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Applications 
of genotyping‑by‑sequencing (GBS) 
in maize genetics and breeding
Nan Wang1,2,9, Yibing Yuan2,3,9, Hui Wang2,4,5, Diansi Yu2,4,5, Yubo Liu2,6, Ao Zhang6, 
Manje Gowda  7, Sudha K. Nair8, Zhuanfang Hao1, Yanli Lu3, Felix San Vicente2, 
Boddupalli M. Prasanna7, Xinhai Li1* & Xuecai Zhang2*

Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput genotyping method that relies on 
restriction enzymes to reduce genome complexity. GBS is being widely used for various genetic and 
breeding applications. In the present study, 2240 individuals from eight maize populations, including 
two association populations (AM), backcross first generation (BC1), BC1F2, F2, double haploid (DH), 
intermated B73 × Mo17 (IBM), and a recombinant inbred line (RIL) population, were genotyped 
using GBS. A total of 955,120 of raw data for SNPs was obtained for each individual, with an average 
genotyping error of 0.70%. The rate of missing genotypic data for these SNPs was related to the 
level of multiplex sequencing: ~ 25% missing data for 96-plex and ~ 55% for 384-plex. Imputation can 
greatly reduce the rate of missing genotypes to 12.65% and 3.72% for AM populations and bi-parental 
populations, respectively, although it increases total genotyping error. For analysis of genetic diversity 
and linkage mapping, unimputed data with a low rate of genotyping error is beneficial, whereas, for 
association mapping, imputed data would result in higher marker density and would improve map 
resolution. Because imputation does not influence the prediction accuracy, both unimputed and 
imputed data can be used for genomic prediction. In summary, GBS is a versatile and efficient SNP 
discovery approach for homozygous materials and can be effectively applied for various purposes in 
maize genetics and breeding.

Genetic diversity analysis, linkage mapping, and association mapping, especially at the whole-genome level, 
form the foundation of modern molecular breeding1. Traditional molecular marker techniques can be used for 
genetic and breeding analyses to increase our understanding of complex quantitative traits, facilitate marker-
assisted selection, and increase the efficiency. From restriction fragment length polymorphisms (RFLPs) to 
simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), the types of molecular markers 
predominantly used have evolved over the past several decades. SNPs are now widely used in genetic analysis 
and breeding. Large-scale genotyping at the whole-genome level is becoming increasingly important for under-
standing the genetic architecture of complex traits2. Sequencing technology improved greatly over the last four 
decades, with technical advances from Sanger sequencing to nanopore sequencing. Next-generation sequencing 
(NGS) technology has transformed modern biology with its high-throughput and low cost3. Multiplexing and 
sequencing-by-synthesis (SBS) have significantly improved the efficiency of sequencing4. NGS is comprised of 
three basic steps: (1) genomic DNA fragment library construction; (2) DNA amplification by polymerase chain 
reaction (PCR); and (3) sequencing5. Three major NGS platforms: 454 (Roche), Solexa (Illumina) and SOLID 
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(ABI), have allowed wider application of genome sequencing. While each of these platforms has specific advan-
tages and disadvantages, the choice of sequencing platform depends on the experimental purpose6.

The two strategies for NGS include whole-genome resequencing (WGR) and reduced-representation sequenc-
ing (RRS)7. The major difference between these two approaches is multiplex sequencing; and further, the cost of 
RRS per sample is much cheaper than that of WGR, which benefits from being largely unaffected by RRS biases8. 
Genotyping-by-sequencing (GBS) is one of most widely used RRS methods, where in the barcode system was 
improved to allow discovery genome-wide SNPs with a lower error rate and low cost9. At least 15 restriction 
enzymes now are available for GBS for use in sequencing the genomes even when the reference genome is not 
available10. The restriction enzyme Ape KI has been frequently used in GBS. A two-enzyme approach has been 
developed for GBS11. Sequence data software and pipelines have also been developed to improve the efficiency 
and versatility of GBS for SNP discovery and mapping10,12,13. For example, UNEAK (Universal Network Enabled 
Analysis Kit) is a network-based SNP calling pipeline for species without a reference genome, such as Switchgrass 
(Panicum virgatum L.)14. However, the inherently low genome coverage of GBS, which result in a high level of 
missing SNPs, has become a major bottleneck to its application. Therefore, data imputation pipelines such as 
FILLIN (Fast, Inbred Line Library ImputatioN) and FSFHap (full-sib families HapMap)15, as well as new bioin-
formatics methods like practical haplotype graph (PHG)16 have been developed to solve this problem.

