three unique mineralized tissues, enamel, dentin, and cementum, that are 

susceptible to developmental defects similar to those affecting bone. X-linked hypophosphatemia 

(XLH), caused by PHEX mutations, leads to increased fibroblast growth factor 23 (FGF23)-driven 

hypophosphatemia and local extracellular matrix disturbances. Hypophosphatasia (HPP), caused 

by ALPL mutations, results in increased levels of inorganic pyrophosphate (PPi), a mineralization 

inhibitor. Generalized arterial calcification in infancy (GACI), caused by ENPP1 mutations, results 

in vascular calcification due to decreased PPi, later compounded by FGF23-driven 

hypophosphatemia. In this perspective, we compare and contrast dental defects in primary teeth 

associated with XLH, HPP, and GACI, briefly reviewing genetic and biochemical features of these 

disorders and findings of clinical and preclinical studies to date, including some of our own recent 

observations. The distinct dental defects associated with the three heritable mineralization 

disorders reflect unique processes of the respective dental hard tissues, revealing insights into their 

development and clues about pathological mechanisms underlying such disorders.
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1. Introduction

In vertebrates, biomineralized tissues featuring hydroxyapatite are recognized as bones and 

teeth, which make up the skeleton and dentition. The associated process of biomineralization 

is complex, widespread, and varied. Under controlled conditions, organisms direct 

deposition of inorganic minerals and formation of organic-inorganic composite materials 

employing molecules such as silicates, oxalates, calcium carbonates, phosphates, and other 

minerals (Boskey 2003). Biomineralization is complex and energetically expensive for 

organisms, as they must synthesize extracellular matrices (ECM) to direct mineral 

deposition and regulate ion transport. Nevertheless, the evolutionary benefits of 

biomineralization are apparent in the functions provided by bones and teeth, which include 

protection, locomotion, mastication, and participation in endocrine and mineral metabolism.

Proper formation of the skeleton and dentition requires integration of numerous complex 

processes beginning in early embryonic development and extending throughout the lifespan. 

These include head, limb, and dental arch patterning, cell migration and proliferation, 

differentiation from stem/progenitor cells into specialized mineralizing cells, ECM secretion 

and modification, controlled biomineralization of bones and teeth, and remodeling of bone 

(Foster et al. 2014). With these multiple levels of regulation and developmental complexity 

in biomineralization, there are many possibilities for the process to go awry. In simplistic 

terms, mineralization defects can be discussed as those that cause insufficient mineral 

deposition or hypomineralization, while the inverse problem includes disorganized, 

excessive, or inappropriately located mineralization, i.e. ectopic or hypermineralization. A 

variety of hereditary conditions affecting all aspects of mineralization have been discovered, 

which highlight the complexity and provide considerable opportunities to better understand 

the biomineralization processes in bones and teeth (Foster et al. 2014; Foster, Nociti, and 

Somerman 2014; Luder 2015; Opsahl Vital et al. 2012; Hu and Simmer 2007; Mitsiadis and 

Luder 2011).

The oral cavity is home to four unique mineralized tissues, the only such location in the 

body (Foster, Nociti, and Somerman 2014). Enamel is the most highly mineralized tissue in 

the body, covering the clinically visible surfaces of the tooth crown (Fig. 1). In secretory 

stage, ameloblasts secrete a partially mineralized organic enamel matrix composed of a 

semi-specific suite of proteins (e.g., amelogenin, ameloblastin, and enamelin) that are 

largely degraded and removed during maturation stage, leaving mature enamel at >95% 

hydroxyapatite by weight (Bartlett 2013; Hu et al. 2007). Dentin, which is less mineralized 

than enamel, provides a tough, fibrous tissues that forms the bulk of the tooth. The initial 

dentin organic matrix secreted by odontoblasts is unmineralized predentin composed of type 

