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Abstract

Selectivesweepsarefrequentandvariedsignaturesinthegenomesofnaturalpopulations,anddetectingthemisconsequently
important in understanding mechanisms of adaptation by natural selection. Following a selective sweep, haplotypic diversity
surrounding the site under selection decreases, and this deviation from the background pattern of variation can be applied to
identify sweeps. Multiple methods exist to locate selective sweeps in the genome from haplotype data, but none leverages the
power of a model-based approach to make their inference. Here, we propose a likelihood ratio test statistic T to probe whole-
genomepolymorphismdatasetsforselectivesweepsignatures.Ourframeworkusesasimplebutpowerfulmodelofhaplotype
frequency spectrum distortion to find sweeps and additionally make an inference on the number of presently sweeping
haplotypes in a population. We found that the T statistic is suitable for detecting both hard and soft sweeps across a variety of
demographicmodels,selectionstrengths,andagesofthebeneficialallele.Accordingly,weappliedtheTstatistictovariantcalls
from European and sub-Saharan African human populations, yielding primarily literature-supported candidates, including
LCT,RSPH3, and ZNF211 in CEU,SYT1,RGS18, and NNT in YRI, andHLAgenes in both populations. We also searched for sweep
signatures in Drosophila melanogaster, finding expected candidates at Ace, Uhg1, and Pimet. Finally, we provide open-source
software to compute the T statistic and the inferred number of presently sweeping haplotypes from whole-genome data.
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Introduction

Aselectivesweepisagenomicsignatureresultingfrompositive
selection in which the linked variants surrounding the site
underselectionrisetohighfrequencytogether inapopulation,
thereby yielding a footprint of reduced diversity that can span
across megabases (Przeworski 2002; Gillespie 2004; Kim and
Nielsen2004;Garudetal.2015;HermissonandPennings2017).
Thus, a recent selective event is identifiable in polymorphism
data from a region of extended haplotype homozygosity, and
the signal of a selective sweep accordingly decays over time as
mutation and recombination break up long haplotypes
(Sabeti et al. 2002; Schweinsberg and Durrett 2005; Voight
et al. 2006). Selective sweeps can arise from multiple processes,
includingthedenovoemergenceofaselectivelyadvantageous
allele, selection on standing population haplotypic variation,
and recurrent mutation to a selectively advantageous allele
(Hermisson and Pennings 2005; Pennings and Hermisson
2006a, 2006b). The former scenario is a hard sweep, in which
asinglehaplotyperisestohighpopulationfrequency,gradually
replacing all other haplotypes as the sweep proceeds to fixa-
tion.Thelattertwoscenariosaresoftsweeps, inwhichmultiple
haplotypes simultaneously rise to high population frequency,
and a greater haplotypic diversity underlies the sweep.

Identifying selective sweeps is important because sweeps
serve as indicators of recent rapid adaptation in a population,
providing insight into the pressures that shaped its present-
day levels of genetic diversity (Vatsiou et al. 2016; Librado et al.
2017). These pressures can vary considerably in their intensity
and duration, resulting in selection signals of varying magni-
tude ranging from prominent, such as LCT in Europeans
(Bersaglieri et al. 2004), to the more subtle ASPM, implicated
in the development of human brain size (Kouprina et al. 2004;
Peter et al. 2012). Whereas strong sweeps are typically easy to
detect, weaker sweeps typically require a large sample size for
detection (Jensen et al. 2007; Pavlidis et al. 2013) and may only
be identifiable through sophisticated approaches (Chen et al.
2010). Selective sweeps, although not the only signature of
adaptation in natural populations, are likely to occur at loci
where mutations have a large effect size, little negative pleio-
tropic effects, and contribute to phenotypes that are either
monogenic or controlled by few genes (Pritchard and Di
Rienzo 2010). In addition, identifying selective sweeps is im-
portant to make inferences about the relative contributions
of hard and soft sweeps to adaptive events in study organisms
(Garud et al. 2015; Schrider and Kern 2016; Harris et al. 2018),
which is a topic of continued debate (Hernandez et al. 2011;
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Jensen 2014; Schrider and Kern 2017; Harris, Sackman, et al.
2018; Mughal and DeGiorgio 2019).

Multiple powerful methods have been proposed to char-
acterize selective sweeps, and well established among these
are composite likelihood ratio (CLR) methods (Kim and
Stephan 2002; Kim and Nielsen 2004; Nielsen et al. 2005;
Chen et al. 2010; Pavlidis et al. 2013; Vy and Kim 2015;
DeGiorgio et al. 2016; Huber et al. 2016; Racimo 2016) and
haplotype homozygosity-based methods (Voight et al. 2006;
Ferrer-Admetlla et al. 2014; Garud et al. 2015; Harris et al.
2018). The former category of methods represents
approaches in which the probability of neutrality in a geno-
mic region under analysis is compared with the probability of
a selective sweep in that region, based on a model of distor-
tion in the site frequency spectrum (SFS) expected under a
sweep. A CLR statistic quantifies support for the alternative
hypothesis of selection, with larger values indicating greater
support. Although CLR methods make simplifying assump-
tions in their models (Beaumont et al. 2010; Pavlidis and
Alachiotis 2017), they have demonstrated a powerful capacity
for identifying multiple different signatures of selection with-
out the need for computationally intense calculations of full
likelihood functions (Kim and Stephan 2002; DeGiorgio et al.
2014; Huber et al. 2016). However, because they are typically
allele frequency-based approaches, the CLR methods may
lack in power to detect soft sweeps in comparison to
haplotype-based methods, which can generally detect both
(Pennings and Hermisson 2006b; Ferrer-Admetlla et al. 2014).
Accordingly, the need exists for methods that leverage the
power and efficiency of CLR approaches, while providing the
sensitivity of haplotype-based approaches.

We introduce an approach for identifying selective sweep
signatures using a likelihood ratio framework T that is the first
haplotype-based method of its kind, intended to address the
limitations of previous methods. Our T statistic (see
Definition of Statistic) has high power to detect recent sweeps
from genome-wide polymorphism data and additionally
infers the number of presently sweeping haplotypes as a
model parameter, providing an additional layer of insight
not shared with other CLR methods. This attribute is espe-
cially important because it eliminates the need for time- and
computation-heavy alternatives, such as training a machine-
learning classifier (Lin et al. 2011; Kern and Schrider 2018;
Mughal and DeGiorgio 2019), or drawing inferences from a
posterior distribution by approximate Bayesian computation
(Garud et al. 2015; Harris et al. 2018; Harris and DeGiorgio
2020). We demonstrate with simulated data that the T sta-
tistic identifies recent hard and soft sweeps and performs
especially well for population size expansion models. As
such, our application of the T statistic to human and
Drosophila melanogaster data sets recovered multiple previ-
ously characterized candidate sweeps in both organisms,
allowing us to corroborate and enhance our understanding
of adaptation in each of their histories. We implement the T
statistic in an open-source software package termed LASSI
(Likelihood-based Approach for Selective Sweep Inference),
which can be downloaded at http://degiorgiogroup.fau.edu/
LASSI.html (last accessed May 25, 2020).

Definition of Statistic
The goal of our approach is to identify genomic signatures of
selective sweeps. We achieve this by assigning a T statistic to
each single-nucleotide polymorphism (SNP)-delimited window
of analysis in the genome. The T statistic is a measure of the
likelihood that an analysis window is consistent with a selective
sweep rather than neutrality. We base this inference on the
sample haplotype frequency spectrum, reasoning that a spec-
trum with few high-frequency haplotypes indicates a sweep,
and a spectrum with no moderate- or high-frequency haplo-
types indicates neutrality. For this reason, genomic regions with
low mutation and recombination rates can resemble selective
sweep regions owing to their reduced nucleotide and haplo-
typic diversity (Pollinger et al. 2005; Wiehe et al. 2007; O’Reilly
et al. 2008; Pavlidis and Alachiotis 2017), and so caution is
warranted as with any approach. The T statistic is a likelihood
ratio test in which the model of neutrality, based on the
genome-wide haplotype frequency spectrum, is nested within
the model of selection, based on a distortion of the genome-
wide haplotype frequency spectrum toward few moderate- or
high-frequency haplotypes. We illustrate examples of haplo-
type frequency spectra for neutrality and sweeps in figure 1
and also provide a schematic showing how key model param-
eters relate to distortions in the haplotype frequency spectrum.

To begin, we must first define the haplotype spectrum on
which we will base our neutral expectation. That is, the spec-
trum that we will assign as representative for a genomic win-
dow under neutrality. For all genomic windows in the sample,
we extract the haplotype frequency spectrum, arrange fre-
quencies in descending order, and truncate the spectrum at
an arbitrary value K most frequent haplotypes (compare top
and middle panels of fig. 1, first column). Thus, for each win-
dow ‘; ‘ ¼ 1; 2; . . . ; L for L windows, we have a truncated

spectrum pð‘Þ ¼ ðpð‘Þ1 ; p
ð‘Þ
2 ; . . . ; p

ð‘Þ
K Þ, where p

ð‘Þ
1 � p

ð‘Þ
2

� � � � � p
ð‘Þ
K , and normalized such that

PK
i¼1 p

ð‘Þ
i ¼ 1.

Next, we define the vector p ¼ ðp1; p2; . . . ; pKÞ, such that pi

¼ ð1=LÞ
PL

‘¼1 p
ð‘Þ
i for i ¼ 1; 2; . . . ; K. We now use p as our

neutral expectation for likelihood computations.
From the vector p, we define the vector qðmÞ ¼

ðqðmÞ1 ; q
ðmÞ
2 ; . . . ; q

ðmÞ
K Þ, which represents a hypothetical dis-

torted frequency spectrum consistent with a model of m
sweeping haplotypes in an analysis window, with

q
ðmÞ
1 � q

ðmÞ
2 � � � � � q

ðmÞ
K . Accordingly, the choice of K, al-

though flexible for any analysis, most directly affects the res-
olution with which we can classify soft sweeps. For example,
identifying a sweep on nine distinct, presently sweeping hap-
lotypes requires at minimum a K¼ 10 truncation, whereas a
sweep on 14 haplotypes requires K¼ 15 and would likely
appear as neutral under smaller truncations. We generate

qðmÞ by increasing the frequency of sweeping haplotype clas-

ses fqðmÞ1 ; q
ðmÞ
2 ; . . . ; q

ðmÞ
m g at the expense of nonsweeping

haplotype classes fqðmÞmþ1; q
ðmÞ
mþ2; . . . ; q

ðmÞ
K g in a heuristic

manner. We note therefore that our approach is purely sta-
tistical and does not feature an underlying population-genetic
model but is an attempt to capture the features in the
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haplotype frequency spectrum consistent with those

expected from a sweep. The vector qðmÞ is related to p by

q
ðmÞ
i ¼

piþ fi
XK

j¼mþ1

ðpj� q
ðmÞ
j Þ i¼ 1;2; . . . ;m

U� i�m� 1

K�m� 1
U� eÞ i¼mþ 1;mþ 2; . . . ;K;ð

8>>><
>>>:

(1)

where fi, with
Pm

i¼1 fi ¼ 1 and fi � 0 for i¼ 1;2; . . . ;m, is a
term defining the manner in which the mass associated with

haplotype frequencies fpmþ1;pmþ2; . . . ;pKg in the neutral
frequency spectrum is distributed among fp1;p2; . . . ;pmg to
generate the sweep frequency spectrum of the alternative
model; U and e are respectively the frequencies of the most
and least frequent nonsweeping haplotype classes, q

ðmÞ
mþ1 and

q
ðmÞ
K .

We can define fi in multiple ways. Choosing fi ¼ 1=m
(model A) generates an alternative model in which value is
uniformly added to each of p1; . . . ; pm. We can also specify a
distortion in which value is added proportionally to each
sweeping haplotype frequency, where f1 > f2 > � � � > fm,

FIG. 1. Example simulated haplotype frequency spectra for neutrality, hard sweeps (�¼ 1), and soft sweeps (�¼ 4). Under neutrality, all sampled
haplotypes in an analysis window exist at low frequency, and there are many haplotypes. In contrast, selective sweeps yield high-frequency
haplotypes and fewer total haplotypes (top). Truncated spectra (K¼ 10) preserve their overall shape relative to untruncated spectra above
(middle). We distort the truncated neutral spectrum computed from sampled haplotypes to yield spectra corresponding to alternative models
(purple), in which the mass of nonsweeping classes is transferred to sweeping classes, resembling the expected pattern under a true selection event
(bottom). Spectra represent the mean frequencies of each distinct haplotype across 103 simulated replicates in a sample of n¼ 100 diploids under
a constant-size simulated demographic history. Selective sweeps were simulated as one or more strongly selected (s¼ 0.1) haplotypes rising to
high frequency starting at the time of selection t¼ 400 generations before sampling.
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such as fi ¼ ð1=iÞ=
Pm

j¼1 1=j (model B), fi ¼ ð1=i2Þ=
Pm

j¼1 1

=j2 (model C), fi ¼ e�i=
Pm

j¼1 e�j (model D), or fi ¼ e�i2=Pm
j¼1 e�j2 (model E). The latter nonuniform models may

provide a more accurate representation of the haplotype
frequency spectrum following a sweep, as sweeping haplo-
types, in contrast to neutral haplotypes, may not exist at
similar frequencies to one another (see fig. 1, right column).
As such, we primarily use model D for inferences in the
Results. The choices of U and e determine the frequency of
the nonsweeping haplotype classes in the alternative model.
For U > e, we make the simplifying assumption that the

value of q
ðmÞ
i decreases linearly for i ¼ mþ 1;mþ 2; . . . ;

K, whereas U ¼ e constrains all q
ðmÞ
i to equal e for

i ¼ mþ 1;mþ 2; . . . ; K. Regardless of the choice of U
and e, their relationship with each other and pmþ1 is neces-

sarily pmþ1 � U � e. We also note that qðKÞ ¼ p by defini-
tion, illustrating that the null (neutral) model is nested within
the alternative (sweep distortion) model.

