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Abstract

Unnecessary antibiotic regimens in the intensive care unit (ICU) are associated with adverse 

patient outcomes and antimicrobial resistance. Bacterial infections (BI) are both common and 

deadly in ICUs, and as a result, patients with a suspected BI are routinely started on broad-

spectrum antibiotics prior to having confirmatory microbiologic culture results or when an occult 

BI is suspected, a practice known as empiric antibiotic therapy (EAT). However, EAT guidelines 

lack consensus and existing methods to quantify patient-level BI risk rely largely on clinical 

judgement and inaccurate biomarkers or expensive diagnostic tests. As a consequence, patients 

with low risk of BI often are continued on EAT, exposing them to unnecessary side effects. 

Augmenting current intuition-based practices with data-driven predictions of BI risk could help 

inform clinical decisions to shorten the duration of unnecessary EAT and improve patient 

outcomes. We propose a novel framework to identify ICU patients with low risk of BI as 

candidates for earlier EAT discontinuation. For this study, patients suspected of having a 

community-acquired BI were identified in the Medical Information Mart for Intensive Care III 

(MIMIC-III) dataset and categorized based on microbiologic culture results and EAT duration. 

Using structured longitudinal data collected up to 24, 48, and 72 hours after starting EAT, our best 
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models identified patients at low risk of BI with AUROCs up to 0.8 and negative predictive values 

>93%. Overall, these results demonstrate the feasibility of forecasting BI risk in a critical care 

setting using patient features found in the electronic health record and call for more extensive 

research in this promising, yet relatively understudied, area.
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1. Introduction

Antibiotics can be life-saving for critically ill patients with bacterial infections (BIs), 

however, overuse or unnecessary administration can contribute to antimicrobial resistance 

(AMR) and antibiotic-associated morbidity.1–7 This is a critical issue, as patients with AMR 

infections suffer longer hospital stays, treatment complications, higher healthcare costs, and 

are more likely to die.8–11 Furthermore, antibiotics can cause harm through gut microbiome 

dysbiosis, mitochondrial toxicity, and immune cell dysfunction.1–7 Although clinicians have 

become more aware of the side effects of antibiotics, it is estimated that up to 50% of 

antibiotic prescriptions in acute care hospitals in the United States are still either 

inappropriate or unnecessary.12–17 Reducing both the amount and duration of unnecessary 

antibiotic treatments is a commonly proposed strategy to reduce the risk of antibiotic-related 

side effects.12–15,18 This is particularly relevant in the intensive care unit (ICU), where 

concerns for bacterial infections (BI) are high and prescribing antibiotics empirically—prior 

to having confirmatory bacterial culture results or when an occult BI is suspected—is a 

common practice.19,20

Approximately 30–50% of all ICU patients are diagnosed with a BI and their mortality rates 

can reach as high as 60% in severe infections.20–24 As a result, providers in the ICU often 

have a low threshold to start empiric antibiotic therapy (EAT) despite the ramifications of 

excessive antibiotic use for patients at low risk of BI. Unfortunately, there is no uniform 

consensus on the appropriate duration of EAT. As a result, clinicians must continually weigh 

the risks of failing to treat a serious BI against the risks of prescribing inappropriate 

antibiotic regimens. Moreover, physicians lack objective criteria to identify low BI risk in 
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patients receiving EAT, and rely on clinical intuition and imprecise guidelines to balance 

EAT decisions.3,25–27 Strategies that shorten unnecessary antibiotic duration in ICU patients 

when BIs are no longer suspected offer a way to improve patient outcomes, and have been 

identified as a priority by the Society of Critical Care Medicine as part of their “less is 

more” campaign.28

Leveraging electronic health record (EHR) data with machine learning techniques presents 

an opportunity to accurately identify patients with low risk of BI. The widespread adoption 

of EHR systems offers investigators access to massive repositories of data generated through 

routine clinical care and provides opportunities to develop novel prediction algorithms to aid 

in clinical decision making.

The primary objective of this study was to develop a novel framework to identify ICU 

patients with a low risk of BI as candidates for earlier EAT discontinuation. The feasibility 

of this approach was investigated in patients suspected of having a BI by modeling data 

collected for up to 24-, 48- or 72-hours following the first dose of antibiotics. We compare 

prediction performance across different model types, data collection windows, and 

prediction thresholds. The developed algorithm could be used to identify patients at low risk 

of BI early in their hospitalization who may benefit from early discontinuation of EAT. 