The high-throughput SNPs detected by GBS are widely used for genetic diversity analysis17–19, genome-wide 
association studies (GWAS)20–22, QTL mapping23–25, and genomic prediction (GP)26–28 in many plant species. 
In the case of maize, GBS has been extensively applied for the sequencing of more than 17,000 maize materials 
(https​://www.panze​a.org/). Three generations of maize haplotype maps have constructed using these data29 and 
have been applied to studies of many aspects of maize genetics. For example, molecular characterization of 538 
CMLs (CIMMYT Maize Lines) was undertaken using GBS, and three major subgroups and heterotic patterns in 
each group were identified30. Analysis of 8000 maize lines led to the identification of 220 candidate genes and 90 
genomic regions related to flowering time, providing a good understanding of the genetic architecture of flower-
ing time31. Genomic prediction (GP) for grain yield was performed at CIMMYT’s maize breeding program in 
Africa, genotyping 2022 breeding lines in Stage-1 yield trials by GBS. Compared to the pedigree-based method, 
GP has significant advantages for selecting for grain yield32. However, the main difficulty with the practical 
application of GBS is still the high rate of missing genotypes. For instance, only ~ 66,000 out of over 95,000 
SNPs could be used in the GP study mentioned above after discarding markers with high rates of missing data7,9.

GBS has been applied to several studies on maize worldwide and has provided a great deal of information for 
researchers using GBS or similar RRS technologies9,33. In the present study, 2240 individuals from eight tropical 
maize populations developed at CIMMYT were analyzed using GBS with the following objectives: (i) to assess 
the efficiency of SNP discovery by GBS for different types of populations; (ii) to ascertain the utility of GBS 
data in genetic diversity analysis, GWAS, linkage mapping, and GP; and (iii) to determine the effects on genetic 
analysis of imputing genotype data.

Results
SNP‑based analysis of eight tropical maize populations.  In the present study, eight tropical maize 
populations developed at CIMMYT and consisting of 2240 individuals in total were analyzed using GBS after 
digesting genomic DNA with the restriction endonuclease Ape KI creating 96 or 384-plex libraries. These eight 
tropical maize populations could be classified in three ways: as a) an association mapping panel; b) segregating 
bi-parental populations (F2, BC1, BC1F2); and c) stabilized bi-parental populations (DH, IBM, RIL) (Table 1).

Genetic characteristic analysis using unimputed databases.  For the association panel, the numbers 
of SNPs decreased from ~ 0.95 million to ~ 0.15 million after removal of SNPs with missing genotype rates > 50% 
and MAF < 0.05 (Table 2). The proportion of insertion/deletion variations decreased to less than 1% after filter-
ing. The rates of missing SNP genotypes also decreased by more than 20% and MAFs increased by 0.14 after 
filtering for Pop1 and Pop2. The average heterozygosity rates of the two populations increased but were still less 
than 1% (Table 2).

For the bi-parental populations, the number of SNPs ranged from 41,307 to 75,961 before filtering (Table 2), 
much lower than for the association panels, which indicating the presence of greater genetic variation in the 

Table 1.   Information about maize populations analyzed in the present study. a Expected heterozygosity rate of 
population. b Expected minor allele frequency of population. c Association panel.