For each analysis window, we must finally obtain a vector
of counts x, observed for the most frequent K haplotypes. We
define x ¼ ðx1; x2; . . . ; xKÞ, where elements are once again
arranged in descending order, with x1 � x2 � � � � � xK . We

normalize each xi to satisfy the constraint
PK

i¼1 xi ¼ n, where
n is the number of haplotypes in the sample.

Using the model haplotype frequency spectra p and qðmÞ

in conjunction with the observed vector of counts x for the
most frequent K haplotypes in a particular genomic window,
we define likelihood functions, which are based on the mul-
tinomial distribution. Our use of the multinomial distribution
is reasonable as it describes the probability of observing the
vector of haplotype counts (x) across K haplotype categories
given the vector of respective haplotype frequencies (p or
qðmÞ). The likelihood of the model parameters under the
null hypothesis (neutrality) given the haplotype counts in
an analysis window, equivalent to the probability of obtaining
the observed haplotype counts x given p and K, is

q0ðp; K; xÞ ¼
YK

i¼1

pxi

i ; (2)

whereas the likelihood under the alternative hypothesis
(sweep distortion) is

q1ðp; K; e;m; xÞ ¼
YK

i¼1

½qðmÞi �
xi : (3)

Therefore, the log-likelihoods are

‘0ðp; K; xÞ ¼
XK

i¼1

xi logðpiÞ (4)

and

‘1ðp; K; e;m; xÞ ¼
XK

i¼1

xi logðqðmÞi Þ: (5)

We optimize ‘1ðp; K; e;m; xÞ over m 2 f1; 2; . . . ; Kg
and e 2 ½1=ð100KÞ;U�, keeping U fixed, to find

ðbm;beÞ ¼ argmax
ðm;eÞ

‘1ðp;K; e;m; xÞ:

Thus, our test statistic is defined as

T ¼ 2f‘1ðp; K;be; bm; xÞ � ‘0ðp; K; xÞg: (6)

Each analysis window in the genome is assigned a test
statistic in this manner, and larger test statistics indicate
greater support for a sweep in the window (i.e., greater dis-
tortion toward few moderate- or high-frequency haplotypes).
Because in the process we also infer the most likely number of
presently sweeping haplotypes bm to yield the underlying
distorted haplotype spectrum, our approach can also be
used to quantify the softness of an identified sweep.

Results
We first performed experiments with simulated data in which
we generated populations based on nonequilibrium human
demographic models inferred with smcþþ (Terhorst et al.
2017), covering a variety of neutral and selection scenarios.
These demographic models consisted of a history based on
that of the CEU European population, featuring a prominent
bottleneck about 2,000 generations prior to sampling, and a
sub-Saharan African history resembling that of the YRI pop-
ulation, characterized by large population size with a recent
expansion; these attributes of both models are consistent
with previous estimates (Gravel et al. 2011; Gronau et al.
2011). Using these simulations, we measured the power of
the T statistic and contextualized our results by comparing T
to other popular methods, comprising (in order of increasing
sophistication) H12 (Garud et al. 2015), nSL (Ferrer-Admetlla
et al. 2014), SweepFinder2 (Nielsen et al. 2005; DeGiorgio et al.
2016; Huber et al. 2016), and Trendsetter (Mughal and
DeGiorgio 2019), across hard and soft sweep scenarios. We
applied Trendsetter, a machine-learning method that uses
information on the spatial autocorrelation of statistics, using
both its standard six-statistic approach—incorporating pair-
wise sequence difference bp, squared correlation coefficient r2,
number of distinct haplotypes Nhaps, and the expected
haplotype homozygosity statistics H1, H12, and H2/H1—
and using contiguous T statistic analysis windows as input
(“T-Trendsetter”).

To test the versatility of the T statistic, we probed the
effects of various confounding factors on T statistic inferences.
Foremost among these was admixture, which can mimic the
signature of a sweep when a donor population of small ef-
fective size contributes ancestry to the sampled population
(Lohmueller et al. 2009; Harris et al. 2018). We also computed
the value of the T statistic in regions of low mutation and
recombination rates to evaluate whether their associated
reductions in haplotypic diversity could be mistaken for
sweeps. Due to its pervasiveness in genomes, we then gener-
ated models of background selection to determine whether it
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can affect the value of the T statistic, as background selection
has been implicated as a confounding factor when searching
for selective sweeps (Charlesworth et al. 1993, 1995; Seger
et al. 2010; Cutter and Payseur 2013; Nicolaisen and Desai
2013; Huber et al. 2016). Additionally, we evaluated the effects
of data set confounding factors, exploring the impact of miss-
ing data and small sample size on power. Complementing the
power analyses, we evaluated the performance of our method
in terms of its ability to infer the number of sweeping hap-
lotypes at the time of sampling (bm). We use bm as a proxy for
the number of distinct presently sweeping haplotypes in the
population (model parameter m), which itself is a proxy for
the true number of initially sweeping haplotypes (�), an un-
known parameter. Finally, we applied our method to data
from the 1000 Genomes Project (1000 Genomes Project
Consortium et al. 2015) and the Drosophila Genetic
Reference Panel (DGRP; Mackay et al. 2012) to measure our
ability to properly identify and classify selective sweep
candidates.

Detection and Characterization of Selective Sweeps
We measured the power of our likelihood ratio test statistic
(T) to differentiate selective sweeps from neutrality across
diverse simulated scenarios using a sliding analysis window
approach. For hard sweeps, as well as soft sweeps on �¼ 4
initially sweeping haplotypes, we compare the power of T
with that of the four alternate methods. Larger values of
the T statistic for an analysis window indicate a greater de-
parture from the neutral haplotype frequency spectrum, and
therefore a greater probability of a sweep within that genomic
region. To measure power, we first simulated 1,000 neutral
replicates of 1-Mb chromosomes under the CEU and YRI
demographic models. From these simulations, we obtained
each model’s expected truncated neutral haplotype

frequency spectrum p ¼ ðp1; p2; . . . ; pKÞ, which was the ba-
sis of our likelihood computations (see Definition of Statistic).
The spectrum p for a model represents the mean across all
genomic windows of all replicates, truncated at a particular
value of K. Thus, K¼ 10 indicates the spectrum of the most
frequent ten haplotypes in a genomic window, whose fre-
quencies are labeled p1–p10. To assess power, we computed
the T statistic for each 117-SNP (see Materials and Methods)
genomic window of each simulated neutral replicate. We
solely retained the maximum value of the T statistic across
all windows for each neutral replicate, and similarly retained
the maximum T statistic across each replicate of each selec-
tion scenario we tested. In our experiments, we assessed
power at the 1% and 5% false positive rates (FPRs), meaning
that we measured the proportion of selection replicates re-
spectively exceeding the top 1% or 5% of T statistics within
the neutral distribution.

The T statistic has high power to detect a recent hard
sweep (�¼ 1 sweeping haplotype) affecting the CEU-based
demographic history, provided that the selection coefficient is
at least s¼ 0.005 (fig. 2, top). At both the 1% and 5% (sup-
plementary fig. S1, Supplementary Material online) FPRs, the
T statistic reliably detects hard sweeps beginning between
1,000 and 1,500 generations before sampling, with the stron-
gest sweeps extending the lower bound of this range to 200
generations (fig. 2, rightmost column). The power of the T
statistic attenuates for more ancient sweep events because
haplotype identity surrounding the selected site decays over
time in the population as mutation and recombination gen-
erate new haplotypes. Additionally, power to detect the most
recent and weakest sweeps is low because sufficient time has
not elapsed for the selected haplotype to reach high fre-
quency. Sweeps on s< 0.005 are specifically difficult to detect
due to their smaller footprint and shorter time over which

FIG. 2. Powers of the T statistic and sweep detection methods—H12, nSL, SweepFinder2, and Trendsetter—at the 1% FPR to detect hard selective
sweeps originating from a single beneficial de novo mutation arising at times t 2 f200; 500; 1;000; 1;500; 2;000; 2;500; 3;000; 3;500; 4;000g
generations prior to sampling, for the European CEU (top) and sub-Saharan African YRI (bottom) human demographic models inferred with
smcþþ. Analysis data consisted of phased haplotypes of length 1 Mb, with 1,000 replicates for each distinct scenario. Selective sweeps were
simulated for five ranges of selection coefficients (s) spanning very weak to very strong, with s for each replicate drawn uniformly at random (from a
log scale for s drawn across orders of magnitude). All inferences used a spectrum of K¼ 10 for likelihood computations.
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elevated haplotype homozygosity persists as selection pro-
ceeds. For these reasons, there is no point in time at which
the T statistic can detect these sweeps (supplementary fig. S3,
Supplementary Material online).

Across simulated CEU selection scenarios, each of the al-
ternate methods we examined was subject to the same
power limitations as the T statistic, which outperformed all
except for the more sophisticated Trendsetter. The relative
performance of all methods indicates that pairwise sequence
identity tract length, which nSL measures, is the most volatile
sweep signal, decaying more rapidly than others. nSL consis-
tently had the lowest power of all tested methods and
reached high power only for the most recent strong hard
sweeps (fig. 2 and supplementary fig. S1, top-right,
Supplementary Material online), quickly losing power as the
sweep footprint eroded. Likewise, H12 never matched the
power of the T statistic except in detecting the strongest
sweeps, but in using a fixed window size retained somewhat
more power than did nSL. SweepFinder2 displayed greater
power than H12, with higher maxima and longer signal du-
ration. Despite not using haplotype information,
SweepFinder2 incorporates a population-genetic model of a
recent hard sweep, which results in more power than meth-
ods which do not. Finally, Trendsetter had easily the greatest
power to detect hard sweeps under the CEU model, losing
little resolution for sweeps up to 4,000 generations old. Using
evidence from multiple signals may therefore be necessary to
maximize power, as the strengths of each component statistic
can complement the others’ weaknesses across different pa-
rameter configurations.

The T statistic achieves greater power for hard sweeps on
simulated YRI demographic models than for CEU models
across all tested scenarios (fig. 2 and supplementary fig. S1,
bottom, Supplementary Material online). This increased
power is due to the greater effective size of African relative
to European human populations, which results in greater
background haplotype diversity and therefore increased
prominence of selective sweeps. Furthermore, because the
size of the YRI population is an order of magnitude greater
than that of the CEU for hundreds of generations, the
population-scaled selection coefficient r ¼ 4Ns for YRI
remains much larger, resulting in a stronger sweep.
Accordingly, power declines more slowly for older sweeps
and remains for sweeps as old as 4,000 generations before
sampling. All methods therefore show greater power when
applied to simulated YRI data. Notably, although Trendsetter
and the T statistic display excellent performance once again,
SweepFinder2 demonstrates consistently superior power for
older sweeps under the YRI model, and this power scarcely
decays. This suggests that SweepFinder2 may be more suscep-
tible to demographic history than other methods, losing con-
siderable power under the CEU bottleneck (Jensen et al. 2005;
Huber et al. 2016). Meanwhile, the choice of K truncation—
15, 20, or 25 (supplementary fig. S5, Supplementary Material
online)—yielded little change in power to detect simulated
sweeps from s 2 ½0:01; 0:1� relative to our highlighted value
of K¼ 10 for either population model (fig. 2 and supplemen-
tary fig. S1, fourth column, Supplementary Material online).

However, we note that power is slightly greater as K decreases,
and so we recommend the use of smaller K truncations where
possible.

