Skip to main content
. 2020 Sep 18;14:365. doi: 10.3389/fnhum.2020.00365

Table 2.

Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features with classical extractors.

Extractors Classifiers Accuracy Precision F1 Score Recall
GLCM Naive Bayes 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56
MLP 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56
kNN 86.11 ± 3.23 87.70 ± 3.97 84.66 ± 3.69 83.55 ± 3.73
RF 87.22 ± 2.87 89.06 ± 3.40 85.86 ± 3.18 84.56 ± 3.12
SVM Linear 73.22 ± 3.12 78.87 ± 4.39 66.47 ± 4.96 66.71 ± 4.05
SVM Polynomial 64.44 ± 1.22 81.61 ± 0.40 46.55 ± 2.96 54.29 ± 1.56
SVM RBF 72.22 ± 2.77 84.11 ± 1.14 62.83 ± 4.91 64.34 ± 3.62
HU Naive Bayes 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00
MLP 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00
kNN 80.44 ± 3.19 81.64 ± 4.05 78.14 ± 3.85 77.19 ± 3.74
RF 80.67 ± 3.30 81.59 ± 4.08 78.51 ± 3.82 77.58 ± 3.78
SVM Linear 52.89 ± 3.79 55.34 ± 3.52 52.81 ± 3.78 55.38 ± 3.64
SVM Polynomial 51.89 ± 2.77 55.72 ± 2.91 51.75 ± 2.87 55.44 ± 2.84
SVM RBF 50.56 ± 4.28 57.97 ± 3.80 49.31 ± 5.34 56.17 ± 3.54
LBP Naive Bayes 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00
MLP 61.11 ± 0.00 30.56 ± 0.00 37.93 ± 0.00 50.00 ± 0.00
kNN 83.89 ± 2.87 84.81 ± 4.13 82.41 ± 2.89 81.47 ± 2.64
RF 87.33 ± 3.82 89.08 ± 3.99 85.96 ± 4.35 84.75 ± 4.49
SVM Linear 66.89 ± 3.33 65.00 ± 3.94 63.21 ± 3.81 63.09 ± 3.55
SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00
SVM RBF 68.56 ± 2.33 71.01 ± 5.78 60.57 ± 3.66 61.70 ± 2.77

The bold values are mean and standard deviation, respectively.