Pop Type Parent 1 Parent 2 Number of samples Plex Heterozygosity ratea (%) MAFb

Pop1 AMc – – 267 96 0.00 0 ~ 0.50

Pop2 AM – – 523 96 0.00 0 ~ 0.50

Pop3 BC1F2 DTPC9F104 CML491 174 96 25.00 0.25

Pop4 BC1 CKL09001 CML444 152 384 50.00 0.25

Pop5 F2 CLWN201 CML494 423 96 50.00 0.50

Pop6 DH LPSC7F64 CML495 209 96 0.00 0.50

Pop7 RIL B73 CML247 207 384 0.00 0.50

Pop8 IBM B73 Mo17 285 384 0.00 0.50

https://www.panzea.org/
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association panels than in the bi-parental populations. The number of SNPs changed little after filtering, except 
in Pop4, Pop7, and Pop8, which were sequenced using 384-plex libraries and exhibited higher missing SNP 
genotype rates. MAFs were maintained for all populations, except for Pop4 (Table 2).

Genetic characteristic analysis using imputed databases.  For the association panels, the numbers 
of SNPs decreased from ~ 0.95 to ~ 0.34 million after removal of SNPs with missing rates > 50% and MAF < 0.05 
(Table 3). The proportion of insertion/deletion variants was reduced to about 0.50% after filtering. The rates 
of missing SNP genotypes greatly decreased substantially to less than 20% for the two association panels after 
imputation but changed little after filtering. However, the average MAF was 0.24, or 0.14 higher than in the 
unimputed data, indicating that most of the removed SNPs exhibited low MAF rather than high missing SNP 
genotype rate. The average heterozygosity rates of the two association panels increased after imputation but were 
still lower than 1% (Table 3).

For the bi-parental populations, the number of SNPs ranged from 91,208 to 121,935 before filtering the data 
(Table 3), almost double to the number of SNPs in the unimputed data. The number of SNPs changed little after 
filtering, except for Pop3 and Pop6. For Pop3, the number of SNPs decreased due to the rate of missing SNP 
genotypes, which had fallen by ~ 66% after filtering the data. However, for Pop6, the number of SNPs decreased 
due to an increase in the MAF, which had risen by about 0.08 (Table 3). Moreover, the heterozygosity rates of 
the three segregating populations (Pop3, Pop4, and Pop5) were close to the theoretical value after imputation, 
while the heterozygosity rates for the other populations stayed fairly low (Tables 1 and 3), indicating that the 
imputation method was accurate and efficient across populations.

Genotyping error.  The genotyping errors for 955,210 unimputed and imputed SNPs were tested in all bi-
parental populations. For the unimputed data, the average error rate for parents was 0.70%, which was much 
lower than for the F1 generations (Table 4). CML495 in Pop6 exhibited the highest error rate of 1.06%, while 
CML247 in Pop7 showed the lowest error rate of 0.51%. The error rates for heterozygous loci were 0.83 to 7.00 
times greater than those for homozygous loci, which made using GBS for SNP calling of homozygous loci much 
more accurate than for heterozygous loci.

The error rate for the imputed data was lower than for the unimputed data, with an average of 0.45% for 
parental lines due to a low rate of missing data after imputation. The line with the highest error rate was CML495, 
while the lowest error rate of 0.18% was recorded for CML444 (Table 4). The average error rate for heterozygous 
loci in parental lines was 0.33%, which was twofold that in the homozygous loci.

Table 2.   Information about unimputed SNPs detected in eight maize populations before and after data 
filtering. a Percentage of missing SNP. b Percentage of heterozygous SNP. c Minor allele frequency.