For soft sweeps from selection on standing genetic varia-
tion (� 2 f2; 4; 8; 16; 32g; supplementary fig. S4,
Supplementary Material online), the power of the T statistic
attenuates more rapidly than for hard sweeps, and T rarely
reaches values as large, especially for weaker sweeps. Under
both CEU (supplementary fig. S4, top, Supplementary
Material online) and YRI (supplementary fig. S4, bottom,
Supplementary Material online) demographic histories,
trends in power remain consistent regardless of the number
of sweeping haplotypes, with maximum power of T achieved
once again for sweeps between 1,000 and 1,500 generations
old (or up to 3,000 for YRI); however, power declines as the
number of sweeping haplotypes increases. Assessing power at
the 5% FPR indicates that we nonetheless maintain sufficient
differentiation between sweeps and neutrality for up to �¼ 4
distinct initially sweeping haplotypes for CEU models, or up
to �¼ 8 for YRI models. To better understand the relation-
ship between power and �, we tracked the mean number of
distinct sweeping haplotypes through time for simulated soft
sweeps across each selection strength range and choice of �
using an in silico barcoding approach (see Materials and
Methods). We found that weak soft sweeps frequently lose
most of their sweeping haplotypes by the time of sampling,
undergoing a hardening (Wilson et al. 2014) during the early
stages of the sweep when the beneficial allele’s frequency is
low, and still subject to genetic drift (supplementary figs. S13
and S14, Supplementary Material online). After the beneficial
allele becomes established in the population, the number of
sweeping haplotypes remains generally stable. Because
weaker sweeps require more time to establish, this provides
more time for haplotypes to be lost, and for fewer sweeping
haplotypes to be sampled, relative to stronger sweeps. Thus,
the T statistic can have greater power for our weaker simu-
lated soft sweeps from larger � than for stronger soft sweeps
because the former case ultimately yields a more distinct
sweep signal with fewer high-frequency haplotypes, whereas
the latter often results in scenarios of high haplotypic diversity
that are difficult to distinguish from neutrality.

The power of each alternative method responded to soft
sweep (�¼ 4) scenarios in the same manner as that of
T. Methods generally had poor to middling performance at
the 1% FPR for the CEU history (fig. 3, top), but decent power
at the 5% FPR, especially for sweep strengths between 0.005
and 0.1 (supplementary fig. S2, top, Supplementary Material
online), whereas the power of all methods was improved for
the YRI model (fig. 3 and supplementary fig. S2, bottom,
Supplementary Material online). However, SweepFinder2
retains little power to detect soft sweeps, and lost power
proportionally to the number of sweeping haplotypes at
the time of sampling, as it is specifically formulated to detect
hard sweeps through distortions in the SFS, and soft sweeps
do not dramatically alter the SFS (Pennings and Hermisson
2006b). Expectedly, Trendsetter was still the most powerful
method, with T and H12 following closely behind for recent
sweeps, and nSL lagging once again. Thus, the demographic
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and selective histories of the sampled population play an
important role in the power of the T statistic and other sweep
detection methods. Our results nonetheless indicate that the
T statistic is flexible as to the selection scenarios it can distin-
guish from neutrality and detects recent sweeps especially
well for the relatively little computation time it requires.

Selective sweeps produce elevated values of the T statistic
along the simulated chromosome that on average peaks in
the region surrounding the site under selection (supplemen-
tary figs. S6 and S7, first and third rows, Supplementary
Material online). Furthermore, T remains elevated beyond
the 900-kb bounds that we examined, indicating that on av-
erage, the shape of its distribution in a genomic region, as well
as its overall elevated value, may be used to distinguish selec-
tion from neutrality. A signal peak often exists even for sce-
narios in which we do not have high power, though its
maximum associated value remains small on average.
Because neutral regions are likely to feature plateaus rather
than peaks in the value of the T statistic, our observations
illustrate the potential importance of considering the corre-
lation in signal between windows to identify more subtle
selection signatures. This is especially important for soft
sweeps, which lose prominence proportionally to the number
of sweeping haplotypes but still produce a peak-like distor-
tion of local T statistic values.

To motivate this point, we reevaluated the power of our
T statistic for sweeps on �¼ 1 and �¼ 4 haplotypes with the
penalized multinomial regression method, Trendsetter
(Mughal and DeGiorgio 2019), as it directly incorporates
the genomic spatial distribution of sweep (summary) statis-
tics in its inferences (supplementary figs. S8 and S9,
Supplementary Material online). Using T as the sole statistic
in the statistical learning protocol across 201 11-SNP windows
(Trendsetter’s standard approach; see Materials and

Methods), we considerably improved our ability to detect
more ancient sweep signatures than in our standard applica-
tion of T, especially under the CEU model, yielding power
comparable to the full six-statistic approach. Moreover, we
saw little change in power to detect recent sweeps, and power
was improved overall for soft sweeps. When we instead used
our typical 117-SNP windows for T, and 75 windows total, the
T-Trendsetter approach yielded a uniformly enhanced power
profile whose trends matched our original results with the
standard T statistic, but with greater overall power, especially
for soft sweeps (supplementary fig. S9, Supplementary
Material online). Thus, the spatial distribution of the T statis-
tic provides an informative sweep signature that can be used
to isolate sweep regions from neutrality. By learning this spa-
tial distribution, we can enhance the power of T to detect
sweeps that may be overlooked using an isolated per-window
approach.

In addition to evaluating the power of the T statistic, we
measured the ability of our approach to infer the number of
presently sweeping haplotypes (bm) at the site under selection.
The ability to infer bm is a result of optimizing the likelihood
function ‘1 over all possible m distortion models for the
chosen truncation K (see Definition of Statistic). In figure 4,
we show the distribution of T statistics with their associated
haplotype frequency spectra and bm, for each of 1,000 neutral,
mixed hard sweep (s 2 ½0:001; 0:5�, �¼ 1), and mixed soft
sweep (�¼ 4) replicates, under both the CEU and YRI models
(same data as figs. 2 and 3; t¼ 1,500 for CEU and t¼ 2,500 for
YRI, representing points of maximum power). Relative to
neutrality (fig. 4, left), we more often assign smaller bm to
sweep simulations (fig. 4, center and right). This result fits
with the expectation that under a sweep, the first few hap-
lotype classes exist at elevated frequency relative to the
remaining classes, and this also translates to larger values of

FIG. 3. Powers of the T statistic and other sweep detection methods—H12, nSL, SweepFinder2, and Trendsetter—at the 1% FPR to detect
soft selective sweeps from selection on standing variation on �¼ 4 distinct sweeping haplotypes beginning at times t 2 f
200; 500; 1;000; 1;500; 2;000; 2;500; 3;000; 3;500; 4;000g generations prior to sampling, for the European CEU (top) and sub-Saharan African
YRI (bottom) human demographic models inferred with smcþþ. Analysis data consisted of phased haplotypes of length 1 Mb, with 1,000
replicates for each distinct scenario. Selective sweeps were simulated for five ranges of selection coefficients (s) spanning very weak to very strong,
with s for each replicate drawn uniformly at random (from a log scale for s drawn across orders of magnitude). All inferences used a spectrum of
K¼ 10 for likelihood computations.
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T for those replicates. Accordingly, sweeps that have weaker
signatures due to their age or selection coefficient are not only
difficult to distinguish from neutrality but also difficult to
accurately classify with bm, yielding patterns that fit within

the neutral distribution. We found that trends were highly
congruent between the CEU and YRI sweep models, but the
large neutral background diversity for YRI made it less likely
that we would infer a small bm in the absence of a sweep.

FIG. 4. Truncated haplotype frequency spectra (K¼ 10) across 103 simulated replicates for analysis window of maximum replicate-wide T statistic
under neutral (left), hard sweep (center), and soft sweep (right) scenarios, for European CEU (top) and sub-Saharan African YRI (bottom) human
demographic models. Each simulated replicate is one vertical slice within the lower panel, and replicate spectra are arranged in decreasing order of
most frequent haplotype frequency. Replicates are associated with their T statistic (upper panel) and their inferred bm (middle panel). Inferred hard
sweeps (bm ¼ 1) are indicated with black dots, whereas inferred soft sweeps (bm � 2) are indicated in purple. We indicate within the bm panel the
number of replicates classified as hard (black text) or soft (purple text). Sweep replicates were drawn from mixed selection coefficients s 2 ½0:001
; 0:5� uniformly at random on a log scale and are identical to those in figures 2 and 3.
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To further understand the sweep classification properties
of the T statistic, we generated box plots summarizing the
distribution of bm across the more prominent strong sweep
scenarios (s 2 ½0:01; 0:1�) we previously analyzed (figs. 2 and
3 and supplementary fig. S4, Supplementary Material online).
In this way, we were able to better understand our ability to
correctly classify sweeps as hard or soft, especially because our
trajectory results (supplementary figs. S13 and S14,
Supplementary Material online) provided us with an expec-
tation of the number of remaining sweeping haplotypes at
the time of sampling for prominent sweep scenarios. We
found that sweeps initiated from larger � were more likely
to be classified as soft using our K¼ 10 truncated spectra, but
frequently we found that the median inferred bm for promi-
nent soft sweeps was one, consistent with a hard sweep (sup-
plementary figs. S10 and S11, Supplementary Material online).
Regardless of �, the spatial signature of bm along the chromo-
some forms a valley surrounding the site of selection that
mirrors the signal peak when a sweep is detectable (supple-
mentary figs. S6 and S7, Supplementary Material online).
These results suggest that our present approach may there-
fore be more accurate as a binary classifier (hard versus soft),
though we still assign soft sweeps on a continuum.

Because phasing haplotypes may not be possible in all
cases, such as in the study of nonmodel organisms, we sought
to expand our application of the T statistic to unphased
multilocus genotype (MLG) data. To evaluate power for
MLGs, we used the previous simulated human demographic
model replicates of prior experiments (represented in figs. 2
and 3), merging each individual’s two haplotypes. Whereas
haplotypes are character strings indicating the state of a bial-
lelic SNP as either reference or alternate along a region of one
copy of an individual’s genome, MLGs have three possible
states for each biallelic SNP—homozygous reference, homo-
zygous alternate, or heterozygous—and half the sample size
of phased haplotypes. We found that, as with the transition
between phased and unphased data for haplotype homozy-
gosity statistics (Harris et al. 2018; Harris and DeGiorgio 2020),
trends in power for the unphased application of the T statistic
were wholly consistent with those of the phased application,
for both hard and soft sweeps (supplementary fig. S15,
Supplementary Material online). The smaller size of the
MLG samples resulted in slight decreases in power for each
sweep scenario, as well as smaller values of the T statistic
relative to the phased application, but our results indicate
that selective sweeps may be reliably identified nonetheless
without the need to phase haplotypes. Likewise, we found
that the T statistic applied to MLGs could generate inferences
of sweep softness from bm that matched those of haplotype
data, further underscoring the parallel performance of our
approach on unphased data (supplementary fig. S16,
Supplementary Material online).

Effects of Confounding Factors of the T Statistic
There are multiple genetic and nongenetic factors that may
affect the ability of sweep statistics to properly localize a se-
lection signature. Though these factors are varied in origin,
they may each reduce genetic diversity locally and spuriously

generate patterns similar to those of selective sweeps.
Accordingly, we examined the effects of introducing these
confounding factors to our simulated data, allowing us to
understand the scenarios for which T is robust and suscepti-
ble to misclassifying sweeps. Among genomic factors, we ob-
served the impact of admixture into the sampled population,
reductions in mutation and recombination rates, and back-
ground selection. Common nongenomic factors that can
change the interpretation of sweep statistics are missing
data, small sample sizes, and reliance on a misspecified de-
mographic model.

We begin with admixture, which can be pervasive in nat-
ural populations (Hudjashov et al. 2017; Kopatz et al. 2017;
Browning et al. 2018; Barr�ıa et al. 2019). Previous work has
shown that under certain scenarios, admixture from an
unsampled donor population can lead to reductions in hap-
lotypic diversity across the genome of a study population
(Harris et al. 2018). Specifically, admixture from a diverged
donor population of small effective size into the sampled
study population may introduce large tracts of homozygous
sequences that methods may interpret as a selection signal.
To assess the extent to which the T statistic—which makes
use of the study genome’s background haplotypic patterns—
is affected by admixture, we simulated neutral replicates un-
der the CEU and YRI models receiving pulse admixture from a
highly diverged donor (s ¼ 2N ¼ 2� 104 generations prior
to sampling). Our tested admixture proportions were a 2 f
0:05; 0:1; . . . ; 0:4g at tadm ¼ 200 generations prior to sam-
pling, and we examined donor population effective sizes of
Nadm 2 f103; 104; 105g diploids (roughly 1/10, equal to, and
10-fold the effective size of the sampled populations).