Furthermore, our EHR-based phenotype of patients suspected of having a BI could be 

generalized to other datasets and used for additional analyses on antibiotic usage and BI in 

the ICU.

The detailed data dictionary, code, results been made available at: https://github.com/

geickelb/mimiciii-antibiotics-opensource.

2. Materials & Methods

2.1 Dataset

A summary of our data extraction and analysis workflow is presented in Figure 1. The data 

used in this study was retrieved from the Medical Information Mart for Intensive Care III 

(MIMIC-III). The MIMIC-III database is an open and de-identified database comprised of 

health-related data from over 40,000 ICU patients who received care at Beth Israel 

Deaconess Medical Center between 2001 and 2012.29,30 MIMIC-III includes a variety of 

data such as administrative, clinical and physiological types, which are organized, formatted, 

processed and de-identified in accordance with the Health Insurance Portability and 

Accountability Act (HIPAA) guidelines.29,30

2.2 Cohort

Adult patients who were suspected of having a BI upon admission to the ICU were eligible 

for our study. To match this phenotype, a patient must have: (1) received at least one dose of 

antibiotics within 96 hours following ICU admission and (2) had a microbiologic culture 

within 24 hours of their first antibiotic dose (Figure 2). Microbiologic cultures were defined 

as cultures obtained from any of the following: blood, joint, urine, cerebral spinal fluid 

(CSF), pleural cavity, peritoneum, or bronchoalveolar lavage. Patients with multiple ICU 

Eickelberg et al. Page 3

J Biomed Inform. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/geickelb/mimiciii-antibiotics-opensource
https://github.com/geickelb/mimiciii-antibiotics-opensource


encounters that met study inclusion criteria were analyzed independently; however, each 

patient’s ICU encounters were assigned to the same train/test split (see Modeling).

Antibiotics prescriptions were recorded as the administration of any “antibacterial for 

systemic use” represented by Anatomical Therapeutic Chemical (ATC) code J01. ATC codes 

were obtained by first converting national drug codes (NDC) into RxNorm concept unique 

identifier (RXCUI) codes, and then into ATC codes. Regular expressions were used on 

prescription names to further filter out erroneous entries and those with missing NDC/

RXCUI codes. We calculated the maximum length of cumulative antibiotic days following a 

microbiologic culture for each ICU encounter. Prescription information in the MIMIC-III 

database was stored with date level resolution. To accommodate this, the time of each 

patient’s first antibiotic dose (t0) meeting the phenotype criteria was set to 0:00:00.

Patients were allocated to one of three BI groups: serious BI, non-serious BI/no BI, and 

unknown BI status (Figure 3). Given the common occurrence of occult bacterial infections, a 

direct inference of BI status could not be made based off of microbiological culture results 

alone. Therefore, patient’s BI statuses were assigned based both on their microbiologic 

culture results (positive vs. negative) and duration of their antibiotic treatment (short [≤96 

hours] vs. prolonged [>96 hours]). In this paradigm, patients with positive microbiologic 

culture and prolonged antibiotic treatment were considered to have serious BIs (prediction 

events), whereas those with negative cultures and short antibiotic treatment were considered 

to have no BIs (prediction non-events). Additionally, patients with short antibiotic treatment 

and positive microbiologic culture were considered non-serious BIs. Due to the possibility 

of occult infections, patients who received prolonged antibiotics despite having a negative 

microbiologic culture had less clear infection statuses, and were thus coded as unknown BI 

status. Conceptually, patients in that group could be further divided into those with an occult 

serious BI and those with either no BI or an occult non-serious BI. These patients were 

separated from the dataset prior to model training and testing, and were later used assess the 

clinical utility of the prediction model by testing its ability to identify patients at low-risk BI 

in that population.

To control for Staphylococcus culture contamination, we required two consecutive 

Staphylococcus positive cultures to be considered microbiologic culture positive. 

Additionally, we coded patients that died within 24 hours of their last antibiotic dose as 

prolonged antibiotic treatment (n=1266). To accommodate for date-level resolution on 

prescription timings, we utilized a conservative 96-hour threshold for short vs prolonged 

antibiotic duration.

