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Abstract

High-resolution Ca2+ imaging to study cellular Ca2+ behaviors has led to the creation of large 

datasets with a profound need for standardized and accurate analysis. To analyze these datasets, 

spatio-temporal maps (STMaps) that allow for 2D visualization of Ca2+ signals as a function of 

time and space are often used. Methods of STMap analysis rely on a highly arduous process of 

user defined segmentation and event-based data retrieval. These methods are often time 

consuming, lack accuracy, and extremely variable between users. We designed a novel automated 

machine-learning based plugin for the analysis of Ca2+ STMaps (STMapAuto). The plugin 

includes optimized tools for Ca2+ signal preprocessing, automated segmentation, and automated 

extraction of key Ca2+ event information such as: duration, spatial spread, frequency, propagation 

angle, and intensity in a variety of cell types including the Interstitial cells of Cajal (ICC). The 

plugin is fully implemented in Fiji and able to accurately detect and expeditiously quantify Ca2+ 

transient parameters from ICC. The plugin’s speed of analysis of large-datasets was 197-fold 
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faster than the commonly used single pixel-line method of analysis. The automated machine-

learning based plugin described dramatically reduces opportunities for user error and provides a 

consistent method to allow high-throughput analysis of STMap datasets.

Keywords

Ca2+ imaging analysis; Ca2+ signaling; Interstitial cell of Cajal

1. Introduction

Intracellular Ca2+ signaling mediates diverse cellular functions such as muscle contraction, 

metabolism, neurotransmitter release, and activation of nuclear transcription factors.[1, 2] 

Tight temporal and spatial control of Ca2+ signaling is required to sustain these distinct 

signaling mechanisms. This control is achieved by maintaining intracellular and extracellular 

Ca2+ pools through Ca2+ release, Ca2+ influx and extrusion mechanisms. Several cellular 

components including: Ca2+ pumps, Ca2+ transporters, and Ca2+ store channels are integral 

participants in Ca2+ signaling and homeostasis.[1, 3–6] Intracellular Ca2+ signals can vary in 

terms of shape, kinetics, firing frequency, origin, and spatial propagation. Ca2+ signals can 

be temporally and spatially localized (e.g. sparks, puffs and sparklets) that can occur on tens 

of millisecond timescales and spread less than 5 μm. [7–12] Ca2+ signals may also take the 

form of Ca2+ waves that propagate across cells or cell-to-cell and spread for distances of 100 

μm or more and last for several seconds or even minutes. [10, 13–17]

Spatial and temporal parameters inherent to intracellular Ca2+ signals such as: duration, 

spatial spread, amplitude, frequency, and propagation angle can provide the required 

biological information to encode downstream cellular signaling. [18–22] Thus, Ca2+ 

imaging and the analysis of intracellular Ca2+ dynamics allows for effective study of a 

myriad of complex and physiologically essential cellular behaviors. Spatio-Temporal Maps 

(STMap) are a common method used to analyze and quantify Ca2+ dynamics in a range of 

both single cell and intact tissues by plotting intracellular Ca2+ transients as a function of 

space occupied over time. [10, 22–30] STMaps can thus provide a platform to effectively 

quantify cellular Ca2+ dynamics and its associated parameters: duration, spatial spread, 

frequency, event angle, and event intensity. [31–35]

Extracting quantifiable measurements of Ca2+ transients from STMaps is challenging as this 

information is most often manually defined in traditional forms of analysis. Opportunities 

for user error are prevalent, which translates to inaccuracy when quantifying STMap Ca2+ 

events. These fundamental issues arise from the requirement of user designation of single 

pixel measurement lines that are assumed to be representative of the entire Ca2+ event. This 

user-dependent manual process is highly variable, time consuming, and labor intensive.

To overcome this inconsistency, we developed an efficient software plugin method 

implemented in Fiji to achieve automated, fast and accurately characterize spatio-temporal 

Ca2+ activity patterns. The plugin incorporates the Waikato Environment for Knowledge 

Analysis (Weka) as the segmentation framework for detection and analysis of STMaps Ca2+ 

signals. [36] The plugin consists of modules for STMap preprocessing, automated event 
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segmentation into regions of interest (ROIs) corresponding to single Ca2+ events, and 

automated data output. The machine-learning based approach in combination with 

automated processes is a significant step towards a robust standardization and high-

throughput analysis of cellular Ca2+ dynamics.

To test our methodology, we have analyzed Ca2+ signaling in interstitial cells of Cajal (ICC). 

ICC act as pacemakers and neuroeffector cells in the gastrointestinal (GI) tract that display 

dynamic intracellular Ca2+ signaling. [37] [38–40] Ca2+ transients in ICC are fundamental 

in regulation of intestinal excitability and motility. The small intestine possesses two major 

classes of ICC that have a distinct morphology and Ca2+ dynamics: the Myenteric ICC 

(ICC-MY) and Deep Muscular Plexus ICC (ICC-DMP). The ICC-MY lay within the 

myenteric plexus, between the circular and longitudinal smooth muscle layers. [41, 42] ICC-

MY function as pacemaker cells throughout the gut and generate electrical slow wave 

activity that paces and coordinates the regular patterns of GI smooth muscle contraction. 