We found that admixture had a considerable effect on the
haplotype frequency spectrum of the target population and
assessed this effect in two ways. First, we computed the T
statistic for each admixture scenario, but using an unadmixed
background p spectrum (supplementary figs. S17 and S19,
Supplementary Material online). Our results demonstrate
that admixture from a donor with small effective size yields
the expected haplotypic diversity reduction in the sampled
population, producing inflated T statistics. In contrast, gene
flow from medium- and large-sized donors rarely produced
large values of T, except for large-donor admixture at
a � 0:1. We attempted to address the confounding effects
of admixture by computing T from an appropriately matched
admixed background pa spectrum for each tested value of a
(supplementary figs. S18 and S20, Supplementary Material
online). Using a matched pa resulted in T statistic distribu-
tions under admixture that more closely resembled unad-
mixed distributions. Regardless of scenario, the T
distribution deriving from a pa spectrum informed by admix-
ture resulted in median values of T for admixed scenarios
closer to the median for unadmixed replicates, especially for
small-donor admixture. Although this was uniformly benefi-
cial for the CEU model, pa overcorrected for large-donor
scenarios under the YRI model. The susceptibility of our T
statistic to confounding admixture is a consequence of using
a model that does not account for mixed ancestry in the
target population. Instead, the reliance of our approach on
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an average neutral background spectrum means that we are
not capturing the higher moment effects of admixture on the
admixed T statistic distribution, such as its variance. Even so,
we expect that in human populations, admixture is unlikely
to be as extreme as in our simulated examples and is likely to
feature populations that are less diverged from one another,
and of closer effective size to one another, reducing its overall
detrimental impact when searching for sweeps.

Because natural genomes may feature wide variation in
recombination and mutation rates, we sought to determine
the effect of such variation on the value of T in the absence of
selection in order to quantify its potential misleading effect
on T. In comparison to standard simulations featuring l ¼
1:25� 10�8 and mean r ¼ 10�8 drawn from an exponential
distribution, we generated simulated replicates with l
¼ 1:25� 10�9 and mean r ¼ 10�9, reduced by one order
of magnitude (see Materials and Methods). Reducing the
mean recombination rate had the anticipated effect of slightly
inflating the distribution of T relative to normal values of r, a
result of the reduction in genetic diversity in regions where
new haplotypes rarely arise (supplementary fig. S21,
Supplementary Material online). In contrast, reducing the
mutation rate by an order of magnitude resulted in a defla-
tion of T statistic values relative to the original rate. This is
because our SNP-delimited windows become physically wider
when SNP density is reduced, leading to the incorporation of
SNPs in lower mean linkage disequilibrium (LD), and there-
fore more haplotypic diversity. Reducing both l and mean r
led to an intermediately deflated T statistic distribution. This
result may suggest that mutation rate variation is more im-
portant than recombination rate variation in determining the
T statistic value under SNP-delimited windows (supplemen-
tary fig. S21, Supplementary Material online). However, be-
cause we already draw recombination rates from a
distribution in our default protocol, it is possible that we
observed a greater effect by changing l because our re-
duced-l scenarios represent a greater departure from stan-
dard simulations. Thus, we caution that recombination rate
variation should not be ignored as a source of false signals in
analyses with any sweep statistic.

We next examined background selection scenarios for
both haplotype and MLG data to determine whether the
loss of genetic diversity associated with linked purifying selec-
tion could spuriously yield elevated values of the T statistic.
Simulating 1-Mb chromosomes as previously under both hu-
man demographic models, we found that background selec-
tion had no discernible effect on the distribution of T relative
to neutrality, even as we reduced mean r by two orders of
magnitude to 10�10 across the central gene. We determined
this by observing the receiver operating characteristic curves
comparing neutral scenarios to those in which a central gene
experiences strong (s ¼ �0:1) background selection for the
duration of the simulation (see Materials and Methods). For
both the CEU (supplementary fig. S22, top, Supplementary
Material online) and YRI (supplementary fig. S22, bottom,
Supplementary Material online) populations, across central
genes of size 11 kb (supplementary fig. S22, left,
Supplementary Material online), 55 kb (supplementary fig.

S22, center, Supplementary Material online), and 110 kb (sup-
plementary fig. S22, right, Supplementary Material online), we
see that all curves fit tightly along the diagonal, indicating no
difference between compared replicate sets. Therefore, we
expect that the presence of background selection, for which
we do not explicitly account in our model, should not affect
inferences with the T statistic.

Among the most common nongenomic confounders that
may be encountered in analyses of natural populations is the
presence of missing data. That is, sites for which the allelic
state is indeterminate. We evaluated the performance of the
T statistic for sequences with missing data at polymorphic
sites by randomly removing alleles from our existing neutral
replicates (see Materials and Methods). To address missing-
ness in our data, we modified our scan using two corrective
approaches. First, we removed polymorphic sites with >5%
missing data, and second, we incorporated all remaining miss-
ing alleles as a new character “N,” thereby conservatively di-
versifying the remaining set of haplotypes relative to no
missing data. Following this approach, we compared the dis-
tributions of T with and without missing data. We found that
introducing missing data had little effect on the distribution
of T statistic values under neutrality (supplementary fig. S23,
Supplementary Material online). We expect that as long as
sufficient polymorphism remains in the sample, that missing
data are unlikely to yield false sweep inferences, and in ex-
treme cases, are likely to resemble the effect of decreased
mutation rate due to the depletion of allelic information.

A limitation of haplotype-based approaches is that their
power derives from sample size (n). That is, sufficient diversity
must be captured in a sample in order to distinguish between
the unique signals of neutrality and selection. As sample size
decreases, subtle signatures of selection recede into the ge-
nomic background and become imperceptible. To determine
the minimum sample size to which the T statistic should be
confidently applied, we resampled our existing hard sweep
replicates (see fig. 2) for reduced sample sizes n0 2 f
20; 50; 100g haplotypes, corresponding to 1/10, 1/4, and 1/
2 the original sample size of n¼ 200. Reducing sample sizes
led to a reduction in the minimum detectable range of selec-
tion coefficients s, and in the range of sweep ages t over which
the T statistic had power (supplementary fig. S24,
Supplementary Material online). Although power scarcely
changed for larger samples of size n0 ¼ 100 relative to
n¼ 200 (as in our application to MLG data), we are unable
to reliably detect even strong sweeps older than t¼ 500 gen-
erations for the CEU model when only n0 ¼ 20 haplotypes
are sampled (supplementary fig. S24, top-right,
Supplementary Material online). Analysis of the YRI model
was more accommodating to sample size reduction owing to
the preexisting greater ease of detecting sweeps for popula-
tions with large effective sizes, but power quickly drops when
small selection coefficients (s< 0.005) are included (supple-
mentary fig. S24, Supplementary Material online).

A practical consideration when applying sweep statistics is
inferring an accurate demographic model. A proper model
can be used to generate simulated replicates from which
P value cutoffs and false discovery rate (FDR) thresholds
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may be assigned. We subsequently demonstrate this in our
own Application to Empirical Data Sets. To motivate the
selection of an appropriate model, we show the effect on
the neutral T statistic distribution of using nonideal demo-
graphic models. First, we generated T statistic distributions for
CEU and YRI under constant-size models. Here, the constant
sizes were equal to the effective size of the populations under
each model (see Materials and Methods). Because these mod-
els included no population size fluctuations, they provided
uniformly deflated T statistic distributions relative to smcþþ
models, with the constant-size CEU model especially under-
estimating values relative to its more accurate counterpart
(supplementary fig. S25, Supplementary Material online). We
also examined T statistic distributions resulting from the pop-
ular Gravel et al. (2011) model, which is based on the SFS.
Relative to the smcþþ model, the T statistic distribution for
the Gravel et al. (2011) CEU model was comparable, but the
YRI model, consisting of only two phases (constant size fol-
lowed by 2-fold expansion), resulted in much smaller values of
T (supplementary fig. S26, Supplementary Material online).
Choosing a demographic model that captures both recent
and ancient history is therefore important (Beichman et al.
2017), and model choice should be approached with caution.

Application to Empirical Data Sets
We searched for candidate selective sweeps in human and
D. melanogaster data sets using the T statistic, choosing these
data sets because of their high quality, size, and availability of
phased haplotypes. Specifically, the 1000 Genomes Project
(1000 Genomes Project Consortium et al. 2015) data set
contains no missing data, as all allelic states have been im-
puted. Meanwhile, the DGRP data set (Mackay et al. 2012)
provides a classic invertebrate model whose properties devi-
ate considerably in history and genomic architecture from the
mammalian model of humans. For each protein- and RNA-
coding gene in each study population, we obtained values of
T using inferences from a K¼ 10 truncation and assigned a P
value to each of the top 40 candidate genes based on the
window of maximum T overlapping that gene (supplemen-
tary tables S1–S3, Supplementary Material online). For win-
dows to be associated with a gene, their central SNP must lie
between the transcription start and stop sites of the gene.
Additionally, we assigned an bm value to each gene using both
K¼ 10 and K¼ 20 truncations. Analysis windows for scans of
human data were of size 117 SNPs, advancing by 12-SNP
increments, whereas windows for D. melanogaster analysis
were 400 SNPs in size (as in the analyses of Garud et al.
[2015] and Harris, Sackman, et al. [2018]) with a step size of
40 SNPs. To eliminate the effect of background LD on infer-
ences, window sizes were based on the minimum physical
interval across which LD decayed beyond one-third of its
value between SNPs separated by 1 kb (see Materials and
Methods). Following our successful application of T to simu-
lated unphased MLG data, we analyzed the human 1000
Genomes Project data as MLGs by manually merging individ-
uals’ two haplotypes. This was unnecessary for the DGRP
data, as individuals are inbred. For haplotype data, we also
determined FDR thresholds for each population based on

simulated replicates, inferring T statistic cutoffs at a 5% FDR
for all study populations (supplementary table S4,
Supplementary Material online).

For human data, we examined the CEU and YRI popula-
tions (supplementary tables S1 and S2, Supplementary
Material online), matching the demographic models used
in our simulations. Though few of our top 40 sweep candi-
dates produced a significant P value, all easily exceeded their
population’s 5% FDR (supplementary table S4,
Supplementary Material online). Among these candidates,
hard sweeps predominated within either population, and
we found that this depended somewhat on our K truncation.
For K¼ 20, hard sweeps comprised all but two top candi-
dates among the CEU, and 67.5% of top candidates among
the YRI, whereas for K¼ 10, we did not classify any top CEU
or YRI candidates as soft from phased haplotypes.
Additionally, K¼ 20 candidate soft sweeps, except for
BTNL2 in YRI (bm ¼ 6), featured only three or fewer sweeping
haplotypes. These results indicate that the T statistic is more
sensitive to harder sweeps than to softer ones, which is a
consequence of the greater distortion in the haplotype fre-
quency spectrum of hard sweeps relative to soft sweeps. This
finding matches our simulated results, in which the value of T
was proportional to the number of sweeping haplotypes in
the population. Moreover, we find that our choice of K trun-
cation impacts our ability to classify sweeps as soft, with a
greater distortion of haplotype classes two through m re-
quired for a sweep in a K¼ 10 truncated spectrum to be
classified as soft relative to K¼ 20. Regardless of truncation,
the increased presence of candidate soft sweeps in YRI rela-
tive to CEU mirrors our observation from simulated data that
the T statistic has greater power to detect softer sweeps for
populations that have not experienced a bottleneck in their
history. Furthermore, these patterns corroborate results from
the H12 analysis of this data set (Harris et al. 2018), which
found more hard sweeps than soft in the CEU population,
and among top candidates generally.

Across both the CEU and YRI populations, we were able to
recover most of the top 40 candidates from the haplotype
data within the MLG data, indicating the reliability of using
MLGs for inference with the T statistic in natural populations
when phased data are unavailable. The MLG results primarily
deviated from the haplotype results when classifying candi-
dates as hard or soft. Multiple candidates that were inferred
to be hard sweeps from the haplotype data were classified as
soft from their MLG spectra, particularly for the K¼ 20 trun-
cation. These candidates include XIRP2 and BCAS3 in the CEU
population, as well as ITGAE, SUGCT, NNT, and HLA-DPB2 in
the YRI population. We examine the latter candidate more
closely in figure 5 and supplementary figure S30,
Supplementary Material online. These differing inferences
may arise from the slightly different interpretation of bm be-
tween phased and unphased data. For phased data, bm refers
to the number of sweeping haplotypes, whereas for
unphased, it measures the number of MLGs involved in the
sweep, which may be different for the same genomic window
between the different data types if MLG frequencies are at or
near their expected proportions under Hardy–Weinberg
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equilibrium. We also note that multiple top candidates in the
MLG data inferred as soft are simply not present among top
haplotype candidates, indicated by the absence of a
turquoise-colored background in supplementary tables S1
and S2, Supplementary Material online. We consider the ap-
plication of the T statistic to MLGs further in the Discussion.