2.3 Data Extraction

We extracted static and longitudinal patient clinical data from the MIMIC-III database using 

open source code provided by the MIMIC-III team (Table 1). Longitudinal data was 

restricted to either the T= 24-, 48-, or 72-hour cutoff following the administration date of the 

first antibiotic dose (t0:t0+T) (Figure 2).
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2.4 Cleaning & Pre-processing

The raw clinical data extracted for the purpose of this study were first cleaned and formatted 

to address data quality issues and then preprocessed to facilitate usability by selected 

machine learning models. The first cleaning step was to address desperate units of 

measurement by converting each variable into designated units (Table 1). Next, conservative 

thresholds were set to review erroneous values and data entry errors for removal based upon 

a combination of reference laboratory value limits, clinical knowledge, three sigma outlier 

criteria, and manual audit of a subset of free-text to confirm concordance. Finally, event and 

windowed continuous variables, such as administration of renal replacement therapy or 

mechanical ventilation were coded and discretized. The cleaned data were then converted 

into unit variances following as in (1), where X( − /sℎort) is the median value of the patients 

with negative microbiologic culture and short duration EAT. Next, longitudinal and ordinal 

clinical variables spanning t0:t0+T were aggregated to produce single value(s) for each 

parameter using the operation that conferred the highest likelihood of infection (minimum, 

maximum or both). Lastly, categorical variables were encoded to dummy variables using the 

one-hot-encoding technique. The final dataset was represented by a 52-dimension feature 

vector.

Z = X − X( − /sℎort)
IQR( − /sℎort)

(1)

2.5 Modeling

The patients with positive microbiological cultures and prolonged antibiotic duration 

(serious BI) and those with short antibiotic duration (no BI or non-serious BI) were split into 

a training and test set following a 70/30 split based upon unique ICU stay identifiers. Cohort 

splitting was performed on unique ICU stay identifiers where individual patients were 

sequestered to either the training or testing set to prevent testing set contamination. We 

chose to impute missing values with median values from the training set in order to facilitate 

implementation into a clinical setting. Empirical studies have suggested that including 

imputed values with high missingness can improve model clinical utility, so we chose to 

include imputed values with high missingness in our model (Table 1).31,32

The final dataset was modeled using a variety of machine learning algorithms, including 

Ridge regression33, Random Forests34, support vector classifier (SVC)35, extreme Gradient 

Boosted decision Tree (XG Boost)36, K-Nearest Neighbors, and Multilayer Perceptron 

(MLP). These models were chosen using a set of criteria that included each model’s relative 

interpretability, approach to handling nonlinearity, and ability to model categorical and 

continuous features. A soft voting classifier, or ensemble of all other models, was also used 

to test for significant performance gains or losses.

Class imbalance was addressed by classification threshold tuning and modeling specific 

class balancing parameters, such as bootstrapping and class weights, during hyperparameter 

tuning in order to simplify the modeling workflow. Modeling hyperparameters were tuned 

using 10-fold cross validation with a binary cross entropy loss function on the training set. 
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The binary classification threshold was tuned in 10-fold cross validation to achieve a high 

sensitivity (sensitivity ≥ 0.9) and was averaged across all folds. This high sensitivity was 

chosen in order to reduce the number of false negatives and predict low BI risk with higher 

certainty. Threshold tuned model performances were assessed on the test set using area 

under the receiver operator curve (AUC), F1 score, negative predictive value (NPV), 

precision, and recall.

3. Results

3.1 Cohort

We identified a total of 19,633 ICU encounters (15,412 unique patients) in the MIMIC-III 

data that met inclusion criteria for our study. Within this set, we filtered our cohort down to 

12,232 ICU encounters (10,290 unique patients) that had either prolonged antibiotics and 

positive microbiologic culture, or short antibiotics and negative microbiologic culture (Table 

2). Table 3 summarizes the breakdown of these patients across the train/test splits. 

Additionally, 7,401 ICU encounters (6,520 unique patients) with unknown BI status 

(prolonged antibiotics and negative microbiologic culture) were set aside to test the 

prediction model’s ability to identify patients at low risk BI in that population.