I collagen and other ECM proteins and proteoglycans, roughly equivalent to the osteoid 

layer in osteogenesis. Predentin mineralizes to dentin with the help of selectively expressed 

factors including dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) (Goldberg et 
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al. 2011). Dentin is not uniform, being composed of an initial mantle dentin region that 

transitions to the circumpulpal dentin that comprises the majority of the tissue. Cementum is 

a relatively thin tissue that envelopes the tooth root and provides anchorage of the tooth to 

the surrounding jawbone by inclusion of mineralized Sharpey’s fibers that are continuous 

with collagen fibers in the periodontal ligament (PDL). Cementum is present in two main 

varieties, the cervically located acellular cementum (most critical for tooth attachment), and 

apically located cellular cementum that includes cementocytes. Acellular cementum will be 

the primary type discussed in this report as it is more clinically relevant and more often 

present and amenable to analysis on exfoliated teeth. Cementoblasts secrete an ECM very 

similar to that in bone, including bone sialoprotein (BSP) and osteopontin (OPN) (Foster et 

al. 2007; Bosshardt 2005). The alveolar bone of the tooth socket distributes masticatory 

forces and responds to mechanical stimuli by continuous and rapid remodeling (Sodek and 

McKee 2000).

Although odontogenesis differs from osteogenesis in several aspects, tooth mineralization 

occurs through processes parallel to skeletal mineralization and is susceptible to failures 

similar to those appearing in bone caused by developmental disturbances of mineral 

metabolism. While the processes are parallel, different mechanisms of cell differentiation, 

physiology, and function underpin odontogenesis. The unique developmental biology of 

enamel-forming ameloblasts, dentin-forming odontoblasts, and cementum-forming 

cementoblasts results in distinct effects of mineralization disorders in each of these tissues. 

Understanding their pathologies provides unique insights into their biology and may provide 

essential clues to prevent and ameliorate disease and promote repair and regeneration of 

tissues lost to trauma or insult.

Rickets, an old term referring to a group of disorders that weaken and deform the bones, 

strikes during childhood skeletal development when bone is rapidly modeling and 

remodeling. Disturbances in mineralization cause accumulation of mechanically unsound 

hypomineralized bone osteoid and a host of mineralization problems that include tibial and 

femoral bowing (genu valgum and genu varum), metaphyseal cartilage dysplasia, 

costochondral swelling, growth disturbance, enlarged cranial sutures and fontanelles, and 

deformations of the cranium (Foster, Nociti, and Somerman 2014; Imel 2020; Rowe 2004). 

While nutritional rickets have been described for centuries, research in recent decades has 

clarified multiple forms of hereditary rickets. In this perspective, we focus on describing and 

interpreting the dental effects of three different forms of hereditary rickets that fall under the 

broader mantle of mineralization defects in more updated disease nosology of genetic 

skeletal disorders (Mortier et al. 2019): X-linked hypophosphatemia (XLH), 

hypophosphatasia (HPP), and generalized arterial calcification in infancy (GACI) (Table 1). 

This perspective summarizes findings of several studies and some our own recent 

observations to make a comparison of how these disorders specifically and disparately affect 

enamel, dentin, and cementum.

2. X-linked Hypophosphatemia (XLH)

X-linked hypophosphatemia (XLH; OMIM #307800), caused by inactivating mutations in 

PHEX (Phosphate regulating endopeptidase homolog, X-linked), affects approximately 
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1:20,000 births (Eicher et al. 1976; Beck-Nielsen et al. 2009). XLH features increased levels 

of fibroblast growth factor 23 (FGF23), hypophosphatemia, low 1,25-dihydroxyvitamin D, 

and elevated parathyroid hormone (PTH), with combined disturbances in local and systemic 

mineralization that manifest as osteomalacia and growth plate disturbances (Foster, Nociti, 

and Somerman 2014). PHEX is highly expressed by odontoblasts and osteocytes, with low 

level expression by cementocytes (Zhang et al. 2020). Although the total range and identities 

of the physiologic substrates for PHEX remain uncertain, the enzyme exhibits the ability to 

cleave and inactivate acidic serine- and aspartate-rich motif (ASARM) peptides derived from 

ECM proteins including OPN and matrix extracellular phosphoprotein (MEPE) that can act 

as mineral inhibitors (Salmon et al. 2014; Addison et al. 2010; Barros et al. 2013). 