Pop

Number of taxa SNPs Insertion/deletion (%) Missing (%)a Het (%)b MAFc

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered

Pop1 267 242 955,120 167,617 1.42 0.92 54.60 32.73 0.22 0.83 0.09 0.23

Pop2 523 513 955,120 115,311 1.46 0.78 60.83 33.48 0.11 0.56 0.09 0.24

Pop3 174 161 45,098 40,491 2.32 1.97 23.56 20.37 9.50 10.50 0.25 0.25

Pop4 152 152 41,307 13,662 1.88 1.22 57.44 31.85 5.46 12.68 0.27 0.27

Pop5 411 408 66,725 57,411 2.42 2.31 24.74 18.99 20.23 23.17 0.43 0.43

Pop6 207 177 65,814 48,985 2.73 1.99 21.03 16.36 0.86 0.87 0.35 0.43

Pop7 207 185 75,961 19,089 1.32 0.57 57.96 34.88 0.68 1.56 0.41 0.44

Pop8 285 216 73,013 36,468 1.26 0.88 49.55 36.13 0.70 1.00 0.40 0.42

Table 3.   Imputed SNP information for eight populations before and after data filtering. a Percentage of missing 
SNP. b Percentage of heterozygous SNP. c Minor allele frequency.

Pop

Number of taxa SNPs Insertion/deletion (%) Missing (%)a Het (%)b MAFc

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered

Pop1 242 242 955,120 341,312 0.82 0.62 15.20 12.75 0.94 2.30 0.09 0.23

Pop2 513 513 955,120 340,177 0.92 0.47 13.49 12.17 0.64 1.58 0.09 0.24

Pop3 161 161 93,760 76,437 1.48 0.74 8.44 2.86 19.40 21.26 0.24 0.24

Pop4 152 152 92,752 90,655 0.95 0.66 9.02 7.91 34.18 34.41 0.24 0.25

Pop5 408 408 91,564 90,637 1.88 1.74 4.07 3.66 43.10 43.67 0.45 0.45

Pop6 177 177 91,208 74,487 1.38 1.73 2.89 1.94 0.78 0.91 0.35 0.43

Pop7 185 185 121,935 121,013 1.78 0.71 2.45 2.11 5.36 5.39 0.45 0.45

Pop8 216 216 111,568 110,422 1.02 0.76 4.17 3.84 2.78 2.80 0.42 0.42
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Population structure of eight populations.  Both unimputed and imputed data from eight populations 
were used to observe the impact of imputation on population structure analysis using PCA and multidimen-
sional scaling (MDS). When using unimputed data, different subgroups could be separated by PCA in both 
association panels (Fig. 1A,C). For Pop1, clusters of lines from CIMMYT-Columbia, CIMMYT-Zimbabwe, and 
some CIMMYT-Physiology lines extended in three directions, while others were concentrated in the middle 
(Fig. 1A), which was consistent with the observations in a previous study34. For Pop2, different subgroups clus-
tered along the PC1 axis, with popcorn and sweet corn on one side, and the non-stiff stalk lines on the other side. 
The stiff stalk and tropical lines could not be separated by the first two PCs (Fig. 1C), which was in congruent 
with Romay’s study35. When using imputed data, the two PCs explained more information but the distribution 
of the lines was basically the same for Pop1 and Pop2 (Fig. 1B,D).

Table 4.   Genotyping error rate of six bi-parental populations.

Pop Line

All loci Homozygous loci Heterozygous loci

Unimputed (%) Imputed (%) Unimputed (%) Imputed (%) Unimputed (%) Imputed (%)