Table 4 summarizes the test set results for each threshold tuned model. The performance 

across the models for each T-hour test set showed little variation, where XGBoost and 

Random Forests slightly outperformed the other models in terms of AUC, F1 score, NPV, 

and precision. As the data window was increased from 24 to 72 hours, there were small 

increases in AUC across the best performing models for each time window. Figure 4 

summarizes the ROC curve for all the T=24-hour models where all, except K-nearest 

neighbors, performed similarly. Additionally, when tested with the 72-hour test data, the 24-

hour Random Forests model obtained an AUC of 0.787 (~0.013 increase). Similarly, the 72-

hour Random Forests model produced an AUC of 0.765 (~0.028 decrease) when tested on 

the 24-hour data. These changes in AUC suggest that both the 24-hour and 72-hour models 

maintain similar model performances when making predictions on data collected over 48-

hour longer and shorter collection windows, respectively.

Figure 5 displays how variable importance changed across the models. For this plot, a list of 

20 variables was selected based on the top ten most important variables for the Random 

Forests, logistic regression, XGBoost, and SVC models. Figure 5 suggests that although the 

models perform similarly, each model prioritized predictors. This interpretation is reinforced 

by the results of the soft voting ensemble models, which performed comparably to the best 

performing model within each T-hour test set. This further suggests that the models are 

identifying the same or similar patients regardless of the underlying algorithm.

The T=24-hour Random Forests model was chosen for the subsequent analyses given that 

the T=24-hour timepoint provides more clinical utility, and thus the Random Forests model 

was the best performing model within this timepoint. Table 5. Confusion Matrix Statistics- 

Test set classification summary for the T=24-hour Random Forests model with a high 

sensitivity threshold. Table 5 summarizes the confusion matrix for this model with a high 

sensitivity classification threshold (0.26) in the test set. The model achieved an NPV of 
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0.944 in the test set; however, this figure is based on the 0.20 BI prevalence from the training 

and testing set. Figure 6 displays how the model NPV changes as a function of population 

BI prevalence and classification threshold. We found that as the BI prevalence changed from 

0.5 to 0.1, the NPV of the T=24-hour random forests model changed from 0.82 to 0.98 when 

using a high sensitivity threshold, and 0.59 to 0.93 when using a 0.5 threshold. These results 

suggest that our model performance will be more robust to changes in prevalence when 

using the high sensitivity prediction threshold. The remaining patients falsely predicted as 

negatives by all of the T=24-hour models were investigated for observable patterns. These 

investigations suggested that the false negatives are a heterogeneous group with no 

reproducible patterns.

Of the 1208 true negatives, 458 (37.9%) cases received antibiotics for 24 hours or less, while 

750 (62.1%) received antibiotics greater than 24 hours. We estimated that 1,289 out of the 

2,375(53.2%) total antibiotic days administered to patients in the true negative group could 

have been avoided if our model with a high sensitivity threshold were hypothetically used to 

stop EAT early.

3.2 Performance in patient set with unknown BI

Finally, the best performing T=24-hour Random Forests model was applied to the patient 

group with unknown BI status, which are those who stand to benefit the most from correct 

BI risk prediction. Using the high sensitivity and 0.5 probability thresholds, the model 

predicted 861 out of 7,401 (11.6%) and 5,525 out of 7,401 (74.7%) patients to be at low risk 

of BI, respectively (Table 6). Using the NPV from the test set with high sensitivity and 0.5 

thresholds (NPV=94.5%, 84.3%) we estimated that approximately 48 (0.6%) and 860 

(11.6%) of all unknown BI status patients would have been predicted to have a low BI risk 

but actually have had a BI (false negatives). By subtracting these estimated false negative 

patients from the total negative predictions, we estimated that the high sensitivity and 0.5 

thresholds would have theoretically benefited 813 (11.0%) and 4,664 (63.0%) patients, 

respectively. We estimated that as a lower bound, our T=24-hour Random Forests model 

with a high sensitivity threshold could have reduced approximately 5,684 (9.5%) antibiotic 

days administered to this group, and as an upper bound with the 0.5 probability threshold 

could have reduced approximately 35,831 (60.0%) antibiotic days. A manual chart review 

and clinical assessment of 10 patient records with unknown BI status (5 predicted high BI 

risk, 5 predicted low BI risk) found that 8 out 10 model BI risk classifications matched the 

clinical reviewer’s assessment of BI risk, 2 out of 10 were probably correct but remained 

indeterminate, and 0 out of 10 were misclassified (Appendix 1).