Therefore, XLH may encompass systemic disturbance in mineral metabolism as well as 

local changes in the ECM mineralization milieu.

Reports on dental pathology in XLH highlight most consistently abnormal dentin 

mineralization marked by unmerged calcospherites (mineralization foci) and responsible for 

most of the clinical manifestations described (e.g. dental abscesses and necrosis), however 

descriptions may also be found for enamel defects, thin dentin, enlarged pulp chambers, 

altered root size and shape, alveolar bone hypomineralization, and increased prevalence of 

periodontal disorders that have not been well defined to date (Foster, Nociti, and Somerman 

2014; Foster et al. 2014; Biosse Duplan et al. 2017; Chesher et al. 2018; Skrinar et al. 2019; 

Boukpessi et al. 2017; Opsahl Vital et al. 2012; Coyac et al. 2018). XLH broadly impacts all 

the dental mineralized tissues in primary teeth. Primary teeth from individuals more severely 

affected by XLH are more frequently extracted due to abscesses and pulpal necrosis (Fig. 

2A, B). Dentin and enamel densities are both substantially reduced in many affected 

individuals, indicating severe defects in these tissues (Fig. 2E), though it should be noted 

that highly acidic phosphate supplements taken by individuals with XLH can also negatively 

affect enamel. So-called “interglobular” patterns in dentin observed by histology, micro-CT, 

or electron microscopy reveal inability of discreet calcospherites to fuse into a unified 

mineralization front and are characteristic of XLH. Negative effects of XLH on dentin 

density extend into both mantle dentin and circumpulpal dentin regions (Fig. 2E). This 

subdivision is of interest because of developmental and mechanistic implications. Mantle 

dentin is reported to depend on matrix vesicle initiated mineralization, while mineralization 

of circumpulpal dentin is guided by phosphoproteins such as DSP and DPP (Takano et al. 

2000; Takano et al. 1998; Stratmann et al. 1997; Goldberg et al. 2011). In the case of XLH, 

both dentin regions appear to be adversely affected to a similar degree, indicating 

commonalities in the mechanisms of mineralization for mantle and circumpulpal dentin that 

responded similarly in this disorder. Very few reports on XLH have analyzed cementum. 

Acellular cementum was shown to be reduced in thickness in a study on the permanent 

dentition in XLH (Biosse Duplan et al. 2017) and cellular cementum mineralization was 

defective (Coyac et al. 2017). Reduced acellular cementum thickness also appears to 

accompany enamel and dentin defects in primary teeth from individuals with XLH (Fig. 

2B).

The Hyp mutant mouse model of XLH harbors Phex mutations and phenocopies 

biochemical and skeletal features of XLH (Eicher et al. 1976). Dental defects in Hyp mice 

are well described and replicate many aspects of human dental pathology in XLH, including 
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enamel hypoplasia, defects in dentin volume and mineralization, and accumulation of 

interglobular dentin (Zhang et al. 2020; Coyac et al. 2018). While premature loss of teeth is 

generally not described for XLH (though extractions for abscessed teeth are common), Hyp 
mice exhibit thin acellular cementum. regions of PDL detachment, and significantly altered 

periodontal mechanical properties (Zhang et al. 2020). These types of accumulated 

periodontal defects may contribute to increased periodontal disease later in life in 

individuals with XLH (Biosse Duplan et al. 2017).