Pop3

DTPC9F104 0.85 0.57 0.30 0.05 0.55 0.52

CML491 0.87 0.31 0.25 0.12 0.62 0.19

F1 8.21 10.42 3.38 0.68 4.83 9.74

Pop4
CKL09001 0.82 0.25 0.27 0.11 0.55 0.14

CML444 0.67 0.18 0.18 0.08 0.49 0.10

Pop5

CLWN201 0.85 0.39 0.14 0.04 0.71 0.35

CML494 0.61 0.33 0.09 0.07 0.52 0.26

F1 7.97 5.74 2.43 0.38 5.54 5.36

Pop6
LPSC7F64 0.63 0.46 0.07 0.08 0.56 0.38

CML495 1.06 0.74 0.17 0.09 0.89 0.65

Pop7
B73 0.56 0.38 0.16 0.19 0.40 0.19

CML247 0.51 0.38 0.06 0.06 0.45 0.32

Pop8
B73 0.56 0.38 0.16 0.19 0.40 0.19

Mo17 0.53 0.35 0.10 0.13 0.43 0.22

Average

Total 1.76 1.49 0.55 0.16 1.21 1.33

Parents 0.70 0.45 0.16 0.11 0.54 0.33

F1 8.09 8.08 2.91 0.53 5.19 7.55

Figure 1.   Principal component analysis of Pop1 and Pop2 using unimputed and imputed data. (A) Pop1 using 
unimputed data; (B) Pop1 using imputed data; (C) Pop2 using unimputed data; (D) Pop2 using imputed data.
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For Pop3, Pop4, and Pop5, the MDS results showed clear relationships between the parental lines and prog-
enies (Fig. 2). The filial generations were biased towards one parent in Pop3 (CML491) and Pop4 (CML444), as 
they had been backcrossed to the parent (Figs. 1B and 2A). While the progenies of Pop5, including the F1 hybrids, 
was balanced between the two parents (Fig. 2C). Moreover, the repeated parental lines overlapped, especially for 
CML491 (Fig. 2A). The results of these analyses were similar when using imputed data (Fig. 2D–F).

Results of MDS were very similar for the three bi-parental populations with low heterozygosity rate (Pop6, 
Pop7, and Pop8) (Fig. 3). In addition, the parental lines were located closer when using imputed data (Fig. 3E,F). 
These results indicated that the population structure analysis was not influenced by the presence of unimputed 
or imputed data.

GWAS of kernel color.  In the present study, kernel color in Pop1 was used to model mapping power and 
resolution in GWAS when using imputed or unimputed SNP data. Linkage disequilibrium (LD) decay occurred 
more rapidly by an average of 3.97 kb among all maize chromosomes (r2 = 0.1) when including imputed data, 

Figure 2.   Multidimensional scanning for three bi-parental populations with high heterozygosity rate. (A–C) 
Pop3-5 using unimputed data; (D–F) Pop3-5 using imputed data.

Figure 3.   Multidimensional scanning for three bi-parental populations with low heterozygosity rate. (A–C) 
Pop6-8 using unimputed data; (D–F) Pop6-8 using imputed data.
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while the average LD unimputed was 6.95 kb using only unimputed data (Fig. 4A,B). These results indicate that 
more markers are needed to perform GWAS when using imputed SNP data. Considering the genome size of 
maize, about 520,000 markers were needed for effective GWAS when using imputed data, while 297,000 markers 
were needed when using only unimputed data, respectively.

Using only unimputed data, 24 SNPs associated with kernel color were detected that explained an average 
of 14% of the variance in this trait. Three SNPs with – log10(P) > 7.22 (0.01/n) were identified on chromosomes 
(Chrs.) 4, 5, and 6 (Fig. 4C). A set of 102 significant associated SNPs were identified at – log10(P) > 7.53 when 
using imputed data; half of these were located on Chr. 6, including the peak marker (Fig. 4D) SNP S6_82015505, 
which explained 30% of the variance in kernel color.

The y1 gene has a major influence on the presence of β-carotene in maize endosperm36, an effect that could 
be clearly detected when using either imputed or unimputed data (Fig. 4C,D). The physical location for y1 is 
from bp 82,017,148 to 82,021,007 on Chr. 6, according to the B73 AGPv2 coordinates. When only unimputed 
SNP genotype data were used in our analysis, the peak signal was detected within this region at 82,019,628 bp. 
When using imputed data, the most closely associated marker was SNP S6_82015505, approximately 1.5 kb away 
from the gene region, but within the average LD distance for Chr. 6 (Fig. 4B). However, the association signals 
identified using imputed data were much stronger than those identified using only unimputed data, suggesting 
that the imputed data in our study provided higher mapping resolution.

