Skip to main content
. 2020 Sep 18;14:365. doi: 10.3389/fnhum.2020.00365

Table 4.

Continuation of Table 3.

Extractors Classifiers Accuracy Precision F1 Score Recall
ResNet50 Naive Bayes 63.16 ± 0.00 31.58 ± 0.00 38.71 ± 0.00 50.00 ± 0.00
MLP 66.32 ± 1.94 82.62 ± 0.68 47.17 ± 4.62 54.29 ± 2.63
kNN 87.68 ± 3.40 89.01 ± 3.97 86.07 ± 3.88 84.71 ± 4.00
RF 85.26 ± 4.16 86.81 ± 4.03 82.97 ± 5.35 81.61 ± 5.45
SVM Linear 81.47 ± 2.50 80.59 ± 1.95 80.52 ± 2.28 81.40 ± 1.83
SVM Polynomial 36.84 ± 0.00 18.42 ± 0.00 26.92 ± 0.00 50.00 ± 0.00
SVM RBF 79.16 ± 1.87 77.95 ± 1.97 77.36 ± 2.15 77.25 ± 2.45
VGG16 Naive Bayes 64.00 ± 2.09 77.81 ± 4.35 51.25 ± 3.95 57.39 ± 2.46
MLP 81.26 ± 4.34 82.14 ± 4.67 80.15 ± 4.66 79.66 ± 4.72
kNN 90.84 ± 1.94 91.54 ± 1.89 90.44 ± 2.08 89.94 ± 2.29
RF 87.79 ± 1.50 89.65 ± 1.70 87.00 ± 1.65 86.08 ± 1.75
SVM Linear 86.63 ± 3.71 87.01 ± 3.67 86.16 ± 3.85 86.07 ± 3.84
SVM Polynomial 57.89 ± 0.00 28.95 ± 0.00 36.67 ± 0.00 50.00 ± 0.00
SVM RBF 93.37 ± 2.45 94.00 ± 2.16 93.08 ± 2.60 92.64 ± 2.86
VGG19 Naive Bayes 65.11 ± 1.59 77.94 ± 7.05 49.10 ± 2.96 55.40 ± 1.79
MLP 78.56 ± 5.07 81.53 ± 5.42 74.76 ± 6.80 73.88 ± 6.19
kNN 91.11 ± 2.72 91.53 ± 3.04 90.51 ± 2.81 89.97 ± 2.66
RF 86.67 ± 3.51 88.90 ± 3.10 85.04 ± 4.27 83.69 ± 4.35
SVM Linear 85.44 ± 3.86 84.92 ± 4.11 84.63 ± 4.04 84.56 ± 4.05
SVM Polynomial 38.89 ± 0.00 19.44 ± 0.00 28.00 ± 0.00 50.00 ± 0.00
SVM RBF 91.89 ± 2.98 92.56 ± 2.89 91.24 ± 3.30 90.45 ± 3.51
Xception Naive Bayes 66.00 ± 4.45 63.98 ± 5.23 63.02 ± 4.86 62.88 ± 4.76
MLP 74.78 ± 4.07 75.45 ± 4.92 71.32 ± 5.30 70.95 ± 5.15
kNN 88.11 ± 2.54 88.89 ± 3.24 87.11 ± 2.73 86.22 ± 2.72
RF 88.78 ± 2.96 90.36 ± 3.26 87.66 ± 3.32 86.45 ± 3.31
SVM Linear 90.78 ± 2.17 91.47 ± 2.52 90.06 ± 2.35 89.23 ± 2.38
SVM Polynomial 45.56 ± 10.18 22.78 ± 5.09 30.98 ± 4.55 50.00 ± 0.00
SVM RBF 92.56 ± 2.11 93.35 ± 2.14 91.97 ± 2.31 91.16 ± 2.49

The bold values are mean and standard deviation, respectively. Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features.