Though there is variation in severity of effects across individuals, it is notable that XLH 

impacts all dental tissues despite PHEX being highly expressed in only odontoblasts and 

osteocytes among dental cells (Zhang et al. 2020). It has been hypothesized that this 

profound impact stems from a combination of hypophosphatemia, altered vitamin D 

metabolism, and local ECM disturbances. Dissection of contributing factors has been 

attempted in Hyp mice, but with limited success to date. Substantial persistent 

mineralization defects in teeth of Hyp mice wherein Fgf23 was ablated and 

hypophosphatemia was corrected suggest these are not predominant factors in the dental 

pathology of XLH (Foster, Nociti, and Somerman 2014). Contribution of local disturbances 

has been supported by studies in Hyp mice (and limited experiments with human dental 

tissues) indicating abnormal accumulation in dentin of OPN, a regulator of hydroxyapatite 

crystal growth and potential source of ASARM peptides (Boukpessi et al. 2017; Salmon et 

al. 2014; Zhang et al. 2010; Zhang et al. 2020). Attempts to ameliorate dental defects in Hyp 
mice by genetically over-expressing or ablating additional factors are ongoing (Guirado et 

al. 2020), but have not yet clarified the pathological mechanisms.

3. Hypophosphatasia (HPP)

HPP is an inborn error-of-metabolism with a broad range of severity (OMIM #241500, 

#241510, and #146300) (Bowden and Foster 2019; Whyte 2016). ALPL encodes tissue non-

specific alkaline phosphatase (TNAP), an enzyme expressed in bones, teeth, liver, and 

kidney (Millan and Whyte 2016). TNAP hydrolyzes the mineralization inhibitor inorganic 

pyrophosphate (PPi) and loss-of-function mutations in ALPL leads to deficiency in TNAP 

activity and increased PPi concentrations, leading to mineralization defects. HPP is inherited 

in autosomal dominant or recessive fashion and has a very broad range of clinical 

presentations from severe life-threatening forms (infantile and perinatal) to milder forms 

(prenatal benign, childhood, adult, and odontohypophosphatasia). Skeletal defects include 

growth plate disturbances and osteomalacia, resulting in fractures and bone pain. More than 

400 mutations have been reported to date (http://www.sesep.uvsq.fr/

03_hypo_mutations.php), where severe forms of HPP affect about 1:300,000 live births and 

milder forms affect about 1:6,370 in Europe (Mornet 2017).

Dental disorders have been described across the spectrum of mild and severe clinical forms 

of HPP (Reibel et al. 2009; Foster et al. 2014), however reports vary in their descriptions of 

which tissues are affected and the severity of the defects. Dental defects reported for HPP 

include acellular cementum hypoplasia or aplasia associated with premature loss of fully 

rooted primary teeth and/or loss of secondary teeth, delayed eruption, periodontal disease, 

enamel alterations, thin and hypomineralized dentin, widened pulp chambers, and short 
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and/or malformed roots (Foster et al. 2014; Reibel et al. 2009; Bloch-Zupan 2016; Luder 

2015). Ameloblasts, odontoblasts, cementoblasts, osteoblasts, and periodontal ligament 

(PDL) cells express TNAP (Bowden and Foster 2019; Zweifler et al. 2015), indicating the 

enzyme may function in all aspects of dental and periodontal mineralization.

Of the clinical signs listed above, premature exfoliation of fully rooted primary teeth is the 

most common manifestation and is highly characteristic of HPP. Primary teeth prematurely 

exfoliated from children with HPP generally exhibit substantial remaining root structure 

compared to healthy control teeth, reflecting exfoliation prior to physiological tooth root 

resorption (Fig. 2C). HPP teeth are reported to lack a recognizable cementum layer, 

reflecting the most severe effects of HPP on any of the dental tissues. Roots sometimes show 

accumulation of dental plaque, an unusual observation that confirms lack of periodontal 

attachment allowing bacterial invasion deep into the periodontal tissues (Fig. 2C) (Luder 

2015).

While many descriptive reports on HPP dental pathology have been published, there is a 

paucity of quantitative data that contributes to lack of understanding how HPP differentially 

affects enamel, dentin, and cementum. In mild cases of HPP, enamel and dentin properties 

may not be substantially altered in comparison to control teeth (Fig. 2E), even when 

cementum formation is potently inhibited. Recent observations in human teeth suggest that 

mineralization defects in HPP localize preferentially to the mantle dentin, while 

circumpulpal dentin remains unaffected (Fig. 2E), pointing to a specific importance of 

TNAP function in mantle dentin mineralization.