4. Discussion

In this study, we developed a novel framework to extract patient features from raw clinical 

data and identify patients at low risk of BI who, in theory, could benefit from earlier EAT 

discontinuation within 24 hours of initiation. Our main finding is that our models can predict 

patients with low risk of BI with good performance when applied to structured clinical data 

collected for T= 24-hours after the EAT initiation. We also found that increasing the data 

collection time and model complexity yielded only slight performance increases. Finally, our 
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results suggest by that applying our T=24-hour Random Forests model with a high 

sensitivity threshold to the patient set with unknown BI status (prolonged antibiotics and 

negative microbiologic culture), we would be able to identify around 11.6% of patients as 

candidates for EAT removal with high confidence and could reduce total antibiotic days by 

approximately 9.5%.

Designing data-driven approaches to accurately stratify patients based on their BI risk has 

the potential to greatly improve antibiotic stewardship efforts. Antibiotic stewardship in the 

ICU can be viewed as a two-stage process. The first stage requires administering broad-

spectrum antibiotics to maximize treatment of serious BI. In the second stage, physicians 

either stop EAT for patients at low risk of BI or narrow the spectrum of antibiotics once the 

infection is characterized.3 Many stewardship techniques focusing on the later stage hinge 

upon sensitive and specific identification and monitoring of BI risk. Bacterial cultures and 

inflammatory biomarkers are currently the most common methods of monitoring BI risk in 

the ICU, but are not necessarily optimal. Bacterial cultures, the current gold standard for 

diagnosing BI, may take days to result and are often unreliable in detecting all BIs.37 To 

address this, bacterial cultures are frequently supplemented with Gram staining, which 

provide additional information more immediately about a patient’s BI risk. However, Gram 

staining suffers from high variability and low reliability that results from individual 

differences in slide preparation and interpretation.38–40 Assays based on inflammatory 

biomarkers, such as C-reactive protein and procalcitonin, have improved sensitivity and 

specificity for detecting community-acquired infections, but have high rates of false-

positives and -negatives for hospital-acquired infections.3,41–43 Newer rapid multiplex 

diagnostics for infectious organisms have also been introduced; however, these are still being 

tested for efficacy, costly, and not yet widely available.44 Designing better methods to 

identify patients with low risk for BI is critical to shorten the duration of unnecessary EAT 

and facilitate antibiotic stewardship.

Numerous prior studies have presented EHR-based machine learning models and clinical 

decision support systems to predict infection related conditions, such as bacteremia, sepsis, 

and ICU mortality.45–56 The goal of such models has been to ensure all septic and/or 

bacteremic patients are identified and treated early with appropriate antibiotic regimens.
46–49,52–54,56 For instance, Nemati et al. achieved AUROCs ranging from 0.83–0.85 in 

predicting the early onset of sepsis using data collected during the 12, 8, 6, and 4 hours prior 

to diagnosis for patients across two Emory University hospitals and the MIMIC-III dataset. 

In contrast to these prior studies, the models we present differ by clinical timeframe (it is 

intended to be used after a patient is already suspected of having BI and has started EAT) 

and by the goal of the model (identify patients on EAT who are candidates for EAT 

discontinuation). Currently, no other prominent EHR-based prediction models exist with the 

goal of identifying patients on EAT with low risk of having BI who are candidates for EAT 

discontinuation. Existing methods for forecasting patient-level BI risk have focused around 

the use of protein and genetic biomarkers.6,41,42 The models we present rely on data 

commonly recorded in the ICU and do not require any specialized laboratory diagnostics or 

data from current BI risk prediction methods. Our study adds to the body of research 

surrounding EHR-based prediction models and provides a complementary approach to 

biomarker-based forecasting of patient-level BI risk. When used in combination with current 
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BI risk metrics and clinical intuition, our model promises to help assist care providers in the 

de-escalation process of antibiotic stewardship.

For our clinical use case, false negative patients, i.e. those with a serious BI who were 

predicted as unlikely to have an infection, encompass the largest source of potential patient 

harm given the risk of untreated BIs in the ICU and therefore need to be minimized. 