Among top sweep candidates in human data were
expected results, including a hard sweep (bm ¼ 1) at the clus-
ter of genes on CEU chromosome 2 comprising LCT, MCM6,
DARS, and ZRANB3 (minimum P value 3� 10�6), related to a
well-documented adaptation to milk-based diets in European
populations (Bersaglieri et al. 2004). Additionally, we found
two noteworthy top candidates in CEU that have not been
explicitly described as sweeps previously, RSPH3 and ZNF211
(both bm ¼ 1). RSPH3 encodes a radial spoke protein that is

integral in the structure of 9þ 2 motile cilia across diverse cell
types, including flagellated cells (Teves et al. 2016), and so we
speculate that selection here could be related to ancient
sperm competition in humans (Leivers et al. 2014). ZNF211
is among a diverse set of zinc-finger genes whose products are
believed to participate in the inactivation of endogenous
retroviruses, parasitic mobile DNA whose effects can be del-
eterious to their hosts (Lukic et al. 2014). We recovered SYT1
(bm ¼ 2 for K¼ 20, bm ¼ 1 for K¼ 10; P ¼ 3� 10�6), NNT
(bm ¼ 1), HEMGN (bm ¼ 1), and RGS18 (bm ¼ 2 for K¼ 20, bm
¼ 1 for K¼ 10) in YRI, which have all received attention as
potential adaptive targets (Voight et al. 2006; Pickrell et al.
2009; Fagny et al. 2014; Harris et al. 2018). Our significant
candidates, SPRED3 and ITGAE have also been previously
identified (Granka et al. 2012; Ayub et al. 2013; Grossman

FIG. 5. Selective sweep candidates detected with the T statistic from the 1000 Genomes Project data set (1000 Genomes Project Consortium et al.
2015) as for scans with a K¼ 20 (left) and K¼ 10 (right) truncation. For each of four sweep candidates in the human YRI (top two rows) and CEU
(bottom two rows) populations, we show the T statistic across the 300-kb interval surrounding the candidate peak, as well as the frequency spectra
for the most likely sweep model corresponding to the candidate at the 117-SNP analysis window of maximum T. The window of maximum T is
shaded in red, with the position of the window center (median SNP) as a red dot. The frequency spectrum of the most likely model is also shown in
red, whereas the observed frequency spectrum at the point of maximum T is overlaid in blue. The displayed candidates are a putative soft sweep
(bm ¼ 2) at SYT1 in YRI (top row), hard sweep (bm ¼ 1) at HLA-DPB2 in YRI (second row), soft sweep (bm ¼ 2 when analyzed with K¼ 20; hard for
K¼ 10) at COL5A2 in CEU (third row), and hard sweep at SPATA6L in CEU (bottom row). We note that the window of maximum signal for K¼ 10
and K¼ 20 differed for SYT1 (top row). The gray segment upstream of COL5A2 (third row) indicates a portion of the genome that was filtered out
(see Materials and Methods).
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et al. 2013), though the effect of selection at these genes has
not yet been elucidated. Both populations yielded HLA genes
as top sweep candidates, overlapping at HLA-DRB5 (bm ¼ 1),
whereas HLA-DPB1 (bm ¼ 1) was exclusive to CEU and HLA-
DPB2 (bm ¼ 1) was exclusive to YRI. This shared signal sup-
ports the recent evidence (Albrechtsen et al. 2010; Goeury
et al. 2018) that sweeps at HLA loci, including those which we
describe here, were important in the development of modern
genetic diversity in human immune-related genes.

In figure 5 and supplementary figure S30, Supplementary
Material online, we take a closer look at top candidate sweeps
uncovered in our scan of the 1000 Genomes data set (1000
Genomes Project Consortium et al. 2015) for both K¼ 10 and
K¼ 20 truncations, across both haplotypes and MLGs. Each
top candidate fell within a well-defined T statistic peak region
surrounded by regions of low signal, and T statistic spatial
signatures were consistent between all data types. First, we
found SYT1 as a near-significant (P ¼ 3� 10�6) top sweep
candidate in the YRI population, featuring both bm ¼ 2
sweeping haplotypes and bm ¼ 2 MLGs involved in the sweep
at the window of maximum signal for K¼ 20 (fig. 5 and
supplementary fig. S30, first row of first column,
Supplementary Material online). For the K¼ 10 truncation,
the window of maximum signal contains only a single sweep-
ing haplotype and is located within an adjacent, upstream
subpeak. SYT1 is the cell surface receptor through which the
type B botulinum neurotoxin of Clostridium botulinum bac-
teria enters human neurons (Connan et al. 2017), and so a
sweep here may be involved in resistance to this infection
(Harris et al. 2018). Next, we identified HLA-DPB2 as an out-
lying hard sweep in YRI (bm ¼ 1) based on haplotypes and
K¼ 10 data, but featuring three elevated MLGs within the
window of maximum signal for K¼ 20 (fig. 5 and supplemen-
tary fig. S30, second row, Supplementary Material online).
Looking at the K¼ 20 haplotype frequency spectrum, it is
clear that one haplotype predominates, and equivalently,
only one MLG predominates, but individuals heterozygous
for the first haplotype and either the second or third comprise
just under 20% of the population, leading to an inference ofbm ¼ 3. COL5A2 was the most outlying soft sweep candidate
we identified in CEU using the K¼ 20 truncation, harboringbm ¼ 2 inferred sweeping haplotypes, but with a 7-fold dis-
parity between their frequencies, which could occur due to a
recombination event during the sweep, or a recurrent se-
lected mutation (Hermisson and Pennings 2017). This gene
has received little attention but is located within a signifi-
cantly overrepresented run of homozygosity associated with
schizophrenia (Lencz et al. 2007). Additionally, selection on
collagen-related genes has been implicated in cold adapta-
tions in European populations (Yudin et al. 2017). Finally, we
propose the spermatogenesis-associated protein SPATA6L as
a hard sweep candidate in CEU. Our finding here of an iso-
lated T peak fits with existing evidence of selection at other
spermatogenesis proteins (Schrider and Kern 2017), and with
the result that European and sub-Saharan African popula-
tions are diverged at this locus, with selection in the

hunter-gatherer Batwa population inferred here (Bergey
et al. 2018).

We contextualize our results for outlying sweep candidates
by illustrating the background haplotype frequency spectrum
patterns we observed in regions of low T. In supplementary
figure S31, Supplementary Material online, we highlight four
regions each in the CEU and YRI populations with T � 0, 10,
20, or 30. In accordance with the expectation that classic
selective sweep patterns are rare in the human genome
(Hernandez et al. 2011), we observe that the majority of anal-
ysis windows had a small associated T, and accordingly re-
sembled our example windows. We see from these examples
that small peaks in the T statistic are common, and associated
with haplotype frequency spectra that are distinct from those
under selection, containing no high-frequency classes and an
abundance of low-frequency classes of similar size. As we
increase from T � 0 to T � 30, we see the spectra begin
to distort and contain higher frequency classes, but this dis-
tortion is far from what we expect under a sweep.

Our scan of the North American DGRP population of
D. melanogaster also identified expected sweep candidates
among the top genic T statistic peaks. We note that al-
though we were unable to establish statistical significance
against a neutral model based on the DGRP demographic
history of Duchen et al. (2013) (see Materials and Methods),
and only our top candidate, CG11902, exceeded the 5% FDR
threshold (supplementary table S4, Supplementary Material
online), our top candidates have literature support as po-
tential adaptive targets. Foremost among functionally char-
acterized candidates was Ace, which encodes the
acetylcholinesterase enzyme and has long been implicated
in the development of resistance to organophosphate and
carbamate insecticides within D. melanogaster (Menozzi
et al. 2004; Karasov et al. 2010; Garud et al. 2015). Contrary
to previous studies alleging a soft sweep at Ace (Karasov et al.
2010; Garud et al. 2015), we found the greatest support for a
model of only one sweeping haplotype. We identified an-
other candidate hard sweep of similar magnitude at Uhg1,
which also contributes to insecticide resistance, but to the
organochlorine dichlorodiphenyltrichloroethane (Pedra
et al. 2004). The methyltransferase-encoding gene Pimet
emerged as the most prominent candidate soft sweep
(bm ¼ 3) in our search using K¼ 20 (bm ¼ 1 for K¼ 10)
and is central to the viral RNA degradation pathway that
is subject to ongoing coevolution against pathogen incursion
and deleterious transposable element activity (Kolaczkowski
et al. 2011; Lee and Langley 2012). We finally highlight ana3
as a candidate for adaptation in D. melanogaster. This pro-
spective hard sweep affects a highly conserved gene encod-
ing a centriole protein fundamental to the structural
integrity of basal bodies within cells (Stevens et al. 2009). A
sweep here may contribute to enhanced success in sperm
competition and fits with the expectation that sperm gene
evolution is an ongoing and central part of positive selection
in D. melanogaster (Nurminsky et al. 1998; Dorus et al. 2008;
Wong et al. 2008; Yeh et al. 2012).
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Discussion
We have proposed a likelihood-based approach to detect
selective sweeps in whole-genome polymorphism data that
is applicable to a variety of different demographic scenarios,
classifies detected sweeps as hard or soft without relying on
additional analyses or statistics, and is the first likelihood-
based method to leverage distortions in the haplotype fre-
quency spectrum to make these inferences. Each of these
attributes is important because selective sweeps are multifac-
eted genomic signatures that are not always characterized by
the presence of a single high-frequency haplotype (Jones et al.
2013; Wilson et al. 2017), may be ongoing or incomplete at
the time of sampling (Vy and Kim 2015; Vy et al. 2017), and
may range in strength across multiple orders of magnitude
(Messer and Neher 2012; Nam et al. 2017). Thus, our simula-
tion experiments probed a realistically diverse complement of
sweep scenarios likely to be relevant in a variety of study
systems. Most importantly, the T statistic demonstrated
high and consistent power and classification ability across
examined parameters, highlighting its suitability to make
inferences within variable contexts.

Expectedly, the T statistic achieved its maximum power for
recent selective sweeps on fewer haplotypes and lost power
proportional to the extent of departure from these ideal
conditions (figs. 2 and 3 and supplementary fig. S4,
Supplementary Material online). Because it is haplotype
based, the T statistic captures distortions in the haplotype
frequency spectrum relative to neutral expectations. These
distortions require time to establish and decay over time as
well. Thus, we found that for human demographic models,
the T statistic could reliably identify sweeps that initiated
between 500 and 2,000 generations before sampling. For
stronger sweeps (s � 0:05), power was consistently elevated
across this range, but because weaker sweeps require more
time to establish, this range narrows and power peaks for
older sweeps as s decreases. Additionally, we uniformly had
more power to detect sweeps under the YRI demographic
model than the CEU. This is due to the severe bottleneck
underlying the history of the CEU, as well as all non-African
human populations. Bottlenecks may reduce the diversity of
haplotypes within a population, reducing the distinctiveness
of sweeps relative to neutrality, whereas population expan-
sions have the opposite effect (Jensen et al. 2005; Campbell
and Tishkoff 2008). Nonetheless, the T statistic could gener-
ally detect sweep strengths across all but our weakest selec-
tion coefficient range for sweeps aged between 1,000 and
2,000 generations under either demographic model, compris-
ing events that in humans cover the period from 25,000 to
58,000 years ago, between the out-of-Africa event and the
spread of agriculture (Luki�c and Hey 2012; Nakagome et al.
2016; Haber et al. 2019).

Importantly, ours is a powerful single-statistic approach
that provides an ideal balance of detection capability and
computational efficiency. Compared with popular recent
methods, we found that the T statistic is generally more pow-
erful than other single-statistic approaches and is also sensi-
tive to the same range of sweep times as they are (figs. 2 and 3

and supplementary figs. S1 and S2, Supplementary Material
online). This highlights the usefulness of T as a substitute for
other single-statistic approaches, which may miss sweeps that
the T statistic can detect. Although T is likely to be under-
powered relative to machine-learning methods, such as
Trendsetter, analyses with T have no need to train a classifier,
which may be computationally intensive when training a
composite of multiple signals, and must be undertaken for
each study scenario. However, using the T statistic within a
machine-learning framework can greatly enhance its perfor-
mance. By learning the spatial distribution of T statistic signals
within our T-Trendsetter construct, we were able to enhance
the performance of our method considerably. Using a large
number of small windows, we could extend our range of
sweep detection to identify simulated selective events up
to 4,000 generations in age, reflecting ancient sweeps far older
than the out-of-Africa expansion. In contrast, training a clas-
sifier from a smaller amount of standard 117-SNP windows
greatly improved performance for recent soft sweeps relative
to the unassisted T statistic (supplementary figs. S8 and S9,
Supplementary Material online). Our results suggest that op-
timizing the power of a machine-learning approach relies not
only on the choice of input statistics but also on the manner
in which those statistics are applied to make inferences.

