Table 4.
Extractors | Classifiers | Accuracy | Precision | F1 Score | Recall |
---|---|---|---|---|---|
ResNet50 | Naive Bayes | 63.16 ± 0.00 | 31.58 ± 0.00 | 38.71 ± 0.00 | 50.00 ± 0.00 |
MLP | 66.32 ± 1.94 | 82.62 ± 0.68 | 47.17 ± 4.62 | 54.29 ± 2.63 | |
kNN | 87.68 ± 3.40 | 89.01 ± 3.97 | 86.07 ± 3.88 | 84.71 ± 4.00 | |
RF | 85.26 ± 4.16 | 86.81 ± 4.03 | 82.97 ± 5.35 | 81.61 ± 5.45 | |
SVM Linear | 81.47 ± 2.50 | 80.59 ± 1.95 | 80.52 ± 2.28 | 81.40 ± 1.83 | |
SVM Polynomial | 36.84 ± 0.00 | 18.42 ± 0.00 | 26.92 ± 0.00 | 50.00 ± 0.00 | |
SVM RBF | 79.16 ± 1.87 | 77.95 ± 1.97 | 77.36 ± 2.15 | 77.25 ± 2.45 | |
VGG16 | Naive Bayes | 64.00 ± 2.09 | 77.81 ± 4.35 | 51.25 ± 3.95 | 57.39 ± 2.46 |
MLP | 81.26 ± 4.34 | 82.14 ± 4.67 | 80.15 ± 4.66 | 79.66 ± 4.72 | |
kNN | 90.84 ± 1.94 | 91.54 ± 1.89 | 90.44 ± 2.08 | 89.94 ± 2.29 | |
RF | 87.79 ± 1.50 | 89.65 ± 1.70 | 87.00 ± 1.65 | 86.08 ± 1.75 | |
SVM Linear | 86.63 ± 3.71 | 87.01 ± 3.67 | 86.16 ± 3.85 | 86.07 ± 3.84 | |
SVM Polynomial | 57.89 ± 0.00 | 28.95 ± 0.00 | 36.67 ± 0.00 | 50.00 ± 0.00 | |
SVM RBF | 93.37 ± 2.45 | 94.00 ± 2.16 | 93.08 ± 2.60 | 92.64 ± 2.86 | |
VGG19 | Naive Bayes | 65.11 ± 1.59 | 77.94 ± 7.05 | 49.10 ± 2.96 | 55.40 ± 1.79 |
MLP | 78.56 ± 5.07 | 81.53 ± 5.42 | 74.76 ± 6.80 | 73.88 ± 6.19 | |
kNN | 91.11 ± 2.72 | 91.53 ± 3.04 | 90.51 ± 2.81 | 89.97 ± 2.66 | |
RF | 86.67 ± 3.51 | 88.90 ± 3.10 | 85.04 ± 4.27 | 83.69 ± 4.35 | |
SVM Linear | 85.44 ± 3.86 | 84.92 ± 4.11 | 84.63 ± 4.04 | 84.56 ± 4.05 | |
SVM Polynomial | 38.89 ± 0.00 | 19.44 ± 0.00 | 28.00 ± 0.00 | 50.00 ± 0.00 | |
SVM RBF | 91.89 ± 2.98 | 92.56 ± 2.89 | 91.24 ± 3.30 | 90.45 ± 3.51 | |
Xception | Naive Bayes | 66.00 ± 4.45 | 63.98 ± 5.23 | 63.02 ± 4.86 | 62.88 ± 4.76 |
MLP | 74.78 ± 4.07 | 75.45 ± 4.92 | 71.32 ± 5.30 | 70.95 ± 5.15 | |
kNN | 88.11 ± 2.54 | 88.89 ± 3.24 | 87.11 ± 2.73 | 86.22 ± 2.72 | |
RF | 88.78 ± 2.96 | 90.36 ± 3.26 | 87.66 ± 3.32 | 86.45 ± 3.31 | |
SVM Linear | 90.78 ± 2.17 | 91.47 ± 2.52 | 90.06 ± 2.35 | 89.23 ± 2.38 | |
SVM Polynomial | 45.56 ± 10.18 | 22.78 ± 5.09 | 30.98 ± 4.55 | 50.00 ± 0.00 | |
SVM RBF | 92.56 ± 2.11 | 93.35 ± 2.14 | 91.97 ± 2.31 | 91.16 ± 2.49 |
The bold values are mean and standard deviation, respectively. Accuracy, Precision, F1-Score, and Recall obtained through the classification of extracted features.