[43–46] In contrast, ICC-DMP are found in close relation to motor neuron terminals in the 

deep muscular plexus.[42] ICC-DMP can modulate and transduce signals from the enteric 

motor neurons. [47–50] Interestingly, ICC-MY and ICC-DMP are unique from one another 

in their morphology and Ca2+ dynamics. ICC-MY networks exhibit entrained and 

temporally clustered Ca2+ signals that propagate from cell-to-cell and produce a tissue wide 

Ca2+ wave. [51] ICC-DMP Ca2+ signals manifest as brief and spatially localized Ca2+ 

release events that occur stochastically. [41]

We used intracellular Ca2+ signals recorded from ICC-MY and ICC-DMP in situ to test our 

Fiji plugin to analyze Ca2+ transients (STMaps) in an automated fashion. These cells 

provide an ideal model for this testing as they exhibit dynamic Ca2+ events that vary in 

intensity, spatial spread and firing behaviors, thus testing the ability of our plugin to detect a 

range of cellular activity (localized Ca2+ events to propagating Ca2+ waves) amongst 

different cell types rather than a single behavior.

2. Materials and Methods

2.1. Animals

All animals used and the protocols carried out in this study were in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. All 

procedures were approved by the Institutional Animal Use and Care Committee at the 

University of Nevada, Reno.

GCaMP6f-floxed mice (B6.129S-Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze/J) and their wild-

type siblings (C57BL/6) were acquired from Jackson Laboratories (Bar Harbor, MN, USA) 

and crossed with Kit-Cre mice (c-Kit+/Cre-ERT2), provided by Dr. Dieter Saur (Technical 

University Munich, Munich, Germany). Kit-Cre-GCaMP6f mice were injected with 

tamoxifen at 6–8 weeks of age (2 mg for three consecutive days), as previously described 

[18]. 15 days after tamoxifen injection, Kit-Cre-GCaMP3 mice were anaesthetized by 

isoflurane inhalation (Baxter, Deerfield, IL, USA) and killed by cervical dislocation.
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2.2. Tissue preparation

jejunum tissues were removed from animals and cut into 2 cm in length segments and 

incubated in Krebs-Ringer bicarbonate solution (KRB) As previously described [18]. Tissues 

were cut along the mesenteric region and contents were removed. Sharp dissection was used 

to remove both The mucosa and submucosal layers, and the remaining muscle tunica 
muscularis was secured into a 60 mm Sylgard coated dish and pinned flat with the serosal 

side up.

2.3. Calcium imaging

Muscle sheets isolated from the jejunum (~5.0 × 10.0 mm) were pinned down and perfused 

with 37°C KRB solution. Tissues were equilibration for a period of 1–2 hours. As previously 

described [18],31; We used a spinning-disk confocal microscope (CSU-W1 spinning disk; 

Yokogawa Electric Corporation) for our Ca2+ imaging experiments. The confocal head is 

connected to Nikon Eclipse FN1 microscope equipped with a 40× 0.8 NA CFI Fluor lens 

(Nikon instruments INC, NY, USA). Laser at 488 nm wavelength was directed using a 

Borealis system (ANDOR Technology, Belfast, UK). EMCCD Camera (Andor iXon Ultra; 

ANDOR Technology, Belfast, UK) was used to capture the GCaMP6f emission. Images 

were acquired at 33 frames per second using MetaMorph software (Molecular Devices INC, 

CA, USA). Nicardipine (100 nM) was used during the imaging experiments to minimize 

contractile artifacts.

2.4. Calcium event analysis

Analysis of Ca2+ activity in ICC was performed as previously described. [18],31 Briefly, 

movies of Ca2+ activity in ICC (30 s long) were converted to a stack of TIFF (tagged image 

file format) images and imported into custom software (Volumetry G8c) for analysis. Whole 

cell ROIs were used to generate STMaps of Ca2+ activity in individual ICC. STMaps 

presented in the results were generated by rotating image stacks so that ICC-DMP/MY were 

oriented vertically. Single cells from the FOV were masked using a flood-fill routine and ST 

maps of Ca2+-induced fluorescence changes (averaged across the diameter of the cell within 

the mask) were constructed (Baker et al., 2016; Drumm et al., 2019; Drumm et al., 2017; 

Hennig et al., 1999). STMaps were then imported as TIFF files into Fiji (version 2.0.0-

rc-69/1.52, National Institutes of Health, MD, USA, https://fiji.sc/ for pixel-line 

quantification analysis of Ca2+ events as previously described by. [29],31 The pixel-line 

method of STMap analysis is a series of measurements performed within Fiji to quantify the 

behavior of Ca2+ represented by STMaps. To detect the mean intensity or amplitude of a 

single Ca2+, a single-pixel line was drawn through each Ca2+ event, such to bisect the event. 

The “plot profile” function within Fiji was then selected to generate distinct intensity 

profiles for each Ca2+ event. Here, the peak intensity represents the amplitude of the event. 

The x-value(s) at the y-value halfway point to peak amplitude in the plot profile were then 

recorded. The difference between the two generated x-values (s) from a single plot profile 

was the source of Full Duration at Half Maximum (FDHM) as visualized in Figure 1. 

Additionally, individual single pixel lines were drawn over STMaps in Fiji such that the 

“measure” function could determine the x (s) and y (um) dimensions of an individual 

Ca2+event.
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2.5. Statistics

Statistics of Ca2+ activity was performed as previously described [18],31. Briefly, Ca2+ event 

frequency in ICC was expressed as the number of events fired per cell per second (sec−1). 

Ca2+ event amplitude was expressed as F/F0, the duration of Ca2+ events were expressed as 

full duration (ms), and Ca2+ event spatial spread was expressed as μm of cell propagated per 

Ca2+ event. Unless otherwise stated, data is represented as mean ± standard error (S.E.M.). 

Statistical analysis was performed using either a student’s t-test or with an ANOVA with a 

Dunnett post hoc test where appropriate. In all statistical analyses, P<0.05 was taken as 

significant. P values <0.0001 are represented by four asterisks (****). When describing data 

throughout the text, n refers to the number of STMaps used in that dataset.