Similarly, the largest source of potential patient benefit of our model from the current 

standard of care comes from reducing the number of antibiotic days given to patients who 

don’t have known BI. Our T=24-hour Random Forests model uses a high sensitivity decision 

threshold to in order to reduce false negative predictions and therefore improve the potential 

clinical utility in an ICU setting.

We recognize several limitations of this study. First, the retrospective data used was 

collected for clinical care purposes at a single academic medical center. The retrospective 

design of our study required us to infer information regarding BI suspicion, consecutive 

antibiotic days, and culture results based upon sensible criteria that may not completely 

reflect real world conditions. To address this, chart review and a variety of other quality 

checks were performed throughout the workflow to ensure appropriate coding of outcomes. 

Results from our 10-patient chart review of unknown BI status patients found two 

indeterminate cases and zero misclassifications by our proposed model. Details in the chart 

notes of one of these indeterminate cases suggested that this patient experienced a prolonged 

stay in the emergency department prior to transferring to the ICU and that the data from the 

emergency department was not available in the MIMIC-III dataset. This case suggests that 

the performance of our phenotype and model can be improved with more complete data on 

patients prior to ICU transfer. Future work will include retrospective data from additional 

ICU centers for external model validation and assessment of clinical utility, including data 

prior to ICU admission. Next, our estimates of antibiotic reduction provide an upper and 

lower bound on the potential clinical impacts of our model and makes numerous 

assumptions. To better understand the clinical utility of our model, further study is necessary 

to test the hypothesis that discontinuing antibiotic therapy on the patients predicted as low 

risk of BI would clinically benefit them. In future work, we will perform a propensity-

matched analysis to estimate the effects of receiving short vs. prolonged antibiotics on 

outcome in patients with a predicted low risk of BI. Finally, the longitudinal patient data 

collected over T=24-,48-, or 72-hours was aggregated prior to modeling using the 

aggregation function(s) most associated with increased BI risk for each variable. With this 

design, the time for patients to exhibit symptoms most indicative of BI risk increases as the 

data collection window increases; however, time-window aggregation methods do capture 

temporal patterns present in the data to the fullest extent. To better leverage the longitudinal 

nature of our data, future work will focus on testing more complex algorithms to explore 

temporal trends and improve model performances.

5. Conclusion

The goal of this paper was to detail the design and initial application of a novel collection of 

algorithms which extract patient features from clinical data and identify patients at low risk 

of BI who can be safely removed from EAT at 24-hours after initiation. Our models achieved 
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up to 0.8 AUC and demonstrate the feasibility of forecasting BI risk in a critical care setting 

using patient features found in the EHR. Future work will focus on validating models with 

external datasets, measuring clinical utility more accurately, and improving model 

performance by accounting for temporal information in patient data. Overall, these results 

call for more extensive research in this promising, yet relatively understudied, area.
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Highlights

• Unnecessary antibiotic regimens can harm patients without bacterial 

infections.

• Our random forest-based prediction model can help predict bacterial infection 

risk.

• Data-driven approaches can enhance antibiotic stewardship efforts.
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Figure 1. 
Data Ingestion and Analysis Framework Overview. Raw data is ingested from the MIMIC-

III database. First a cohort of adult patients suspected of having SBI is established, and both 

longitudinal and categorical data is extracted over the T= 24-,48-, or 72-hour window 

following their first antibiotic dose that corresponds with an microbiologic culture. Next, 

data is cleaned, formatted, and preprocessed prior to modeling. The cohort is then filtered to 

patients with positive microbiologic culture and prolonged antibiotics, and microbiologic 

culture negative with short antibiotics. A 70/30 train/test set split is then applied. Scaling and 

standardization are performed on each set independently. Missing values were imputed using 

median values from the training set. Machine learning models are hypertuned on the training 

set and applied to the test set. Finally, classification thresholds are tuned, and model 

performance metrics are output.
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Figure 2. 
Phenotype Criteria for BI Suspicion at ICU Admission. A patient’s first Antibiotic (AB) 

dose (t0) needs to: (1) be administered within 96 hours following ICU admission and (2) 

have an microbiologic culture within 24 hours and (1) be administered within 96 hours 