Several HPP animal models have been described. The most extensively reported model has 

been the global knockout Alpl−/− mouse that phenocopies a severe and lethal infantile form 

of HPP (Narisawa, Frohlander, and Millan 1997; Bowden and Foster 2019). A series of 

studies reported cementum hypoplasia, disturbed enamel mineralization, and dentin 

hypomineralization (Yadav et al. 2012; Foster et al. 2013; Beertsen, VandenBos, and Everts 

1999; Foster et al. 2012; Zweifler et al. 2015). TNAP enzyme has been localized to matrix 

vesicles (Bottini et al. 2018), and failure of hydroxyapatite crystals to grow and merge into a 

unified mineralization front was described in mantle dentin regions of an HPP mouse model, 

similar to observations in long bones (Foster et al. 2013; Anderson et al. 2004). The severity 

of the disease and early lethality in Alpl−/− mice have been limitations for understanding the 

broader spectrum of HPP dental defects, therefore additional animal models have been 

developed. Knock-in of a human mutation into mice (Alpl+/A116T) created a very mild HPP 

manifestation (Foster et al. 2015), while conditional ablation of the Alpl gene under either 

the Col1a1 promoter (to delete Alpl in osteoblasts and dental cells) or Prx1 promoter (to 

delete Alpl in limb buds, chondrocytes, osteoblasts, and craniofacial mesenchyme) 

recapitulated key aspects of HPP-associated dental defects, including cementum hypoplasia 

and hypomineralized dentin, and these conditional Alpl knockouts were the first to 

demonstrate periodontal breakdown and alveolar bone loss, likely due to their longer 

lifespans (Foster et al. 2017). Inherent limitations in mice for the study of bones and teeth 

led to the knock-in of an HPP-associated ALPL mutation into sheep. Alpl+/A116T 

heterozygous sheep exhibited primary incisors with thin and short roots and reduced alveolar 

bone levels, with additional dental analyses yet to be published (Williams et al. 2018). This 
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model may provide additional insights into dental pathology and therapies because unlike in 

mice, sheep develop both primary and secondary dentitions.

While HPP can potentially affect enamel and dentin, cementum and mantle dentin can be 

affected even in mild cases, pointing to the sensitivity of these tissues to HPP, presumably 

due to elevated PPi levels (as discussed under part 4 below for cementum). Studies of mantle 

dentin in HPP are in their infancy, so it remains unclear how this type of localized 

mineralization disturbance might affect overall tooth structure and function. In the human 

teeth quantitatively analyzed so far, mantle dentin defects did not appear to translate into 

deleterious effects on the circumpulpal dentin, however additional quantitative studies in a 

larger cohort of subjects are warranted. It is notable that mantle dentin and cementum 

directly interface one another in the tooth root, suggesting potential for interactions in the 

mineralization of these adjacent hard tissues. While the dentin-cementum junction has been 

described using various modalities (Ho et al. 2004; Bosshardt and Selvig 1997), many 

developmental and functional aspects of this region remain unstudied and unknown.

4. Generalized Arterial Calcification in Infancy (GACI)

Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is a membrane-bound 

enzyme expressed by mineralizing cells that contributes to regulation of skeletal 

mineralization (Stefan, Jansen, and Bollen 2005; Millan 2013). ENPP1 generates 

intracellular and extracellular PPi via hydrolysis of adenosine triphosphate (ATP). 