2.6. Download and installation

Fiji (Fiji) download and install is required for use of the plugin. Fiji can be downloaded 

from: https://Fiji.nih.gov/ij/download.html. The plugin and classifiers can be accessible via 

this link: https://github.com/gdelvalle99/STMapAuto or from our lab website: https://

med.unr.edu/directory/sal-baker?v=bio#Biography. Once downloaded, the plugin 

“STMapAuto.jar” is moved to the “plugins” folder of Fiji for installation. To use the plugin, 

open Fiji and choose “STMapAuto” from the “Plugins” tab on the menu bar.

2.7. Plugin development

The code for The Plugin was written in Java release version: 9. The plugin incorporates Fiji 

Application Program Interfaces (APIs) provided by the National Institutes of Health, U.S. 

Department of Health and Human Services. The plugin uses features available within the 

Fiji version: 2.0.0-rc-69/1.52 and trainable weka segmentation for microscopy designed by 

[36].

2.8. Plugin testing

The classifiers used in the plugin were manually trained by two groups of 100 STMaps from 

ICC-MY and ICC-DMP. Final classifiers were optimized through user experimentation and 

as detailed by. [36] Testing of the plugin with 40 unseen STMaps was performed with a Mac 

Pro desktop (Mac Pro 2010; Apple inc; USA) for further assessment.

3. Results

3.1. STMaps are generated for representation of Ca2+ events from ICC.

Imaging ICC from small intestine (SI) muscles of Kit-Cre-GCaMP6f mice using spinning-

disk confocal microscopy allowed monitoring of Ca2+ signals in situ with high spatial 

resolution (Figure 1 A). One cell type within the SI, ICC-DMP, exhibited variable and 

complex patterns of Ca2+ signals that occurred in a stochastic fashion (Figure 1A–D). 

Therefore, to effectively quantify the changes in Ca2+ transients in ICC-DMP over time, 

STMaps were used. STMaps allow for a more complete representation of individual cell 

Ca2+ signals through a 2D image that describes both time (x-axis) and space (y-axis) (Figure 

1 E). Within the STMap, Ca2+ events were viewed as discrete events with different 
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intensities (color coded; Figure 1E), and their features were quantified to describe the 

cellular Ca2+ dynamics and behaviors.

3.2. Current limitations of STMap analysis need resolution.

Data extraction and quantification of Ca2+ signals from STMaps is challenging due to the 

complex nature of the Ca2+ events, their variability and large number. Current methods of 

STMaps analysis focus on extracting the Ca2+ transient parameters such as duration, spatial 

spread, frequency, and intensity. [31–35] To retrieve these data parameters, a common 

research practice in STMap analysis requires user defined drawing of representative single 

pixel-lines through individual Ca2+ events (Figure 2B). These pixel-lines are used to produce 

an intensity plot profile that represents Ca2+ event amplitude as a function of time (Figure 

2C). Amplitude, or peak event intensity, and event duration are both determined from the 

plot profile by manual measurement of profile peak and full duration at half maximum 

(FDHM) (Figure 2C). To characterize the spatial spread of a Ca2+ event, another pixel-line is 

drawn to measure the space occupied by the Ca2+ event (Figure 2D). Although these 

methods are useful for data generation, we recognized the opportunity for user error, 

inconsistency, and subjectivity in single-pixel line STMap analysis (Figure 2A–H).

To highlight this problem, single pixel-lines drawn by three different users may be drawn in 

separate locations on an individual STMap Ca2+ events (Figure 2E). The variation in the 

location of line drawing can lead to variance of Ca2+ event data extraction which includes 

event duration (user 1 = 0.324 ms, user 2 = 0.471 ms, user 3 = 0.546 ms), event intensity 

(user 1 = 1.50, user 2 = 1.76 user 3 = 0.91 F/F0), and spatial spread (user 1 = 23.85 μm, user 

2 = 25.35 μm user 3 = 26.85 μm) (Figure 2 E–G). Although plausible for a single Ca2+ 

event, quantification of many Ca2+ events within an STMap requires the user to accurately 

bisect each individual Ca2+ event manually. This means that for a typical STMap of ICC-

DMP (30 s recording), which can contain an average of ~50 Ca2+ events, users can expect to 

draw ~100 single-pixel lines for both spatial and temporal axis for quantification of Ca2+ 

event parameters (Figure 2H). The large amount of user defined lines needed for analysis is 

a significant area of concern, as it increasingly exposes STMaps to high risk of user error 

and inconsistency. In addition, single pixel line-based analysis is an incredibly laborious 

task, often requiring several analysts for larger datasets. Thus, current forms of analysis are 

constrained by user error, data inaccuracy, and prohibitive speed of analysis.

3.3. “STMapAuto” plugin provides automation, consistency, speed, and accuracy in 
STMap analysis.

These constraints were ameliorated by developing an efficient plugin written using the 

JavaScript language that integrates the analysis tools made available within Fiji into a 

unified and robust pipeline. The main contribution of the proposed software is to provide a 

platform for STMap analysis by enhancing accuracy of detection of Ca2+ events, ensuring 

consistent results, automating Ca2+ event parameterization output and enabling high-

throughput analysis of large datasets.

The plugin consists of three distinct automated phases: 1) STMap Preprocessing 2) Weka 

segmentation and Thresholding 3) ROI Generation and Data Output (Figure 3). To detect 
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and extract Ca2+ event parameters from STMaps from a cell of interest, the plugin gives the 

user the option to import single or multiple STMaps to Fiji. The user can then calibrate the 

STMaps and determine Ca2+event size detection parameters. This step removes background 

noise signals from detection and allows the researcher to study events within a certain 

dimensional range (e.g. space and time). Following the preprocessing step, the subsequent 

processes leading to data extraction are entirely automated.