Linkage mapping analysis using GBS data in a population with a relatively high genotyping 
error rate.  Phenotypic score data for resistance to Tar Spot Complex (TSC) for Pop6, which exhibited with 
the highest rate of genotyping error among the parental lines, was used to study the impact of genotyping error 
on linkage analysis. A total of 49,608 unimputed SNP genotypes for each individual were used for linkage analy-
sis, with the highest number of 8242 SNPs on Chr.1 and the lowest number of 3734 SNPs on Chr. 6. These SNPs 
were not spread out evenly along each chromosome but were distributed at a lower density near the centromeres, 
indicating that fewer recombination events happened in these regions (Fig. 5A). After bin map construction, 437 
bin markers across all 10 maize chromosomes were identified. The number of markers on each chromosome 
varied from 34 markers on Chr. 10 to 56 markers on Chr. 1. The average genetic distance between markers on 
each chromosome varied from 2.83 cM on Chr. 5 to 3.94 cM on Chr. 1.

Resistance to TSC were mapped, and three major QTLs for this trait were identified on Chrs. 4, 7 and 8 
(Fig. 5B) that together explained 46.11% of the variance in TSC resistance, with the QTL on Chr. 4, 7, and 8, 
individually explaining 9.36%, 14.12%, and 22.31% of the phenotypic variance for TSC resistance, respectively. 
The major QTL detected on Chr. 8 exhibited the highest LOD value of 10.17 at 50.00 cM, which was consistent 
with the result of a previous study37, indicating that the influence of the genotyping error due to GBS on QTL 
mapping could be reduced by using bin markers.

Figure 4.   Decrease in linkage disequilibrium (LD) and GWAS for kernel color of Pop1 using filtered 
unimputed (A, C) and imputed (B, D) SNP data.
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Genomic prediction using unimputed and imputed SNP data.  In order to understand the effect 
of imputation on GP accuracy, filtered unimputed (167,617) and imputed (341,312) SNP data for Pop1 were 
analyzed with phenotypic data for two traits, including GY (H2 = 0.84) and TSC (H2 = 0.80). The predictions 
were conducted using the rrBLUP package in R software. The average prediction accuracies for GY and TSC 
resistance was 0.54 ± 0.09, and 0.56 ± 0.08, respectively, when using only unimputed SNP data (Fig. 6A,B). The 
prediction accuracies for the two traits were about the same (p = 0.16), as the broad-sense heritability of the 
two traits were similar. When analyzing these traits using the imputed SNP genotype data, the average predic-
tion accuracies for GY and TSC resistance were 0.57 ± 0.09 and 0.56 ± 0.09, respectively (Fig. 6C,D). Prediction 
accuracy significantly improved when using imputed SNP data to analyze variation in GY (p = 6.17E−03), but 
no difference in prediction accuracy for TSC resistance (p = 0.63) was found when using imputed SNP data. The 
difference in prediction accuracies using imputed and unimputed SNP data indicated that for complex traits like 
GY, more markers would be needed to improve prediction accuracy.