The choice of simulated human demographic history did
not impact our inferences on the number of currently sweep-
ing haplotypes (bm) in a population. Under equivalent sweep
scenarios (s, t, and �), our analyses yielded similar distributions
of bm for both the CEU and YRI models and could accurately
identify soft sweeps, provided that at least two sweeping
haplotypes remained in the population at the time of sam-
pling (fig. 4 and supplementary figs. S10 and S11,
Supplementary Material online). We found that simulated
soft sweeps were frequently assigned an inferred bm that
was smaller than the � with which we initiated the sweep.
Furthermore, we observed that T statistic signal peaks were
on average associated with valleys in bm regardless of � (sup-
plementary figs. S6 and S7, Supplementary Material online).
To better understand these results, we devised an in silico
barcoding approach to complement our existing simulations.
We found that soft sweeps from selection on standing vari-
ation frequently lose the majority of their selected haplotypes
within generations of selection start time t, meaning that
many soft sweeps, especially for smaller s, appear hard at
the time of sampling (supplementary figs. S13 and S14,
Supplementary Material online). This hardening effect
(Wilson et al. 2014), due to genetic drift at the early stage
of selection, affected both simulated CEU and YRI popula-
tions equally, corroborating our consistently similar bm obser-
vations between the two populations. This means that even if
soft sweeps are the dominant mode of adaptation in human
history (Schrider and Kern 2017), there may be considerably
more that can never be identified as soft.

As an attempt to improve the performance of the T sta-
tistic, we sought to examine whether the choice of sweep
distortion model, based on the choice of fi (see Definition of
Statistic), would affect our inferences. Ultimately, using our
YRI simulations as a basis, we found that all of our tested

Harris and DeGiorgio . doi:10.1093/molbev/msaa115 MBE

3036



models yielded little difference in the power of T to identify
sweeps (supplementary fig. S28, Supplementary Material
online). The five models we examined, consisting of
(A) fi ¼ 1=m, (B) fi ¼ ð1=iÞ=

Pm
j¼1 1=j, (C) fi ¼ ð1=i2Þ=Pm

j¼1 1=j2, (D, our primary model for analyses)
fi ¼ e�i=

Pm
j¼1 e�j, and (E) fi ¼ e�i2=

Pm
j¼1 e�j2 , differ in

the amount of weight allocated to the secondary sweeping
haplotypes q

ðmÞ
i for i 2 f2; 3; . . . ;mg relative to q

ðmÞ
1 when

distorting p. In model A, each sweeping haplotype gains the
same amount of weight after distortion, ensuring that each is
prominent within spectrum qðmÞ. Models B–E represent in-
creasingly uneven weight distributions that favor frequency
q
ðmÞ
1 at the expense of q

ðmÞ
2 ; q

ðmÞ
3 ; . . . ; and q

ðmÞ
m . We believe

this is reasonable based on the observation in simulated data
that soft sweeps do not affect each sweeping haplotype
evenly, and one sweeping haplotype may still be considerably
more prominent than the rest (fig. 1; see also, fig. 3 of Garud
et al. [2015]). Furthermore, the different T statistic variants
demonstrated little difference in sweep classification with bm
(supplementary fig. S29, Supplementary Material online), sug-
gesting that the most important consideration in construct-
ing our sweep models lies in simply distinguishing sweeping
from nonsweeping haplotype classes, and not the manner in
which they sweep.

An important feature of the T statistic is its ability to detect
sweeps from unphased MLG data. Our ability to extend the
power of our approach to MLGs is meaningful because it
provides the ability to interrogate polymorphism data from
nonmodel organisms for which phased haplotypes are
unavailable, difficult to obtain, or unreliable (Browning SR
and Browning BL 2011; O’Connell et al. 2014; Castel et al.
2016; Laver et al. 2016; Zhang et al. 2017; Harris et al. 2018).
Overall, we found no difference in power trends between the
two data types, such that scenarios under which we have high
power with phased data are scenarios of high power with
unphased data (compare figs. 2 and 3 with supplementary fig.
S15, Supplementary Material online). However, we find that
the T statistic applied to haplotypes always matched or
exceeded power for MLG data. This is to be expected because
MLGs are a more diverse data type drawn from a smaller
sample size. Under a random mating assumption, the pres-
ence of a single high-frequency haplotype implies that only
one MLG should exist at high frequency, but in the case of
two high-frequency haplotypes, both homozygotes, as well as
their heterozygote, will be prominent in the population. In
this way, a sweep on two haplotypes can appear as a sweep
on three MLGs, and sweeps on larger numbers of haplotypes
will result in even larger numbers of elevated MLGs, which
may be more difficult to separate from neutrality propor-
tional to their bm. Likewise, one high-frequency haplotype
and one medium frequency haplotype can yield two high-
frequency MLGs, meaning that an inferred bm ¼ 2 in MLG
data could underlie a true hard sweep. Our results indicate
that this may be a common occurrence (compare fig. 4 and
supplementary fig. S16, Supplementary Material online), and
so we recommend scrutinizing bm results obtained from MLG
data more carefully.

Our extensive testing revealed that T is overall robust to
the most common confounding scenarios that affect sweep
statistics. Making use of the sample average background hap-
lotype frequency spectrum for inference allows T to account
for the effects of mutation rate, recombination rate, and sam-
ple size on inferences by creating an expectation specific to
the study data (supplementary figs. S21 and S24,
Supplementary Material online). Using haplotype informa-
tion provides complete resistance to the effect of background
selection on nucleotide diversity (supplementary fig. S22,
Supplementary Material online), as background selection
does not cause haplotypes to rise to high frequency (Enard
et al. 2014). The choice of a SNP-delimited window, mean-
while, is ideal for analyzing data sets with missing sites (sup-
plementary fig. S23, Supplementary Material online) or low
polymorphism density because by fixing the number of SNPs
included in a window, we avoid generating windows that
have low diversity simply because they contain few SNPs.
SNP-delimited windows may also be more robust to the ef-
fect of population bottlenecks on inferences (Harris et al.
2018). Despite these strengths, we found that T may be misled
by certain admixture scenarios (supplementary figs. S17–S20,
Supplementary Material online). Although the admixture we
simulated was extreme, our results are still informative as to
the limits of our model. We found that, as expected, admix-
ture from a donor of small size could inflate the neutral T
statistic distribution because small-sized donors have a
smaller haplotypic diversity, but we also found that low-
level admixture from a large-sized donor also had this effect.
We attribute this to the lack of admixture parameter in our
model and expect that models directly incorporating admix-
ture could overcome the confounding effects that we have
observed.

The results from our empirical analyses with T served as a
validation of our method, yielding expected sweep candidate
genes in agreement with previous investigations (supplemen-
tary tables S1–S3, Supplementary Material online). More spe-
cifically, our top candidates matched extensively with those
inferred with H12 and G123 (Garud et al. 2015; Harris et al.
2018). Our top candidates in the European-descent CEU pop-
ulation were centered on the LCT locus, associated with ad-
aptation to dairy consumption (Bersaglieri et al. 2004). In the
sub-Saharan African YRI population, we saw commonly re-
curring candidates at SYT1, NNT, LONP2, and HEMGN
(Voight et al. 2006; Pickrell et al. 2009; Fagny et al. 2014;
Pierron et al. 2014). The largest discrepancy between the
H12 and T statistic analyses of the 1000 Genomes Project
data we observed was the absence of SLC12A1 from the
top 40 candidates in CEU haplotype data. SLC12A1 is a proxy
for SLC24A5 (which was filtered out), a solute transporter has
been implicated in the shift toward lighter skin pigmentation
among Indo-Europeans (Lamason et al. 2005), and still yields
an outlying value of T¼ 163.35, but there are dozens of genes
with larger T, whereas only ten genes produced a larger H12
(Harris et al. 2018). Even so, SLC12A1 easily passes our 5% FDR
threshold, and even our more stringent 1% threshold (sup-
plementary table S4, Supplementary Material online; all top
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YRI candidates also pass a 1% threshold). Though our simu-
lation experiments show that T has greater power than H12
for the same data, each method prioritizes sweep signatures
differently. H12 is most sensitive to the sum of the two most
frequent haplotypes in the frequency spectrum, whereas T
places high emphasis on the relative values of all haplotypes in
a truncated spectrum. Similarly, SweepFinder2 is unlikely to
find any soft sweeps but will find older hard sweeps than what
H12 and T could find, particularly for the YRI population
(fig. 2).

All of our top candidates for the DGRP scan overlapped
with one of the top 10 H12 peaks that Garud et al. (2015)
identified, except for Uhg1, CG8552, Skeletor/CG14681 (which
were in lower-ranked peaks), and corn. However, none of our
top candidates was statistically significant when compared
against the neutral distribution we generated under the
Duchen et al. (2013) model of North American
D. melanogaster population history, and only our top candi-
date, CG11902 (located within the second-largest signal peak
of Garud et al. [2015]), passed the 5% FDR threshold. This
result matches that of Harris, Sackman, et al. (2018), who also
found that they could not reject neutrality when using a
model that incorporates uncertainty in key parameters (sup-
plementary fig. S27, Supplementary Material online). In con-
trast, the original interpretation of Garud et al. (2015) found
the top signal peaks to be significant but used fixed model
parameters rather than drawing them from a posterior dis-
tribution. Even so, the top D. melanogaster candidates uncov-
ered in recent analyses show literature support for selection,
especially in response to pressure from pesticide application
(Menozzi et al. 2004; Pedra et al. 2004; Karasov et al. 2010).
Furthermore, future analyses with more certain demographic
parameter estimates may aid in ultimately rejecting neutrality
for these genes.

Finally, empirical analysis allowed us to understand the
practical effect of using different K truncations to generate
inferences. The most apparent difference between scans with
K¼ 10 and K¼ 20 truncations was each configuration’s in-
ference on bm. Using a larger K truncation had the effect of
classifying a greater number of candidate sweeps as soft
(bm � 2), and we observed this for both phased and
unphased data, and all study populations. Without exception,bm for K¼ 10 truncations was less than or identical to bm for
K¼ 20. We find that when bm changes, it is for borderline
cases, such as that of COL5A2 in CEU. For this candidate, one
high-frequency haplotype predominates, but there is clearly a
second haplotype at an elevated frequency as well. In the
K¼ 20 spectrum, the contrast in size between the second
haplotype frequency and the others is sufficient to assign an
inference of bm ¼ 2, whereas this is not the case for the
K¼ 10 truncation, where haplotype frequencies 3–10 are rel-
atively large enough to the second that a hard sweep serves as
a better explanation of the data (fig. 5). The MLG spectrum
underlying COL5A2, in contrast, reflects bm ¼ 2 regardless of
truncation, and that is because we no longer have a border-
line case, and two high-frequency MLGs are evident.
Ultimately, T is more sensitive to hard sweeps, and any
scan with T is likely to yield a greater number of hard sweeps,

especially when choosing a smaller K. This is not to say that
soft sweeps are uncommon or rarer than hard sweeps
(Hernandez et al. 2011; Jensen 2014; Schrider and Kern
2017), but that we may simply be overlooking these more
often due to the nature of our approach.

We believe that our T statistic will serve as an important
contribution to the field of selective sweep detection meth-
ods, providing the first maximum-likelihood approach that
exploits a haplotype and MLG frequency spectrum distortion
model. As such, the T statistic offers high power for recent
selective sweeps with little computation time and can addi-
tionally assign an bm value to candidates with no additional
analysis required. This makes it an appropriate complement
to methods such as the singleton density score (Field et al.
2016), which detects sweeps occurring within the past 100
generations of human history (outside the range of detection
of T). The T statistic also complements machine-learning
methods (Lin et al. 2011; Schrider and Kern 2016; Sheehan
and Song 2016; Kern and Schrider 2018; Sugden et al. 2018;
Mughal and DeGiorgio 2019; Mughal et al. 2019), which are
more powerful in exchange for more computation time (and
can also incorporate T into their algorithms). Our lack of
dependence on phased data provides the opportunity to
search for sweep signatures in any nonmodel organism for
which whole-genome polymorphism data exist. We expect
that our simple yet powerful statistical model of selective
sweeps will yield novel insights into the adaptive histories
of diverse populations. Even in well-studied species such as
humans, there are yet understudied populations for which
future analyses of selection signatures will provide important
insights about population history that is missing from the
current literature. To motivate this point, we highlight that
insights into local adaptation within human populations con-
tinue to emerge (Buckley et al. 2017; Hu et al. 2017; Fan et al.
2019), more than a decade after the first investigations began
(Bustamante et al. 2005; Ronald and Akey 2005; Sabeti et al.
2006). Finally, we make available the open-source software
package LASSI, which implements the T statistic protocol in a
single efficient pipeline.