3.4. Machine-learning approach and validation

We used machine-learning protocols to enhance the efficiency of the segmentation step of 

the plugin. The machine-learning classifier component of the plugin utilizes a trainable weka 

segmentation algorithm that contains a Fast-Random Forest technique which uses different 

extracted features such as Sobel filter, Gaussian blur, Membrane projections etc. as inputs to 

detect and segment contours and patterns of Ca2+ events in STMaps. [52–54] The Fast-

Random Forest Classifier functions by generating unique uncorrelated trees whose 

predictions are compared to generate an overall model prediction. The integration of Fast-

Random Forest in trainable weka segmentation functions by classifying pixels which are 

learned from extracted feature vectors.[36] The plugin uses Fast-Random Forest with 200 

trees and 2 random features per node from a list of features extracted from: Gaussian Blur, 

Hessian, Membrane projections, Anisotropic diffusion Lipschitz, Gabor, Entropy, Sobel 

Filter, Difference of Gaussians, Variance, Bilateral, Kuwahara, Neighbors.

When training the weka segmentation algorithm, the user inputs annotated ground truths 

from STMaps to train the weka classifier. During the training phase, all completed within 

Fiji, the classifier gradually improves as more ground truths are stored for subsequent 

training. It is important to note that for pixel level segmentation, the classifier uses each 

pixel as a data point rather than the whole image as a single data point; 100 STMaps is a 

significant dataset as one idle image consists of 100×1000 pixels = 100,000 data points per 

image. Thus, large datasets were not required for classifier training. The machine learning 

approach allows for segmentation through trainable machine-learning that is adaptable to 

different datasets.

As our datasets consist of a mosaic of Ca2+ activity that includes both rhythmic and 

stochastic signals, we optimized two classifiers to accurately detect a variety of 

Ca2+behaviors. We split our dataset into train/test splits followed by a 5-fold cross validation 

of the training data. 100 STMaps were manually classified and saved to train the weka 

classifier. [36] The classifier training steps were completed on the backbone of the machine-

learning trainable weka segmentation algorithm within Fiji. [36]

The plugin functions autonomously by first segmenting the STMap through one of two 

classifier models we optimized for STMap analysis: 1) Stochastic Ca2+ Event Classifier 2) 

Rhythmic Ca2+ Event Classifier (Figure 4 A–B). For STMaps that contain localized Ca2+ 

transient events, the Stochastic Ca2+ Event Classifier is most effective because it includes 

segmentation filters that account for a number of mechanisms including: Gaussian Blur, 

Hessian, Membrane Projections, Sobel Filter, Difference of Gaussians (Figure 4 Ai & Bi). 

For STMaps that contain a rhythmic oscillation of large Ca2+ events, the Rhythmic Ca2+ 

Event Classifier is recommended. This classifier uses the following filters to optimize event 
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Ca2+ detection: Gaussian Blur, Hessian, Membrane projections, Anisotropic diffusion, 

Lipschitz, Gabor, Entropy, Sobel Filter, Difference of Gaussians, Variance, Bilateral, 

Kuwahara, Neighbors. By conducting these computations, the Ca2+ events within STMap 

are fully segmented (Figure 4 Aii & Bii). When the classifiers are applied appropriately, 

Ca2+ events in both STMaps can be segmented to generate a classified image with events 

clearly separated from background noise (Figure 4 Aii, Bii).

To test our two unique classifiers, we split the data into train/test splits followed by a 5-fold 

cross validation of the training data. Although pixel-based accuracy could be used as a 

measure of validation, for any semantic segmentation task pixel-based accuracy has shown 

to be more error-prone. Moreover, it prioritizes background and foreground segmentation 

over object segmentation. For example, if the number of background pixels is around 80% 

and the model achieves a pixel-accuracy of 70% and largely classifies those background 

pixels, then our true aim to segment Ca2+ events (objects) is not achieved. That is why Mean 

Intersection Over Union (Mean-IOU; equation 1) is used as a measure to see how precisely 

ground truth masks overlap with predicted segmentation masks. The equation for Mean IOU 

is as follows:

Mean IOU =
1/Nclass ∑i Nii

∑jNij + ∑jNij − Nii
(1)

Here, Nclass is the number of classes (class 0=background, class 1= Ca2+ events), Σi Nii the 

number of correctly classified pixels (true positives), ΣjNij is the number of wrongly 

classified pixels (false positives) and ΣjNji the number of pixels not wrongly classified (false 

negatives). We use a cross validation scheme for training on 100 samples of Ca2+ events: 50 

samples for Rhythmic Ca2+ event detection and 50 for Stochastic Ca2+ event detection. The 

data is split into 5 equal portions for 5-fold cross validation (Table 1 and 2). For each fold, a 

classifier is trained from the beginning, trained on 40 unique samples, and validated on the 

remaining 10 samples. We found that a Rhythmic classifier (Fold 4) which was trained on 

samples 1–30 and 41–50 and then validated on samples 31–40 achieved a mean-IOU of 

82.79% (Table1). For the Stochastic classifier, we used the same training procedure as 

followed for Rhythmic classifiers and trained on the samples 1–40 (Fold 1) and further 

validated on samples 41–50 to achieve a mean-IOU of 79.48% (Table 2). These classifiers 

were used for separate Rhythmic and Stochastic test data samples. The greatest mean-IOU 

scores achieved for test data of Rhythmic and Stochastic are 75.87 % and 76.69 % 

respectively.

