Skip to main content
. 2020 Sep 18;14:365. doi: 10.3389/fnhum.2020.00365

Table 5.

Summary and statistical comparison to other methods to classification alcoholism and healthy patients.

Author Data Channels Subjects Features/Method Classification of features Performance metrics
Acc Precision F1 Score Recall
Proposed method UCI KDD 11 20 CNN as feature extractor MobileNet + SVM RBF 95.33 ± 1.47 95.68 ± 1.31 95.25 ± 1.52 95.00 ± 1.63
Acharya et al. (2012) Bern Barcelona
database
2 3000 Entropy, 4 HOS features,
Largest Lyapunov Entropy
SVM (linear, polynomial, and
RBF kernels)
91.7 93.9 90
Rachman et al. (2016) UCI KDD 64 77 Daubechies wavelet family Maximum, minimum,
average and standard
85 100
Mumtaz et al. (2016) University Malaya
Medical Center
19 45 Power Spectral Density (PSD) Logistic Regression 89.5 88.5 91 90
Ehlers et al. (1998) University of
California
1 32 CD Discriminant analysis 88
Kannathal et al. (2005) UCI KDD 60 30 CD, LLE, entropy, H Filter by unique ranges 90
Faust et al. (2013) UCI KDD 61 60 HOS cumulants FSC 92.4 91.1 94.9
Patidar et al. (2017) UCI KDD 64 122 Tunable Q-wavelet transform Correntropy,
Low-frequency(LF)-rhythms
based statistical features
97.02 96.53