Discussion
Significant advances in sequencing technology have occurred over the past few years and have led to a better 
understanding of the maize genome. GBS is a relatively inexpensive method for genotyping large numbers of 
samples and provides more SNPs than SNP arrays. One of the advantages of GBS is cost-effectiveness; the cost of 
GBS per marker is less than US$0.0017. In our study, one-enzyme based GBS was used to genotype 2240 maize 
lines from eight tropical maize populations. A total of 995,120 SNPs of raw data was generated for each individual. 
The genotyping error rate was checked in six bi-parental populations and the average error rates were found to be 
0.16% and 0.54% for homozygous and heterozygous loci, respectively (Table 4), which means that ~ 99.9% of the 
homozygous loci were identical between replications. The error rates for heterozygous loci were about threefold 
higher than for the homozygous loci. The high error rate for the heterozygous loci together with the error rate of 
over 8% for the synthetic F1, indicated the need for further improvement in calling of heterozygous loci in GBS. 
Because the GBS pipeline is designed to favor a higher number of markers at the expense of depth, this system is 
inherent weaker at calling heterozygotes with high levels of precision. Among inbred samples, both error-prone 
SNPs and spurious SNPs originating from paralogous tags will appear to be excessively heterozygous10. The 
high rate of missing data is another issue for GBS. In our study, the average rates of missing SNP genotypes were 
57.72% and 39.05% for the association panels and the bi-parental populations, respectively (Table 2), mainly due 
to the inherently low-coverage and multiplex approach for this sequencing method. Therefore, it is essential to 
develop improved imputation pipelines for GBS data. As shown in this study, two imputation pipelines in TASSEL 
software were used for genotypic data imputation in both the association panels and bi-parental populations. 
The number of filtered SNPs doubled for the association panels and increased by an average of 2.50-fold for the 
bi-parental populations (Tables 2 and 3). Moreover, with the rates of missing SNP genotypes greatly reduced, 
the error rates were also decreased (Table 4), indicating that the imputation methods we used could efficiently 
estimate for the missing GBS genotypes.

Figure 5.   Distribution of 49,608 SNPs identified in Pop6 (A) and QTL mapping of TSC resistance in Pop6 (B). 
The red dot represents centromere.
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These GBS SNPs were extensively applied to the genetic characterization of germplasms, population studies, 
marker-trait association analysis, and marker-assisted breeding. A large number of high-quality SNPs cover 
the entire genome of maize, which enables a better understanding of the germplasm. In population structure 
analysis, the subgroups of Pop1 could be separated more clearly than they could by using an oligo pool assay, 
which offered only 1536 SNPs33. On the other hand, few differences were apparent between the unimputed 
and imputed data for all the populations analyzed by PCA or MDS (Fig. 1–3). Therefore, filtered unimputed 
data of GBS can be recommended for the population structure in maize. The rate of LD decay is a key factor in 
GWAS. As an outcrossing species, maize experiences rapid LD decay; therefore, as many as 750,000 markers are 
required to evaluate all genes simultaneously38. LD decay in Pop1 was about 3 kb when estimated using imputed 
data, which was more rapid than when using unimputed data (Fig. 4A,B). Accordingly, GWAS using imputed 
data was more powerful for identifying functional genes with reduced noise using more markers (Fig. 4C,D). 
Moreover, GBS also performed well in GWAS for complex traits, such as grain yield and drought tolerance38. For 
linkage analysis, we used a DH population with low percentage heterozygosity as a case study; and more QTLs 
for TSC resistance were detected when using GBS than when using low-density SNP markers in the same maize 
population39. GBS was also efficient for linkage analysis in populations with a high percentage of heterozygo-
sity, such as the discovery of genomic regions responsible for resistance to maize lethal necrosis (MLN)40. GP, 
which uses genotypic and phenotypic data to estimate GEBVs, is more effective than conventional phenotypic 
selection for increasing genetic gain for GY41. Prediction accuracy is a key factors for genetic gain calculation. 
Compared to low-density SNPs, GBS offered better prediction accuracy, especially for traits measured under 
stressed conditions or those with low or moderate heritability33. In our study, prediction accuracies for GY and 
TSC resistance were 0.54 and 0.57, respectively (Fig. 6), which indicated that our GBS data could efficiently be 
used to estimating GEBVs for various traits.

GBS enables identification of genome-wide SNPs, but the low sequencing coverage also introduces issues, 
such as high rates of genotyping error, high rates of missing data, lower accuracy when calling heterozygous SNP 
calling, and therefore, potentially lower marker density42. Several improved GBS approaches have been devel-
oped to solve these issues, such as tGBS (tunable GBS), in which only double-digested fragments are amplified 
and sequenced to increase genotyping accuracy, especially for heterozygous sites, while reducing the missing 
rate43. Managing GBS data using bioinformatic and statistical methods is another way to reduce the quantity of 
missing data. Many highly accurate methods for data imputation are now available for GBS data44–47. In order 
to increase the number of available SNPs, haplotype information for more than 60,000 temperate and tropical 
maize germplasms was used as a reference genome instead of the conventional reference genome developed from 
maize inbred B73. About 150,000 high-quality SNPs were called from the association panels in the present study, 
sufficient for most types of genetic analyses in maize. Although a large number of SNPs were called, many more 