Inactivating ENPP1 mutations cause generalized arterial calcification of infancy (GACI; 

OMIM #208000), a rare autosomal recessive disorder characterized by prenatal-onset 

vascular calcification (Ferreira, Ziegler, and Gahl 2014; Rutsch et al. 2003; Boyce, Gafni, 

and Ferreira 2020). ENPP1-derived PPi is critical for preventing soft tissue calcification, and 

decreased PPi levels account for GACI-associated pathologic calcifications. In this sense, 

GACI is the inverse of HPP with low vs. high levels of PPi and excess mineral deposition as 

opposed to hypomineralization. Individuals with GACI who survive infancy may develop 

autosomal recessive hypophosphatemic rickets type 2 (ARHR2; OMIM #613312) in 

childhood. ARHR2 is marked by elevated FGF23 and hypophosphatemia mirroring some 

aspects of XLH and other forms of inherited mineralization disorders (Lorenz- Depiereux et 

al. 2010; Levy-Litan et al. 2010; Rutsch et al. 2008; Ferreira et al. 2016). The etiology of 

ARHR2 in GACI remains unclear.

Primary teeth from individuals with GACI exhibit a massive amount of cementum, with no 

apparent effects on enamel or dentin (Fig. 2D, E) (Thumbigere-Math et al. 2018). 

Investigation of ENPP1 expression by immunostaining indicates strong, selective expression 

by cementoblasts in human and mouse tissues (Thumbigere-Math et al. 2018). These results 

indicate that cementogenesis is very responsive to modulation by PPi levels. Interestingly, 

several individuals affected by GACI reported delayed tooth exfoliation, primary tooth-bone 

ankylosis, and/or slow orthodontic tooth movement. Histological evidence suggested that 

physiologic resorption of primary tooth roots may have been “reversed” by reparative 

cementum production in GACI, an insight that may in part explain irregularities in tooth 

eruption and exfoliation in this cohort. These observations suggest that increased cementum 

formation has functional implications on the periodontal apparatus that deserve further 
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investigation. While enamel and dentin are susceptible to defects under elevated PPi in HPP, 

they are apparently insensitive to the reduced PPi levels in GACI.

Whereas high PPi in HPP inhibits acellular cementum, low PPi in GACI promotes abundant 

production of cementum. These effects are recapitulated in the Enpp1−/− mouse model of 

GACI, indicating it is an ancient evolutionarily conserved mechanism (Thumbigere-Math et 

al. 2018; Zweifler et al. 2015; Foster et al. 2012). Further exploration of the role of PPi in 

directing cementogenesis has been accomplished in additional mouse models. Mice ablated 

for the progressive ankylosis protein (ANK) feature reduced PPi and hypercementosis 

identical to Enpp1−/− mice (Ao et al. 2017; Foster et al. 2012), whereas relative correction of 

PPi levels in mice ablated for both Alpl and Ank normalized acellular cementum formation 

(Chu et al. 2020).

In contrast to XLH and HPP, GACI teeth exhibited no perturbations in enamel or dentin 

density (Fig. 2E). Surprisingly, there was no sign of mineralization defects in enamel or 

dentin of affected individuals, though GACI was accompanied by elevated FGF23, 

hypophosphatemia, and disturbed vitamin D metabolism in all subjects investigated. Onset 

of ARHR2 can be as early as one year of age, when primary and secondary teeth during this 

period are sensitive to mineral disturbances as evidenced by other forms of nutritional and 

inherited rickets, e.g. XLH and vitamin D-dependent rickets (VDDR1A; OMIM#264700) 

(Davit-Beal et al. 2014; Opsahl Vital et al. 2012). These metabolic disturbances cause severe 

enamel and dentin defects, making teeth susceptible to caries and abscesses. One 

explanation for lack of deleterious effects in enamel and dentin in GACI may be that 

primary tooth mineralization was already established or sufficiently advanced when ARHR2 

set in. In that case, the unerupted secondary dentition forming during childhood would be 

expected to be more susceptible to mineralization defects. Though the secondary dentition 

has not been quantitatively analyzed to date, no apparent mineralization defects have been 

noted by oral exam or radiographs in any individuals with GACI, including the original 5 

subjects (Thumbigere-Math et al. 2018) and additional subjects examined since then 

(personal observations). This raises the interesting proposition that high FGF23 and resultant 

low phosphate and vitamin D are not sufficient to drive the mineralization disturbances, i.e. 

lack of defects in ARHR2/GACI may represent additional evidence that local dysfunction of 

PHEX contributes directly to dental pathology in XLH (McKee et al. 2013). Alternatively, 

perhaps reduced PPi in GACI somehow offsets the reduction in phosphate and vitamin D in 

mineralization of dental tissues. These hypotheses require further investigation.