Following segmentation, the plugin automatically detects the segmented Ca2+ event areas by 

using the intermodes threshold function in Fiji (Figure 5 A–C). It is important to note that 

the proposed step functions by a histogram with two obvious relative modes, or data peaks 

and in our case: 2 overlapping Ca2+events.The threshold is then computed as half of the sum 

of 2 peaks. This step, when paired with initial detection, enables separation between two 

closely overlapping events and allows for proper Ca2+ event segmentation. The plugin then 

uses the thresholded Ca2+ events to generate distinct regions of interest (ROIs), while also 

incorporating the event size parameters selected upon image import. These ROIs are labeled 
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in the sequence at which they appeared and with their cartesian coordinates on the STMap 

by the ROI manager (Figure 5 A–D). The plugin automatically overlays and saves the 

generated ROIs on the original STMap image (either grey scale or intensity color-coded) 

(Figure 5 E–F). The overlay steps are accomplished by automating a sequence of processes 

within the ROI Manager. This process is essential as it offers the user the opportunity to 

validate the segmentation process visually to ensure accuracy in Ca2+ event detection and 

segmentation steps. This method allows for accurate detection of Ca2+ events within 

STMaps without interference from background artifacts.

3.5. Ca2+ event parameter analysis

To allow proper quantification of Ca2+ events within STMaps, the plugin uses the generated 

ROI overlay of Ca2+ events on the original STMap image to extract the following Ca2+ event 

parameters: event duration, spatial spread, event area, frequency, angle, and average intensity 

(Figure 6 C – F). These parameters have been shown to be useful descriptors of Ca2+ event 

dynamics from STMaps.[31–35] Duration of individual Ca2+ events is calculated by the Box 

Rectangle function within Fiji. This function works by generating a measurement bounding 

box around each event whose width spans from the most left justified pixel of the event to 

the most right justified pixel of the event. The width represents the duration of the event 

(Figure 6 C). The height of the measurement box extends from the smallest y-axis value 

pixel of the event to the largest y-axis value pixel and represents the spatial spread (Figure 6 

D). Together, the dimensions of the measurement box detail both the duration (x-axis) and 

spatial spread (y-axis) of the event. In addition to the Box Rectangle function, the plugin 

automates the retrieval of data parameters from each generated ROI overlaid on the original 

image such that the entire event is used for generation of event area and intensity 

measurements (Figure 6 D,G). Further, to achieve a measurement of Ca2+ event angle, the 

plugin uses the Fiji ellipse function to autofit an ellipse to each event (Figure 6 F). From 

each ellipse, an angle with respect to the y-axis is computed based on the deviation of the 

ellipse’s major axis and the horizontal axis. The angle measurement would provide a clear 

information on the direction of Ca2+ events; it also provides an estimation of the overall 

velocity of spread.

Our software plugin method of analysis uses automated detection of Ca2+ events that yield 

Ca2+ event data parameters from the entire Ca2+ event (Figure 6 A–G). This approach is in 

direct contrast with the single-pixel line method used widely to analyze STMap Ca2+ event 

parameters, which lack accuracy and ignores data within the Ca2+ event not present on the 

indicator pixel line (Figure 2 & Figure 6). Therefore, the subsequent data generation from 

our plugin provides a more accurate representation of STMap Ca2+ events when compared 

to single-pixel line analysis.

Finally, upon completion of ROI generation and Ca2+ event parameter data extraction, the 

plugin automatically exports all data parameters individually and as an average to an Excel 

sheet (.xls) for figure generation (Figure 6 H). This provides the user the opportunity for 

rapid interpretation and evaluation of STMaps.
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3.6. Fast and high-throughput analysis achieved by the automated plugin

As outlined, the segmentation, ROI generation, and data extraction of STMaps through the 

plugin is done automatically. Therefore, the intensive task of drawing a single-pixel line 

through each individual Ca2+ event is not needed. To evaluate changes in speed of analysis, 

we compared the efficiency of our plugin with the pixel-line method in analysis of Ca2+ 

events from STMaps derived from imaging of ICC. Analysis using our plugin averaged 2.69 

± 0.5 s per event while the pixel-line method of analysis was 95.6 ± 7.5 s per Ca2+ event 

(n=30; Figure 7). Although significant, this difference is most apparent when comparing the 

speed of analysis of large STMap datasets. Plugin based analysis of 30 ICC STMaps was 

achieved with a speed of: 0.39 ± 0.06 hrs, while pixel-line analysis of the same STMaps was 

completed in 77 ± 3.4 hrs (n=4; Figure 7). This enhanced speed of plugin analysis is 

achieved through batch processing of STMaps for high-throughput analysis. Multiple 

STMaps can be analyzed and data output can be pooled together providing statistical 

measurements of large data sets at once. When compared to STMap single-pixel line 

analysis, it is clear that the plugin approach is not constrained by significant user error, low 

accuracy, or computational bottlenecks.