Materials and Methods

General Simulation Protocol
We applied the T statistic to simulated data based on demo-
graphic models consistent with recent estimates of human
(Terhorst et al. 2017) and D. melanogaster (Duchen et al.
2013) population history. For some experiments evaluating
power under human models, we also applied the T statistic to
unphased MLG data, which we produced by manually merg-
ing each simulated individual’s two haplotypes. We generated
these data using the population-genetic simulation software
SLiM (Haller and Messer 2017), as well as with the coalescent
simulator ms (Hudson 2002). For power experiments based
on human models, we exclusively performed simulations for-
ward in time using a Wright–Fisher model implemented in
SLiM (Fisher 1930; Wright 1931; Hartl and Clark 2007). These
simulations lasted for a total of 200,000 generations, of which
the former 100,000 (equivalent to 10N, where N ¼ 104 is the
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diploid effective population size of the simulated population)
was a burn-in period to achieve equilibrium values of neutral
variation, and the latter 100,000 was the period over which
population size variation occurred. To speed up run time,
human-modeled simulations were scaled by a factor of
k¼ 20, whereas D. melanogaster simulations, which featured
larger population sizes, were scaled by k¼ 100. In order to
scale, we multiplied mutation rates, recombination rates, and
selection coefficients by k, whereas the size of the simulated
population and the duration of the simulation in generations
were divided by k. Thus, simulation duration was reduced by
a factor of 400 (k¼ 20) or 104 (k ¼ 100Þ.

For all simulations other than for the above human-model
power experiments, we generated data for each replicate
population using ms, either for use as input into SLiM
(burn-in), or to simulate neutrality. We used the former ap-
proach to generate FDR thresholds under the human and
D. melanogaster models (see Results and Selection Protocols
below). Here, we used ms to run the majority of each simu-
lation. For the D. melanogaster model, we ran ms up to the
earliest point in time that selection could occur, which was
the time of admixture between the African and European
populations (supplementary fig. S27, Supplementary
Material online; see also below). For human models, we sim-
ulated the first 10N generations prior to sampling.
Simulations then proceeded forward in time with SLiM,
and selection was allowed to take place. Meanwhile, we out-
putted neutral simulations to compute P values (see below)
for both human and D. melanogaster models directly from ms.
For human simulations, we chose a mutation rate of 1:25
�10�8 per site per generation (Narasimhan et al. 2017), and
an exponentially distributed recombination rate with mean
10�8 per site per generation, with maximum value truncated
at 3� 10�8, as in Schrider and Kern (2017) and Mughal and
DeGiorgio (2019). For D. melanogaster, our recombination
rate was a uniform 5� 10�9 per site per generation (equiv-
alent to 5� 10�7 cM per base), and our mutation rate was
10�9 per site per generation, specifically chosen to match
Garud et al. (2015) and Harris, Sackman, et al. (2018), but
smaller than the value inferred by Keightley et al. (2009).

Our simulated human demographic histories consisted of
a European-descended CEU model (individuals of northern
and western European descent sampled in Utah, USA) and a
sub-Saharan African YRI model (Yoruba individuals from
Ibadan, Nigeria). Both models were inferred by Terhorst
et al. (2017) using smcþþ. The CEU model features a severe
bottleneck reducing population effective size by an order of
magnitude 	2,000 generations before sampling, followed by
a population expansion over two orders of magnitude leading
to present day. The YRI model contains population size fluc-
tuations, but with no severe bottlenecks, and also includes an
expansion similarly to the CEU model (see fig. 5 of Terhorst
et al. [2017]). Thus, the simulated CEU population has an	2-
fold reduction in its level of background genetic diversity
relative to the YRI. For every replicate within each simulated
human-model selection scenario (see below), we outputted a
simulated chromosome in SLiM of length 1 megabase (Mb)
and scanned it with a sliding analysis window of size 117 SNPs,

advancing by 12 SNPs per iteration. A window of 117 SNPs
roughly corresponds to the number of SNPs expected in a
physical window of size 40 kb for our sample size of 100
European diploid individuals, or 20 kb for 100 sub-Saharan
African diploid individuals (Watterson 1975). We selected
this window size because it is over this interval that pairwise
LD between SNPs decays by more than one-third on average
in the human genome (Jakobsson et al. 2008). This makes it
unlikely that elevated values of the T statistic are due to
background LD.

We simulated the DGRP (Mackay et al. 2012)
D. melanogaster demographic history following the protocol
of Harris, Sackman, et al. (2018), adapting the model of
Duchen et al. (2013) (supplementary fig. S27,
Supplementary Material online). Here, an ancestral African
population (effective size N1) experiences a bottleneck at time
TB, contracting to size NB for 1,000 generations before
expanding to size N01. After the bottleneck, the ancestral
European population diverges from the ancestral African
population at time s1 and begins with an effective size N2.
The European population grows exponentially to its modern
size, N02. At time s2, the North American population ancestral
to the modern DGRP sample is generated with initial size N3

from the admixture of the European and African populations,
modeled as a single event, with a proportion a of North
American genomes deriving from African ancestors, and a
proportion 1� a deriving from European ancestors, where
a < 1=2. The North American population grows exponen-
tially to its final size, N03. We draw each of the aforementioned
model parameters according to their posterior probability
density (Harris, Sackman, et al. 2018; supplementary table
S1, Supplementary Material online), thereby incorporating
uncertainty into the demographic model. We only output
data from the North American population, and selection
only occurs in that population. We used analysis windows
of size 400 SNPs and a step size of 40 SNPs for D. melanogaster
simulations. This represents the expected number of SNPs in
a 10-kb window, over which a pairwise LD decay of greater
than one-third occurs for the DGRP data set (Garud et al.
2015).

Across all experiments, we primarily used a haplotype fre-
quency spectrum truncation of K¼ 10, but for human-model
analyses, we also examined K 2 f15; 20; 25g. As described in
the Definition of Statistic section, we generate an averaged
truncated haplotype frequency spectrum from each neutral
replicate analysis window and use this as an estimate of the
baseline variation in the absence of a selective sweep. Except
where otherwise mentioned, we used weight allocation
scheme (D) from the Definition of Statistic section, with
fi ¼ e�i=

Pm
j¼1 e�j, favoring a greater increase in the fre-

quency of the first sweeping haplotype class relative to the
neutral baseline. In practice, all schemes showed similar
power, however (supplementary fig. S28, Supplementary
Material online). Additionally, we only optimized models
with U ¼ pK and did so over a grid of e 2 ½1=ð100KÞ;U�
(with intervals of ðU� eÞ=100), providing us with a range of
different U and e combinations. Fixing U ¼ pK ensured that
we would under all circumstances have frequencies
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fqðmÞmþ1; q
ðmÞ
mþ2; . . . ; q

ðmÞ
K g smaller than their equivalents in the

p spectrum, though in doing so we often underestimate the
empirically observed putatively nonsweeping classes. We em-
phasize, however, that due to the structure of our likelihood
equations, the value of the T statistic depends more on the fit
of the model’s sweeping classes than its nonsweeping classes
and thus did not include an optimization of U because it
would be unlikely to provide additional power to T but could
potentially require considerably more computational burden.

Selection Protocols
To assess the power of the T statistic to differentiate between
neutrality and sweeps, we simulated a variety of human selective
sweep scenarios, defined primarily by their combination of selec-
tion time t, selection strength s, and simulated number of initially
sweeping haplotypes �. We simulated selection on de novo
mutations arising at times t 2 f200; 500; 1; 000; 1; 500; 2; 000
; 2; 500; 3; 000; 3; 500; 4; 000g generations prior to sampling.
We chose this range of t because the T statistic is suited to
detecting recent sweeps that have established in a population,
and so this range spans sweeps that are too recent to detect (as
they are unlikely to have established), too ancient to detect (as
their footprints have likely eroded), and optimal to detect. We
simulated sweeps on � 2 f1; 2; 4; 8; 16; 32g distinct sweeping
haplotypes, drawn uniformly at random across the set of haplo-
types in the population at time t, and conditioned that at least
one copy of the selected allele would remain in the population for
the duration of the simulation. We chose selection coefficients
uniformly at random following five schemes to illustrate the effect
of the selection coefficient on sweep detection. Weak selection
protocols covered s 2 ½0:001; 0:01� and s 2 ½0:005; 0:05�.
Strong selection comprised s 2 ½0:01; 0:1� and s 2 ½0:05; 0:5�.
We drew mixed selection coefficients as a combination of the
weak and strong ranges, with s 2 ½0:001; 0:5� drawn uniformly
at random specifically from a log scale. We computed the T
statistic for each simulated genomic analysis window using its
truncated counts spectrum as input for the likelihood functions
‘0 (eq. 4) and ‘1 (eq. 5) and retained the largest T for a replicate as
its score. We also computed the score in this manner for each
existing neutral replicate. We assessed the power of our approach
for each parameter set at 1% and 5% FPRs as the proportion of
sweep replicates whose scores exceeded the top 1% or 5% of
scores under neutrality, respectively.

For experiments to identify FDR thresholds, selection
parameters were drawn at random from distributions of all
parameters described above. Sweeps under the human model
were initiated uniformly at random across t 2 ½200; 4; 000�
generations prior to sampling, and selection coefficients uni-
formly at random from s 2 ½0:005; 0:5� on a log scale. We
raised the lower bound on s relative to power experiments
because we found that the T statistic has little ability to iden-
tify sweeps on s< 0.005. Likewise, we drew � 2 f1; 2; . . . ; 8g
to account for the range over which T has the most power.
For the D. melanogaster model, we simulated hard and
soft sweeps once again from � 2 f1; 2; . . . ; 8g but chose
t 2 ½500; 7; 000� and s 2 ½0:001; 0:5�. The constraint on se-
lection time here derives from the requirement that sweeps
must occur in the North American D. melanogaster

population, which we have fixed to arise 7,943 unscaled gen-
erations before sampling (this is the sole parameter that we
do not draw from the posterior distribution of Duchen et al.
[2013]), whereas we expect that the larger size of the
D. melanogaster population should allow us to detect sweeps
from smaller s due to the larger population-scaled selection
coefficient r ¼ 4Nes.

Because we were interested in tracking the number of
haplotypes carrying the selected allele in a soft sweep over
the course of a sweep, we implemented an in silico barcoding
protocol in SLiM. This approach allowed us to observe the
effect of hardening on soft sweeps due to genetic drift
(Wilson et al. 2014), as well as the relationship among selec-
tion coefficient, bm, and method power. We augmented the
simulation procedure of previous power experiments by ad-
ditionally introducing a unique neutral mutation adjacent to
the site of selection for each selected haplotype at time t.
Thus, no two selected haplotypes could be identical at time t.
Then, at the end of each generation, we measured the fre-
quency of both the selected allele and the count of each
unique mutation, which served as a proxy for each unique
haplotype’s count in the population. We quantified selected
allele frequency and selected haplotype count trajectories by
taking the mean of 1,000 replicates for each scenario.
Supplementary figure S12, Supplementary Material online,
summarizes our in silico barcoding protocol for �¼ 4 initially
selected haplotypes. For haplotype tracking experiments, we
focused specifically on human scenarios across our five selec-
tion strength schemes and � 2 f2; 4; 8; 16; 32g but only
studied the selection times for which we had the greatest
power. For CEU, these were t¼ 2,000 (s 2 ½0:001; 0:01�),
t¼ 1,500 (s 2 ½0:005; 0:05� and s 2 ½0:001; 0:05�), t¼ 1,000
(s 2 ½0:01; 0:1�), and t¼ 500 (s 2 ½0:05; 0:5�). Across the
same s ranges for YRI, we respectively used t¼ 2,500, 2,000,
2,500, 1,500, and 500.

Scans of Simulated Data with Multiple Methods
In addition to the T statistic, we also applied other popular
and powerful methods to our simulated data in order to
thoroughly contextualize the power of our approach. Here,
we reused the data generated for power experiments across
all ranges of s for hard (�¼ 1) and soft (�¼ 4) sweeps. We
elected to compare H12 (Garud et al. 2015), nSL (Ferrer-
Admetlla et al. 2014), SweepFinder2 (Nielsen et al. 2005;
DeGiorgio et al. 2016; Huber et al. 2016), and Trendsetter
(Mughal and DeGiorgio 2019), as each presents a unique
approach in identifying signatures of selective sweeps. H12
and nSL represent perhaps the most similar alternatives to T,
as they are summary statistics that also leverage measures of
haplotype frequency to make inferences. H12 is a haplotype
homozygosity-based method that detects sweeps based on
their reduced haplotypic diversity, whereas nSL identifies
sweeps based on their large tracts of sequence identity.
Both approaches also have power to detect soft sweeps in
addition to hard sweeps (this being the primary purpose of
H12). SweepFinder is a likelihood method that detects sweeps
from distortions in the SFS and has high power to detect hard
sweeps but is underpowered for soft sweeps because it does
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not use haplotype information. Finally, Trendsetter is a sophis-
ticated machine-learning approach that leverages the spatial
autocorrelation of summary statistic signals along the chro-
mosome to identify and classify sweeps and is therefore likely
to outperform any single-statistic approach.