5. Conclusions

Disparate effects on dental mineralized tissues are observed when comparing teeth affected 

by the inherited conditions, XLH, HPP, and GACI (Table 1). While XLH severely affects 

dentin, and to a lesser extent enamel and cementum, HPP appears to selectively impact 

acellular cementum and mantle dentin, while GACI negatively affects neither enamel nor 

dentin, rather promoting dramatically increased cementum production. These selective 

effects likely reflect a combination of differential expression of affected genes as well as 

unique physiologies of enamel, dentin, and cementum that render them sensitive to different 

types of metabolic disturbances. These disparate effects are also being explored in mouse 
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models that phenocopy the conditions, where controlled experiments and interventions have 

provided additional mechanistic insights (Thumbigere-Math et al. 2018; Zhang et al. 2020; 

Bowden and Foster 2019; Foster et al. 2017; Zweifler et al. 2015; Foster et al. 2015; Foster, 

Nociti, and Somerman 2014; Foster et al. 2013; Foster et al. 2012; Yadav et al. 2012; 

Guirado et al. 2020; Coyac et al. 2018; Wolf et al. 2018; Chu et al. 2020).

Limitations of this perspective include small sample sizes reported for the recent quantitative 

analyses of inherited mineralization disorders. This results from a combination of rarity of 

the conditions and novelty of the quantitative approach, and observations will benefit from 

accumulation of studies. Case reports over several decades have been compiled and 

summarized in this perspective. More recent additions of quantitative studies are essential 

for better defining dental defects in light of new treatments. A recombinant mineral-targeted 

TNAP (Asfotase alfa; Strensiq®) was approved for use in 2015 to treat HPP (Bowden and 

Foster 2019; Whyte et al. 2012). An FGF23-targeting monoclonal antibody (Burosumab; 

Crysvita®) was approved in 2018 for treatment of adult and pediatric XLH patients 

(Carpenter et al. 2018; Imel et al. 2019; Insogna et al. 2018). Preclinical studies of a 

recombinant ENPP1-Fc fusion protein in a mouse model of GACI showed promising results 

(Albright et al. 2015; Boyce, Gafni, and Ferreira 2020). In therapeutic approaches for all 

these conditions, careful assessment of treatment benefits on dental tissues have not been 

included in clinical study designs, representing missed opportunities to understand 

ramifications of interventions to prevent, ameliorate, or reverse dental pathology and 

improve oral health and quality of life. Furthermore, the study and insights gained from 

investigating rare genetic mineralization disorders has a much wider impact, providing us 

with increased knowledge and understanding of the mechanisms that drive and control 

mineralization that may spur medical innovation into reparative and regenerative strategies 

for all mineralized tissues.
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CT computed tomography

ECM extracellular matrix

ENPP1 ectonucleotide pyrophosphatase phosphodiesterase 1
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Highlights

• Teeth are composed of three unique mineralized tissues: Enamel, dentin, and 

cementum, which exhibit disparate responses to mineralization disorders

• X-linked hypophosphatemia (XLH) broadly affects dentin density and to a 

lesser degree enamel density, and reduces cementum thickness

• Hypophosphatasia (HPP) has variable effects on dental tissues, with targeted 

effects on cementum and mantle dentin

• Generalized arterial calcification in infancy (GACI) does not affect enamel or 

dentin, but causes hypercementosis
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Fig. 1. 
Dental Mineralized Tissues in Healthy Teeth. A) Human primary incisor shown by micro-

CT in 3D and 2D exhibiting enamel (white), dentin (gray), and cementum (yellow). Note the 

root has undergone partial resorption as part of the physiological process of exfoliation. B) 

Human secondary incisor shown by micro-CT in 3D and 2D exhibiting the crown and a full-

length root.
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Fig. 2. 
Effects on primary human teeth of three different forms of rickets. Quantitative micro-CT 

and qualitative histology approaches were combined to analyze dental mineralized tissues. 