following ICU admission. Clinical Data is collected for up to T= 24-, 48-, or 72-hours after 

first antibiotic dose.
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Figure 3. 
Classification of BI status and framing of the clinical prediction problem. Patient BI status 

can be classified into three groups based on duration of antibiotics and microbiological 

results: “Serious BI” are those with positive microbiological cultures receiving antibiotics 

for >96 hours and are the cases in model training. “Non-serious BI” and “No BI” patients 

are those with antibiotics ≤96 hours and are the controls in the model training. “Unknown BI 

status” are patient who received empiric antibiotic therapy [EAT] for >96 hours despite 

negative microbiological cultures, and are the group of patients most likely to benefit from 

correct BI risk prediction. The unknown BI status group may be conceptually divided into 

patients with “occult serious BI” who are likely more similar to the cases than to the 

controls, and patients with “no BI or occult non-serious BI” who are likely more similar to 

the controls than to the cases.
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Figure 4. 
Receiver operating characteristic curves for all T=24-Hour models. We use different colors 

and line styles to differentiate models. AUC: Area under the curve.
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Figure 5. 
Stacked Relative Variable Importance Across Prediction Models. Variable importance for 

Random Forests and XGBoost were based on standardized Gini importance, while SVC and 

logistic regression used standardized coefficients. Variable importance values from all 

models were scaled relative to the value of the most important variable for all 20 values in 

the variable list. pCO2: carbon dioxide partial pressure; PaO2:FiO2: ratio of arterial oxygen 

partial pressure to fractional inspired oxygen; PTT: platelets; MAP: average arterial blood 

pressure over one cardiac cycle; WBC: white blood cell count; BUN: Blood urea nitrogen; 

sysBP: Systolic blood pressure
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Figure 6. 
NPV across BI prevalence for T=24-hour Random Forests tuned and 0.5 prediction 

thresholds. NPV was simulated for a variety of BI prevalence values using the sensitivity 

and 1-specficity for the high sensitivity and 0.5 prediction thresholds from the test set.
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Table 1.

Extracted Data- Raw variables and units extracted from the corresponding table in the MIMIC-III database.

MIMIC-III 
TABLE Data Collected Unit % Missingness (T= 24–72 hour)

Diagnoses ICD-9 codes (Elixhauser Comorbidity Index) categorical 0 – 0

Admissions Age years 0 – 0

Ethnicity categorical 0 – 0

Gender categorical 0 – 0

ChartEvents Blood pressure (systolic, diastolic) mmHg 0.2 – 0

Glasgow Coma Scale GCS score 72.5 – 53.3

Glucose mg/dL 0.5 – 0.1

Heart rate bpm 0 – 0

Peripheral oxygen Saturation (SpO2) % 0 – 0

Temperature deg. C 1.6 – 0.2

Ventilation status categorical 1.3 – 0.9

Weight kg 8.4 – 8.4

InputEvents Dobutamine mcg/kg/min 98.8 – 98.3

Dopamine mcg/kg/min 94.9 – 94

Epinephrine mcg/kg/min 97.9 – 97.6

Norepinephrine mcg/kg/min 83.1 – 80.1

Phenylephrine mcg/kg/min 86.2 – 83.2

Renal replacement therapy pos/neg 0 – 0

Vasopressin mcg/kg/min 98 – 97

LabEvents Bands % 87.3 – 82.6

Serum bicarbonate mEq/L 2.1 – 0.3

Bilirubin mg/dL 60.1 – 47.8

Blood urea nitrogen (BUN) mg/dL 2 – 0.3

Serum chloride mEq/L 1.9 – 0.3

Serum creatinine mg/dL 2 – 0.3

Serum glucose mg/dL 0.5 – 0.1

Hemoglobin g/dL 2.6 – 0.3

International Normalized Ratio (INR) ratio 24.9 – 13.3

Serum lactate mmol/L 48.1 – 42.3

Urine leukocyte pos/neg 69.5 – 57.6

Urine nitrite pos/neg 69.5 – 57.6

Partial pressure of arterial oxygen (PaO2)/fraction of inspired oxygen 
(FiO2) ratio ratio 67.9 – 65.1

Partial thromboplastin time (PTT) sec 25.2 – 13.8

Partial pressure of arterial carbon dioxide (pCO2) mmHg 39.9 – 34

Serum pH n/a 41.9 – 36.7

Platelet count K/uL 2.6 – 0.3

Serum potassium mEq/L 1.6 – 0.3

White blood cell count K/uL 2.9 – 0.3
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MIMIC-III 
TABLE Data Collected Unit % Missingness (T= 24–72 hour)

Serum calcium mmol/L 63.1 – 56.6

a.
Threshold: threshold for manual review

b.
SD denotes Standard Deviation
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Table 2.