We applied these statistics in ways that allowed us to most
directly compare their performance with that of T. For H12,
we used the same SNP-based window and step sizes as with
the T statistic, meaning that we computed H12 using the
exact data as for T. Next, we implemented unstandardized
nSL with selscan (Szpiech and Hernandez 2014) running de-
fault options and obtained a value of the statistic for each
SNP within a replicate. For SweepFinder2, we scanned with a
step size of 1,000 nucleotides to ensure a dense grid of analysis
windows. We generated a helper file from our neutral repli-
cates, which served a similar purpose to our neutral haplotype
frequency spectrum p, and only included polymorphic sites in
computations (Huber et al. 2016). Finally, we implemented
two versions of Trendsetter, each trained on simulated data
across three classes—neutrality, hard sweeps, and soft sweeps
(� 2 f2; 3; . . . ; 8g drawn uniformly at random)—and 5,000
replicates per training class, with s 2 ½0:001; 0:5� and t 2 ½
200; 4; 000� as previously. First, we used the standard ap-
proach, which studies the spatial signatures of six statis-
tics—mean pairwise sequence difference bp, squared
correlation coefficient of LD r2, the number of distinct hap-
lotypes Nhaps, and expected haplotype homozygosity H1, H12,
and H2/H1 (Garud et al. 2015). Second, we applied
Trendsetter to employ the spatial signature of only the T
statistic (“T-Trendsetter”). This experiment served to highlight
the power gain from incorporating spatial autocorrelation of
T signals across genomic sequence tracts. In both applica-
tions, we used the default behavior of Trendsetter, drawing
inferences across 201 windows of size 11 SNPs spaced apart by
5 SNPs for a total of 1,010 SNPs. For T-Trendsetter, we also
trained a classifier on 75 117-SNP windows to better recapit-
ulate our approach with the unaided solitary T statistic. To
measure power, we retained the maximum value of each
summary statistic (or for Trendsetter, the probability of assign-
ing the replicate as a sweep, which is the sum of the hard and
soft sweep class probabilities) as the score.

Modeling Confounding Scenarios
We considered admixture as a confounding scenario because
its effect can mimic that of a selective sweep under certain
circumstances (Harris et al. 2018). To determine the impact of
admixture on the T statistic, we implemented contrived
models overlaid onto our existing CEU and YRI models in
which a distantly related donor population (diverged s ¼ 2
N ¼ 2� 104 generations before sampling) unidirectionally
admixes into the sampled CEU or YRI population as a single
pulse 200 generations before sampling. We varied the size of
the admixture pulse from 0.05 to 0.4, meaning between 5%
and 40% of the subsequent generation derive their ancestry
from the admixing donor population, at increments of 0.05,
and tested admixing population sizes of N ¼ 103, 104, and
105. For all scenarios, we generated neutral background hap-
lotype frequency spectra pa matching the admixture scenario

but additionally computed the T statistic using the unad-
mixed p spectra to demonstrate the effect of not accounting
for admixture. For these experiments, all scenarios included
no selection in order to highlight the range of T statistics
emerging from admixture in the absence of a sweep.

To evaluate background selection as a potential confound-
ing factor that may also produce spurious sweep signals, we
performed simulations in which we allowed for deleterious
mutations to arise within the simulated chromosome
throughout the simulation while maintaining all other
parameters identical to neutrality. Our protocol was similar
to that of Harris et al. (2018) and covered the human CEU
and YRI models. As with our previous simulations, we gener-
ated a genomic region of length 500 kb with identical muta-
tion rate and population sizes as previously, evolving once
again for a duration of 20N generations (N ¼ 104 diploids, the
effective size during the burn-in period). At the center of the
simulated sequence, we introduced a gene of length either
11 kb (small), 55 kb (medium), or 110 kb (large) consisting of a
50 untranslated region (UTR, length 200 bases), either 10 kb
(small), 50 kb (medium), or 100 kb (large) exons (100 bases
each) and 9 kb (small), 49 kb (medium), or 99 kb (large)
introns (1 kb each) alternating for 10 kb (small), 54 kb (me-
dium), or 109 kb (large), and a 30 UTR (800 bases). We based
the sizes of genetic elements on human genome-wide mean
values (Mignone et al. 2002; Sakharkar et al. 2004). Within the
gene, strongly deleterious mutations (s ¼ �0:1; gamma dis-
tribution of fitness effects with shape parameter 0.2) arose at
rates of 50% within the UTRs, 75% within the exons, and 10%
within the introns, whereas all other mutations within the
gene and across the rest of the chromosome were selectively
neutral. To enhance the effect of background selection under
this scenario, we reduced the mean recombination rate from
r ¼ 10�8 to r ¼ 10�10 per site per generation within the
central gene.

Within natural genomes, and across different study sys-
tems, there can be considerable variability in mutation and
recombination rates, which ultimately affects the density of
SNPs and number of distinct haplotypes within a genomic
analysis window. To understand this effect with respect to the
value of the T statistic, we performed neutral simulations
under both of our human models in which we reduced the
mutation and mean recombination rates by an order of mag-
nitude, both separately and simultaneously. Thus, altered mu-
tation rates were lowered to l ¼ 1:25� 10�9, and
recombination rates were drawn as previously but centered
on a mean of r ¼ 10�9. We performed 1,000 simulations of 1-
Mb sequences once again, recorded the value of the T statistic
to generate a distribution, and measured the proportion of
false signals deriving from the above scenarios as a function of
the true positive rate.

Similarly, analyses of data sets with missing sites can also
reduce the number of SNPs and therefore haplotypes within an
analysis window relative to ideal data, and so we performed a
similar analysis measuring the distribution of the T statistic
under neutrality after removing polymorphic sites with >5%
missing data. To generate a data set with missing sites, we
followed two types of approaches. First, we selected a number
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of SNPs, drawn uniformly at random for each existing replicate,
and removed data from these SNPs in 5–20 diploid individuals
(both haplotypes were treated identically). Second, we per-
formed five iterations of data removal, with SNPs from be-
tween one and four individuals removed per iteration. For
each approach, we performed three different intensities of
data removal. The lowest intensity involved the removal of
between 200 and 500 SNPs for the single-iteration approach
or between 40 and 100 SNPs per iteration for the five-iteration
approach. The middle intensity approach removed ½400; 1;
000� or ½80; 200� SNPs, and the most intense approach re-
moved ½600; 1; 500� or ½120; 300�. The single-iteration ap-
proach is more likely to force the removal of sites with
missing data, since the possibility is greater that enough missing
alleles will be present at an affected site. The five-iteration ap-
proach results in a scattering of missing alleles but a lower
chance of any SNP having>5% missing data. Sites with�5%
missing data were incorporated into haplotypes, encoded as a
third character state “N” (in contrast to the binary 0/1 for
nonmissing sites). Doing so allowed us to conservatively lower
the value of the T statistic in such cases by introducing greater
haplotypic diversity to samples with missing data.

An important component of analysis with the T statistic is
the computation of statistical thresholds, such as P value and
FDR cutoffs for determining candidate significance. In order
to compute these thresholds, it is necessary to perform sim-
ulations under an appropriate demographic history and com-
pare the T statistics of sweep candidates with the distribution
of T statistics under simulated replicates. If the demographic
history is improperly inferred, then P values and FDR cutoffs
will also be incorrect, and may result in unwarranted empha-
sis on nonadaptive regions, or spurious disregard for true
selective events. To demonstrate the effect of misspecifying
the demographic history of a study population, we show the
impact of generating neutral replicates from CEU and YRI
demographic histories wherein population size remains con-
stant and equal to the effective size of smcþþ-derived mod-
els, computed as the harmonic mean of the population size
through the simulation. We also compared distributions of
the T statistic generated under the Gravel et al. (2011) CEU
and YRI models, which were inferred solely from SFS infor-
mation in contrast to the potentially more accurate hybrid
approach of smcþþ, which uses the SFS and whole-genome
sequence information (Beichman et al. 2017).

Finally, we also examined the power of the T statistic for
variably small sample sizes. Haplotype-based methods are
sensitive to the number of sampled individuals because suf-
ficient variation needs to be captured in a sample for the
difference between neutral and sweep haplotypic diversity
to become apparent (Harris et al. 2018). That is, reductions
in diversity following a sweep become more apparent as more
individuals are sampled, and more subtle signatures of sweeps
can be elucidated. Accordingly, we resampled all of our exist-
ing sweep replicates used in the previous power analysis by
drawing n¼ 100, 50, or 20 haplotypes uniformly at random
and applying the T statistic as previously. We note that we
computed a size-adjusted neutral background haplotype fre-
quency spectrum p for each reduced-size sample as well.

Application of T Statistic to Empirical Data
We applied the T statistic to human empirical data from the
1000 Genomes Project (1000 Genomes Project Consortium et
al. 2015), as well as to the DGRP inbred D. melanogaster data
set (Mackay et al. 2012). The former application served pri-
marily as a validation of our approach, as positive selection in
the human genome has been widely explored. The latter ap-
plication represented a typical insect model system that has
also been well studied and diverges in size, genome architec-
ture, and population history from humans. The complete
outputs for our scans of these data sets are available at
http://degiorgiogroup.fau.edu/LASSI.html. Our protocols for
analyzing either data set were identical in approach. For
each, we searched for candidate peaks by applying a sliding
window to all autosomes in the subject genome, basing win-
dow size on the interval over which LD, measured as r2,
decayed below one-third of its original value relative to pairs
of loci separated by 1 kb. This matched the prior approaches
of Garud et al. (2015) and Harris et al. (2018). A candidate
peak simply refers to an elevated instance of T within an
RNA- or protein-coding region, and we retained the most
prominent peak for each gene. For humans, our window
size was 117 SNPs, and for D. melanogaster, it was 400
SNPs, both matching our values for simulation experiments.

After performing each scan of the CEU and YRI data sets,
we filtered windows overlapping chromosomal regions of low
alignability and mappability, removing windows overlapping
with chromosomal regions of mean CRG100 score <0.9. For
D. melanogaster, we removed strains 49, 85, 101, 109, 136, 153,
237, 309, 317, 325, 338, 352, 377, 386, 426, 563, and 802 from
our analysis due to their high number of heterozygous sites
and treated remaining heterozygous sites as missing data, as
in Garud et al. (2015). We also only used SNPs that had a
quality score (reported in the DGRP data) between 1 and 30.
We computed T statistic for the K¼ 10 truncation and
assigned bm values based on both K¼ 10 and K¼ 20 to ex-
amine the practical effect of truncation on candidate
classifications.

We intersected the locations of computed T statistic val-
ues with the coordinates for protein- and RNA-coding genes
based on hg19 and Dmel 5.13 annotations for humans and
D. melanogaster, respectively. We assigned P values based on
K¼ 10 truncations to the 40 genes with the largest associated
values of T by generating 106 neutral replicates simulated in
ms (Hudson 2002). For humans, we generated neutral repli-
cates under demographic models inferred with smcþþ
(Terhorst et al. 2017), and for D. melanogaster, neutral repli-
cates were based on the Duchen et al. (2013) model, drawing
parameters as previously. For each replicate, we simulated a
sequence of length drawn uniformly at random from the set
of all gene lengths, appended with the minimum number of
nucleotides necessary to allow the application of full analysis
windows centered across the entire length of the simulated
gene. As an example, for a simulated human gene of length L
nucleotides, we appended additional sequence length
guaranteeing that 117-SNP windows centered at the first
SNP and the last SNP of the simulated gene could be con-
structed. This allowed us to obtain a T statistic for at least one
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whole analysis window centered on the simulated gene dur-
ing each replicate.

The P value for a selection candidate is the proportion of T
statistics across all neutral replicates (using the maximum
value for a replicate if there was more than one analysis
window) that exceeded the maximum T associated with
the candidate. All P values were Bonferroni corrected for
multiple testing (Neyman and Pearson 1928), where a signif-
icant P value was P < 0:05=G and where G is the number of
genes for which we assigned a score in the organism.
Accordingly, we have for humans Ghuman;CEU ¼ 18; 785;
Ghuman;YRI ¼ 19; 379; phuman;CEU ¼ 2:6617� 10�6, and
phuman;YRI ¼ 2:5801� 10�6, whereas GDm ¼ 10; 000 and
pDm ¼ 5� 10�6 for D. melanogaster. We ultimately exam-
ined fewer than the total number of genes for each study
system as a consequence of our filtering and sliding window
step size. Filtering had the effect of removing SNPs, which can
lead to genes losing representation in the final data set,
whereas the choice of window step size may result in genes
being skipped over. The total number of protein- and RNA-
coding autosomal genes in hg19 is 23,735, of which 	20%
were uncounted, whereas the total number of autosomal
genes in Dmel 5.13 is 12,215, meaning that once again
	20% were omitted. Finally, we computed FDR cutoffs for
each population by generating simulated 106 neutral and
sweep replicates as described in Selection Protocols, generat-
ing a sample of size 2� 106. The 5% FDR cutoff, which we
assigned to all populations, was the T statistic value for which
5% of the replicates exceeding that value were neutral, and
95% were sweeps. There was no value of T which served as a
1% cutoff for the D. melanogaster model (i.e., there was no T
value for which only 1% of replicates were neutral), but we did
assign a 1% FDR cutoff to human populations (supplemen-
tary table S4, Supplementary Material online).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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