3.7. ICC Ca2+ transients analysis using the plugin.

The plugin has substantial application in STMap based analysis of variable patterns of Ca2+ 

transients. Because we optimized two distinct classifiers, the plugin is able to accurately 

analyze a wide range of Ca2+ transient patterns. Cell types such as the ICC-MY, which often 

generate large rhythmic firing patterns, can be quickly and accurately analyzed to yield data 

parameters that describe ICC-MY Ca2+ dynamics (Figure 8 A–C). These parameters are 

generated from automated ROI generation of STMaps as shown in (Figure 8 B–C). ICC-MY 

in the small intestine displays rhythmic Ca2+ transients (Figure 8 A–C). We observed that 

the Ca2+ transients had an average: frequency of 11 ± 1.55 per STMap (STMaps were 

recorded for 30 s, n=5; Figure 8 D), area of 29.4 ± 0.89 μm*s (Figure 8 E), duration of 822 ± 

8.75 ms (Figure 8 F), and spatial spread of 37.43 ± 1.88 μm (Figure 8 G). Other cell types, 

such as the ICC-DMP often show a more transient, stochastic pattern of Ca2+ transients [31, 

55] (Figure 9 A). These cells can also be readily analyzed by using the stochastic classifier 

without significant user modification (Figure 8 B,C). In the ICC-DMP, the plugin is able to 

segment STMap Ca2+ events and automatically retrieve data parameters that are useful for 

ICC-DMP behavior characterization in an efficient and accurate manner. We observe that, 

the plugin can clearly detect Ca2+ events in ICC-DMP with different Ca2 event shapes and 

kinetics (Figure 9 C). The plugin based STMap analysis of Ca2+ transients in ICC-DMP 

demonstrated that Ca2+ transients had an average: duration of 401.4 ± 6.97 ms (Figure 9 D), 

frequency of 29.25 ± 1.31 per STMap (STMaps were recorded for 30 s, n=5; Figure 9 E), 

spatial spread of 29.01 ± 1.1 μm (Figure 9 F), event angle of: 152.41 ± 5.04 (Figure 9 G), 

area of 20.16 ± 0.47 μm*s (Figure 9 H), and event intensity of: 99.8 ± 1.23 F/F0 (Figure 9 I).

4. Discussion

Understanding cellular Ca2+ dynamics requires an intensive approach of both experimental 

and analytical methods due to the complex patterning and kinetics of Ca2+ transients 

produced in different cell types. To better represent these Ca2+ signals, STMaps of Ca2+ 
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transients are frequently used to describe and quantify Ca2+ events. [22, 26–35] STMaps are 

excellent for monitoring Ca2+ fluorescence changes over time because they plot cellular 

Ca2+ transients spatially and temporally. However, challenges exist to effectively analyze 

STMaps in a fast, accurate, and standardized method.

As explored in this manuscript, current methods of STMap analysis including the pixel-line 

method rely on manual quantification of Ca2+ transients that are heavily restricted by speed 

of analysis, consistency, and user input. [29, 31, 32, 56] The pixel-line method of extracting 

and quantifying Ca2+ transient parameters lacks accuracy by allowing data to be increasingly 

introduced to user influence (Figure 2). Large datasets that use the pixel-line method are 

extremely slow, subjective, and error prone method of analysis. This underscores the 

intensive need for an automated workflow of STMap analysis.

In the present study, we designed a software plugin to address limitations of pixel-line 

STMaps analysis. One major obstacle in STMap Ca2+ transient analysis is accurate event 

detection. This obstacle is often compounded as user-based detection methods are 

inconsistent and highly subject to bias between users. Therefore, we incorporated a 

machine-learning approach in the plugin to provide trainable segmentation as it has been 

detailed as a way to enhance image segmentation in microscopy. [36] We created two 

distinct classifier options for effective segmentation of STMaps with different Ca2+ transient 

patterns. The plugin quickly and accurately analyzed Ca2+ STMaps from two distinct 

intestinal ICC populations: the pacemaker ICC-MY and the neuromediator ICC-DMP that 

have distinct patterns of Ca2+ firing: rhythmic and stochastic, respectively (Figure 4). 

Because we include a trainable component in the plugin, it may be applied to a variety of 

cell types that exhibit local Ca2+ signals, propagating Ca2+ signals or a combination of 

different signaling patterns.

Machine-learning integration can provide robust advantages in image processing. Machine-

learning driven approaches have been emerging heavily in the biomedical field through 

medical diagnosis, histopathological analysis, and CT image processing. [57–59] 

Researchers have found that machine-learning has the potential to dramatically aid in speed 

of analysis, consistency and accuracy in data extraction. [60, 61] However, a machine-

learning method for STMap analysis comes with its own concerns; validation of the 

approach is critical to ensure accuracy of analysis. Without the opportunity to validate the 

output data, the user could unknowingly be improperly segmenting Ca2+ events and 

subsequently generating inaccurate data. Our plugin allows for validation of the output data 

after the process of machine-learning segmentation. This process allows the researcher to 

confirm the validity of the plugin machine-learning based event detection, ROI generation, 

and data extraction. Collectively, the automated workflow with the incorporation of a 

trainable event detection dramatically enhances STMap analysis.

As demonstrated in this study, analysis of STMaps is heavily constrained by the method of 

Ca2+ detection and measurement (Figure 2). We aimed to significantly reduce this 

impediment to STMap analysis. We found that the automated plugin-based approach was 

able to expeditiously quantify Ca2+ transients from STMaps. The difference in single event 

analysis speed was substantial compared to the pixel-line method of analysis. While 
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somewhat feasible for smaller datasets, the pixel-line method is even more inadequate for 

larger datasets as it is increasingly time exhaustive. Indeed, these temporal distinctions 

emphasize the substantial value of the plugin in both small and large dataset analysis.