A) Control primary incisor shown by 3D and 2D micro-CT images and H&E stain of a 

histology section showing acellular cementum (AC). B) A cohort of 6 children (4 females 

and 2 males) with XLH provided 14 primary incisors and 1 primary canine for analysis. 

Shown here is a primary incisor from a child with XLH with apparent dentin mineralization 

defects. Cementum was undetectable by micro-CT and reduced thickness by H&E stain. C) 

One 2.5-year-old female with a history of mild skeletal manifestations and premature tooth 

loss featured two ALPL variants (c.346G>A/p. Ala116Thr and c.1077C>G/p.ISO359Met) 

and reduced circulating alkaline phosphatase activity (ALP) of 29 U/L (Normal range: 150–
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440 U/L). Shown here is a primary incisor this HPP subject with apparent radiolucency in 

the outer dentin region. Cementum was undetectable by micro-CT and absent by H&E stain 

(* indicates plaque accumulation on root surface). D) A cohort of 3 children (2 females and 

1 male) with GACI provided 10 primary incisors for analysis. Cementum thickness in GACI 

teeth was dramatically increased by micro-CT and H&E stain. E) Quantitative analyses of 

dental mineralized tissues by micro-CT, showing mineral densities of enamel, dentin, mantle 

dentin (Mt.D; the outer 100 μm), and circumpulpal dentin (Cp.D; the remaining dentin 

minus the inner 100 μm of recently deposited dentin matrix), and cementum thickness and 

density. Each bar features individual data points and mean ± standard deviation and the 95% 

confidence interval (CI) generated from control teeth is shown as a gray shaded region. For 

XLH, mean enamel density was below the 95% CI and mean dentin density was near the 

lower limit of the 95% CI, with many individual teeth falling below the 95% CI. Dentin 

defects in XLH were present in both Mt.D and Cp.D regions, with nearly all measurements 

below the 95% CI. For HPP, enamel and overall dentin densities were unaffected, however 

Mt.D density was substantially reduced below the 95% CI. For GACI, enamel and dentin 

were wholly unaffected, while cementum thickness and density were dramatically increased 

well above the 95% CI for each parameter. Images in A and D adapted and reproduced with 

permission from Thumbigere-Math et al., 2018.
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Table 1.

Inherited disorders presented in this perspective and their genetic and biochemical characteristics and dental 

mineralization defects.

X-linked hypophosphatemia (XLH) Hypophosphatasia (HPP) Generalized arterial 
calcification in infancy 

(GACI)

Genetic component

Gene PHEX ALPL ENPP1

Protein PHEX TNAP, TNSALP ENPP1

Biochemistry

Phosphate Low Normal Low

Calcium Normal Normal Normal

Pyrophosphate Normal (or high) High Low

1,25-dihydroxyvitamin D Low or normal Normal Low or normal

Fibroblast growth factor 23 
(FGF23)

High Normal High

Dental mineralization defects

Gene/protein expression Odontoblasts, cementocytes Ameloblasts, odontoblasts, 
cementoblasts

Cementoblasts

Primary dental 
mineralization effects

Primarily dentin, with lesser changes in 
enamel and acellular and cellular 

cementum

Primarily acellular cementum, with 
variable effects on enamel and dentin

Acellular cementum

Preclinical models Hyp mutant mouse Alpl−/− mouse, Alpl+/A116T mouse, Alpl 
conditional knockout mouse, Alpl

+/A116T sheep

Enppl−/− mouse

Key references Opsahl Vital et al., 2012; Biosse-
Duplan et al., 2017; Coyac et al., 2017; 
Coyac et al., 2018; Zhang et al., 2020

Reibel et al., 2009; Foster et al., 2012; 
Foster et al., 2015; Bloch-Zupan, 2016; 

Foster et al., 2017

Thumbigere-Math et al., 
2018
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