Demographics- Distribution of cohort demographics.

Variable Mean/stdev.

Gender- N, %

Female 5709 (47%)

Male 6523 (53%)

Age (yr) 64.7 +\− 17.0

Ethnicity- N, %

African-American 1385 (11%)

White 8855 (72%)

Hispanic 507 (4%)

Other 1485 (12%)

a.
SD denotes Standard Deviation
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Table 3.

Cohort Split- Breakdown of the train/test split against patient classes

Microbiologic Culture Antibiotic Duration
a BI Status Classification Train No. (%) Test No. (%) Total No. (%)

Negative Short Positive 5512 (65%) 2355 (65%) 7867 (65%)

Positive Prolonged Negative 1693 (20%) 745 (20%) 2438 (20%)

Positive Short Negative 1296 (15%) 631 (15%) 1927 (15%)

Negative Prolonged Unknown N/A N/A 7401 (100%)

a.
Time on antibiotics, short (≤96 hours) vs. prolonged (>96 hours)
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Table 4.

Preliminary Model Results - Modeling parameters for each model on the test set using the high sensitivity 

threshold.

Model AUC F1 NPV Precision Recall High Sensitivity Threshold

72-hour Test set

Random Forests Classifier 0.793 0.431 0.941 0.284 0.891 0.124

XGBoost 0.795 0.439 0.943 0.291 0.891 0.096

MLP Classifier 0.779 0.395 0.948 0.25 0.936 0.09

Logistic Regression 0.781 0.423 0.932 0.278 0.876 0.298

SVC 0.778 0.425 0.935 0.28 0.881 0.101

K-NN 0.734 0.357 0.936 0.219 0.963 0.04

Voting Classifier 0.793 0.429 0.946 0.281 0.905 0.147

48-hour Test set

Random Forests Classifier 0.788 0.43 0.943 0.283 0.897 0.126

XGBoost 0.796 0.436 0.946 0.288 0.9 0.091

MLP Classifier 0.771 0.456 0.92 0.318 0.805 0.084

Logistic Regression 0.774 0.421 0.938 0.275 0.893 0.296

SVC 0.773 0.42 0.941 0.274 0.9 0.099

K-NN 0.733 0.393 0.922 0.252 0.887 0.044

Voting Classifier 0.788 0.436 0.939 0.29 0.881 0.147

24-hour Test set

Random Forests Classifier 0.774 0.424 0.944 0.277 0.905 0.258

XGBoost 0.776 0.416 0.94 0.271 0.901 0.104

MLP Classifier 0.764 0.439 0.925 0.297 0.84 0.087

Logistic Regression 0.764 0.411 0.94 0.266 0.907 0.302

SVC 0.763 0.411 0.937 0.267 0.9 0.105

K-NN 0.714 0.382 0.922 0.243 0.903 0.044

Voting Classifier 0.776 0.421 0.939 0.275 0.895 0.177
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Table 5.

Confusion Matrix Statistics- Test set classification summary for the T=24-hour Random Forests model with a 

high sensitivity threshold.

True Negatives (%) False Positives (%) False Negatives (%) True Positives (%)

High Sensitivity Threshold 1208 (32.4%) 1773 (47.5%) 71 (1.9%) 679 (18.2%)

0.5 Probability Threshold 2826 (75.7%) 155 (4.2%) 521 (14.0%) 229 (6.1%)
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Table 6.

Prolonged Antibiotic Negative Microbiologic Culture Predictions- Prediction distribution for the T=24-hour 

Random Forests model.

High Sensitivity Threshold 0.5 Threshold

Predicted low BI risk 861 (11.6%) 5525 (74.7%)

Predicted high BI risk 6540 (88.4%) 1876 (25.3%)
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