We also highlight that a significant problem in the accuracy of pixel-line analysis is that the 

method introduces user error and bias to results. Because the pixel-lines are laborious to 

draw and subjective, high variability in pixel-line drawing can result in misrepresentative 

measurements and data output. Unlike the pixel-line method, the plugin reduces this 

variability by limiting opportunity for user intervention; allowing different users to achieve 

the same results from a particular dataset. This consistency in data generation enhances 

accuracy of data output and is directly a result of automating user defined processes: 

preprocessing, event segmentation, ROI generation, data measurement. Additionally, a 

consequence of incorporated machine-learning to an automated workflow is that there are 

fundamental differences in how data parameters are measured. Trainable segmentation offers 

an added advancement in accuracy by permitting data generation from entire Ca2+ events. 

For example, the pixel-line method of analysis estimates the duration of a Ca2+ event, by 

measuring the Full Duration at Half Maximum (FDHM). [18, 29, 35] This measurement is 

intrinsically inaccurate as it is not a true measurement of event start and end; it is a 

measurement of median event duration. Our plugin can analyze the totality of a Ca2+ event 

using the machine-learning generated ROI’s as boundaries for event duration and spatial 

spread. Further, these plugin generated ROI’s use all data points within the ROI to generate 

event intensity and area. Therefore, the implementation of our plugin can provide rapid 

results that enhance accuracy of STMap analysis.

Although STMaps are commonly used to study Ca2+ dynamics, to date there are currently 

no automated machine-learning implemented plugin-based tools for STMap analysis. We 

provide a novel solution for STMap analysis that is comprised of an automated trainable 

workflow that quantifies key Ca2+ event parameters. However, automated video analysis 

does exist. [62–64] Though, these workflows are highly specialized, not adaptable through a 

machine-learning based classifier, and are not designed for STMap analysis. [65–69] Thus, 

the inclusion of a trainable classifier in an optimized STMap analysis workflow is a unique 

feature of our plugin not shared by other methods.

4.1. Conclusions

The plugin-based approach we describe functions to address the limitations of single-pixel 

analysis by incorporating a machine-learned based classifier to: expedite segmentation, 

extract STMap Ca2+ event data, and provide the investigator with consistency in analysis. 

Our plugin resolves the core of single pixel-line based analysis limitations by consistently 

automating a large portion of user input; reducing both time to completion and sources of 

user error while maintaining a high level of accuracy. The plugin’s performance in STMap 

Ca2+ event analysis demonstrate that it can be used in a high-throughput approach to 

quantify complex Ca2+ signaling in ICC and possibly be implemented as a solid tool for 

Ca2+ analysis in other cell types. Our plugin based method provides a robust new platform 

for efficient and accurate Ca2+ transient analysis
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Abbreviations

FOV Field of view

GI Gastrointestinal

ICC Interstitial Cells of Cajal

ICC-DMP Interstitial cells of Cajal at the level of the deep muscular plexus

ICC-IM Intramuscular interstitial cells of Cajal

ICC-MY Interstitial cells of Cajal at the level of the myenteric plexus

GCaMP Genetically encoded Ca2+ indicator composed of a single GFP

KRB Krebs Ringer Bicarbonate

ROI Region of interest

STMap Spatio-Temporal Map

STMapAuto Spatial-temporal maps automation plugin
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Highlights

• We designed a new automated machine-learning based plugin for the analysis 

of Ca2+ Spatio-Temporal Maps (STMaps).

• The plugin is fully implemented in Fiji and able to accurately detect and 

quantify a variety of Ca2+ transient signals.

• The plugin includes optimized tools for automated extraction of key Ca2+ 

events.

• The plugin is extremely fast and provide an efficient method in the analysis of 

Ca2+ large-datasets.

• The automated plugin, reduces user error and provides a consistent high-

throughput analysis
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Figure 1: Generation of spatio-temporal maps (STMaps).
A) Representative image of ICC-DMP from the small intestine of a Kit-Cre-GCaMP6f 

mouse in situ. A single ICC-DMP within the FOV outlined (red) defines cellular ROI for 

STMap. (A-D) Representative time series of Ca2+ transients from ICC-DMP. Asterisks 

(yellow) indicate transient Ca2+ events. E) Representative color-coded STMap of Ca2+ 

activity in ICC-DMP. Horizontal lines (colored) from cell correspond to locations of Ca2+ 

sites within the cell plotted on STMap.

Leigh et al. Page 19

Cell Calcium. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Analysis of Ca2+ events in ICC-DMP using STMaps.
A) Representative STMap of Ca2+ transients in ICC-DMP. B) Enlarged single Ca2+ event 

from panel A. Representative single pixel-line drawn (white) through Ca2+ event in Fiji.. 

Line is drawn parallel to time (x-axis) C) Plot profile generated from single pixel-line from 

panel B. Amplitude and event duration (full duration of half maximum) are measured from 

plot profile. D) Enlarged single Ca2+ event from panel A with representative measurement of 

Ca2+ event spatial spread (white). E) Single pixel-lines (white) drawn by three users across 

Ca2+ event. Users 1,2, and 3 are indicated by green, red, and purple respectively. F) Plot 

profile generated by the three user defined pixel-lines from panel E. Variation is present in 

both amplitude and event duration. G) Variable spatial spread present in three user defined 

single pixel-line measurements (white) of single Ca2+ event. H) 54 single pixel-lines (white) 
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required to analyze event duration, spatial spread, and amplitude of 27 Ca2+ events from 

ICC-DMP STMap. Scale bars in panel A and panel B apply to panels H and D, E, G 

respectively.
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Figure 3: Representative workflow of automated Plugin based STMap analysis
STMap is imported into Plugin for spatio-temporal calibration and Ca2+event detection 

selection. (Image Segmentation and Thresholding) STMap is segmented through 

Trainable Weka Segmentation through one of two classifiers. Intermodes threshold is 

automatically applied to segmented image. (Region of Interest Generator) Plugin uses 

image threshold from segmented image to generate distinct ROIs. ROIs are then overlaid on 

original image. (Data extraction) Original non-colored image is used for data extraction 

through Fiji API and Ca2+ event parameters are exported to excel spread sheet.
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Figure 4: Creation of trainable event classifiers optimized for stochastic and rhythmic Ca2+ 

activity
A) Representative STMap of stochastic Ca2+ transients from ICC-DMP Ai) Segmentation 

settings used by Ca2+ event stochastic classifier to optimize training of smaller, less defined 

Ca2+ events. Aii) Ca2+ event segmentation of STMap from panel A generated by plugin. 

