Table 2.
Extractors | Classifiers | Accuracy | Precision | F1 Score | Recall |
---|---|---|---|---|---|
GLCM | Naive Bayes | 64.44 ± 1.22 | 81.61 ± 0.40 | 46.55 ± 2.96 | 54.29 ± 1.56 |
MLP | 64.44 ± 1.22 | 81.61 ± 0.40 | 46.55 ± 2.96 | 54.29 ± 1.56 | |
kNN | 86.11 ± 3.23 | 87.70 ± 3.97 | 84.66 ± 3.69 | 83.55 ± 3.73 | |
RF | 87.22 ± 2.87 | 89.06 ± 3.40 | 85.86 ± 3.18 | 84.56 ± 3.12 | |
SVM Linear | 73.22 ± 3.12 | 78.87 ± 4.39 | 66.47 ± 4.96 | 66.71 ± 4.05 | |
SVM Polynomial | 64.44 ± 1.22 | 81.61 ± 0.40 | 46.55 ± 2.96 | 54.29 ± 1.56 | |
SVM RBF | 72.22 ± 2.77 | 84.11 ± 1.14 | 62.83 ± 4.91 | 64.34 ± 3.62 | |
HU | Naive Bayes | 61.11 ± 0.00 | 30.56 ± 0.00 | 37.93 ± 0.00 | 50.00 ± 0.00 |
MLP | 61.11 ± 0.00 | 30.56 ± 0.00 | 37.93 ± 0.00 | 50.00 ± 0.00 | |
kNN | 80.44 ± 3.19 | 81.64 ± 4.05 | 78.14 ± 3.85 | 77.19 ± 3.74 | |
RF | 80.67 ± 3.30 | 81.59 ± 4.08 | 78.51 ± 3.82 | 77.58 ± 3.78 | |
SVM Linear | 52.89 ± 3.79 | 55.34 ± 3.52 | 52.81 ± 3.78 | 55.38 ± 3.64 | |
SVM Polynomial | 51.89 ± 2.77 | 55.72 ± 2.91 | 51.75 ± 2.87 | 55.44 ± 2.84 | |
SVM RBF | 50.56 ± 4.28 | 57.97 ± 3.80 | 49.31 ± 5.34 | 56.17 ± 3.54 | |
LBP | Naive Bayes | 61.11 ± 0.00 | 30.56 ± 0.00 | 37.93 ± 0.00 | 50.00 ± 0.00 |
MLP | 61.11 ± 0.00 | 30.56 ± 0.00 | 37.93 ± 0.00 | 50.00 ± 0.00 | |
kNN | 83.89 ± 2.87 | 84.81 ± 4.13 | 82.41 ± 2.89 | 81.47 ± 2.64 | |
RF | 87.33 ± 3.82 | 89.08 ± 3.99 | 85.96 ± 4.35 | 84.75 ± 4.49 | |
SVM Linear | 66.89 ± 3.33 | 65.00 ± 3.94 | 63.21 ± 3.81 | 63.09 ± 3.55 | |
SVM Polynomial | 38.89 ± 0.00 | 19.44 ± 0.00 | 28.00 ± 0.00 | 50.00 ± 0.00 | |
SVM RBF | 68.56 ± 2.33 | 71.01 ± 5.78 | 60.57 ± 3.66 | 61.70 ± 2.77 |
The bold values are mean and standard deviation, respectively.