Segmented events are highlighted (red) from background (green). B) Representative STMap 

of rhythmic Ca2+ transients from ICC-MY of the small intestine. Bi) Segmentation settings 

used by Ca2+ event rhythmic classifier to optimize training of large, rhythmic Ca2+ events 

Bii) Segmentation settings used by Ca2+ event rhythmic classifier to optimize training of 

larger, nosier, and rhythmic Ca2+ events. Scale bars in panel A and B also apply to panels 

Aii and Bii respectively.
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Figure 5: Generation of Ca2+ Events threshold and validation
A) Representative image of a segmented STMap of an ICC-DMP from the small intestine. 

Scale bars in A applies to C, E and F. B) Intermodes threshold used to further segment 

closely linked Ca2+ events C) Resulting thresholded STMap: Ca2+ events (black) are distinct 

from background (white) D) The ROI Manager incorporates calibration and Ca2+ event size 

selection parameters while identifying Ca2+ event ROIs from thresholded STMap. E-F) 
Plugin identifies Ca2+ event ROIs and overlays them on original greyscale or colored 

STMap for user validation.

Leigh et al. Page 24

Cell Calcium. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Analysis of STMap Ca2+ event parameters
A) Representative STMap of Ca2+ transients from ICC-DMP. Scale bars in panel A also 

apply to panel B. B) STMap with overlaid ROI (yellow) with individual Ca2+ events labeled 

(1–10) after plugin segmentation process. C) Representation of Fiji mediated Box Rectangle 

measurement (white) of event duration and spatial spread (D). Box rectangle includes entire 

Ca2+ event used for data measurement. E) Representation of Fiji mediated identification of 

event area through plugin generated Ca2+ event ROIs (white). F) Fiji fitted ellipse (white) to 

determine Ca2+ event angle. G) Representation of identification of event mean intensity 

through plugin generated Ca2+ event ROIs (white). H) An example of Ca2+ events data 

generated from ICC-DMP STMap that were automatically extracted and tabulated by plugin 

and then exported to Excel spread sheet.
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Figure 7: Speed comparison of plugin and single pixel-line methods of STMap analysis
A) Comparison of time elapsed for analysis of per individual Ca2+ events from 30 ICC-DMP 

STMaps, using plugin vs pixel-line method. The pixel-line method required an average of 

95.6 ± 7.5 s per Ca2+ event (black). The plugin spent an average of 2.69 ± 0.5 s per Ca2+ 

event (red; n=30). B) Comparison of time elapsed for analysis of large dataset of 30 STMaps 

of Ca2+ events from ICC-DMP. The pixel-line method (black) required 77 hours ± 3.4, while 

the plugin required 0.39 ± 0.06 hrs (30 STMap analysis; n=4, **** = P < 0.0001). All Ca2+ 

STMaps analyzed were 30 s recordings.
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Figure 8: High-throughput generation of Ca2+ dynamic parameters from ICC-MY STMap
A) Representative image of ICC-MY from the small intestine Kit-Cre-GCaMP6 mouse B) 
STMap of rhythmic ICC-MY Ca2+ events generated from panel A. Scale bars in panel B 

also apply to panel C. C) Plugin generated Ca2+ event ROIs (yellow) overlaid on greyscale 

STMap. D) Plugin generated Ca2+ event frequency per STMap. (All Ca2+ STMaps analyzed 

were 30 s recordings, n=5) E-G) Plugin generated Ca2+ events parameters from ICC-MY 

STMaps: area, duration, and spatial spread spatial spread.
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Figure 9: High-throughput extraction of Ca2+ dynamic parameters from ICC-DMP STMaps
A) Representative image of ICC-DMP from the small intestine of a Kit-Cre-GCaMP6 mouse 

B) STMap of Ca2+ events generated from panel A. Scale bars in panel B also apply to panel 

C. C) Plugin generated ROIs (yellow) overlaid on greyscale STM. D,F,H) Plugin generated 

data of Ca2+ event parameters represented by summary histogram (black) fitted with a 

gaussian distribution (red) showing Ca2+ event duration, spatial spread, and area 

respectively. E,G,I) Plugin generated data of Ca2+ event parameters: event frequency per 

STMap, angle, event intensity from ICC-DMP STMaps respectively. (All Ca2+ STMaps 

analyzed were 30 s recordings, n=5).
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Table 1:

Cross Validation Result for Rhythmic STMap Datasets

Fold Training Samples Validation Samples MeanIOU

1 11–50 1–10 80.37%

2 1–10,21–50 11–20 75.53%

3 1–20,31–50 21–30 72.17%

4 1–30,41–50 31–40 82.79%

5 1–40 41–50 72.29%
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Table 2:

Cross Validation Result for Stochastic STMap Datasets

Fold Training Samples Validation Samples MeanIOU

1 11–50 1–10 79.48%

2 1–10,21–50 11–20 69.08%

3 1–20,31–50 21–30 72.18%

4 1–30,41–50 31–40 70.52%

5 1–40 41–50 78.92%
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