Figure 6.   Genomic prediction of GY (A, B) and TSC resistance (C, D) using unimputed (A, C) and imputed 
(B, D) SNP data.
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markers would be needed for efficient GWAS in maize. Therefore, a more comprehensive maize haplotype map 
is needed, in addition to bioinformatics pipelines such as PHG16.

Conclusion
Our goal for this study was to summarize various applications of GBS in maize. In the present study, 2240 maize 
materials from eight populations, including association panels and bi-parental populations with high or low 
heterozygosity rates, were analyzed using GBS. Approximately one million SNPs that could be used for genetic 
diversity analysis, GWAS, linkage mapping, and genomic prediction were identified for each individual. Our 
study provides useful information as to the strengths and constraints of GBS for genetic analyses in maize.

Materials and methods
Plant materials.  For one association mapping population, we designated tropical maize association panel 
of 267 inbred lines from the Drought Tolerant Maize for Africa (DTMA) panel as Pop134,48, A second maize 
association panel of 523 inbred lines of temperate maize from the Ames panel was designated as Pop2. The lines 
in the Ames panel with clear heterotic group information and off-PVP lines were chosen for the study35, includ-
ing 125 non-stiff stalks, 128 stiff stalks, 72 sweet corns, 53 popcorns, 53 tropical lines and 92 off-PVP lines with 
no group classification information.

We included three bi-parental populations with high heterozygosity rates, including Pop3, a BC1F2 popu-
lation of 174 families created by crossing a drought-tolerant donor line DTPC9F104 with an elite inbred line 
CML491. The BC1 population, Pop4, was generated by crossing CML444 and CKL09001; this population was 
developed through the Water Efficient Maize for Africa (WEMA) Project. The F2 population, Pop5, containing 
423 individuals derived from the cross between CML494 and CLWN201, was developed under the Improved 
Maize for African Soils (IMAS) Project.

A set of three bi-parental populations with low heterozygosity rates were also used in the present study. The 
DH population, Pop6, of 209 individuals, which has been described in a previous study37, was generated by 
crossing LPSC7F64 and CML495. A RIL population, Pop7, was a nested association mapping (NAM) popula-
tion from a cross between the parents B73 and CML247. Finally, Pop8, included 285 lines of the intermated 
B73 × Mo17 (IBM) population.

Genotyping‑by‑sequencing, SNP calling, and data imputation.  SNP calling and imputation were 
conducted at Cornell University. The leaves of all materials were sampled at the seedling stage. The DNA extrac-
tion was performed using one leaf per plant with the CTAB method. The DNA isolated from each sample was 
digested by the type II restriction endonuclease Ape KI and 4 to 8 bp barcode adapters were added separately to 
the 3′ ends of the top strands and 5′ ends of the bottom strands. DNA libraries for each sample were then con-
structed and sequenced following the GBS protocol9. Sequences from Pop4, Pop7, and Pop8 were collected in 
lanes of a single flow cell at 348-plex, while sequences for other populations were collected at 96-plex. For each 
lane, about 2090 Mbp of data were obtained with the default read length of 64 bp9.

Raw data in a FASTQ file was then used for SNP calling, together with the barcode information and Tags On 
Physical Map (TOPM) data, which contained SNP position information. We used TOPM data from AllZeaG-
BSv2.7 downloaded from Panzea (https​://www.panze​a.org/), which contained information for 955,690 SNPs 
mapped with B73 AGPv2 coordinates. SNP calling was then performed using the TASSEL-GBS pipeline10. Reads 
were first filtered according to the barcode matches and missing numbers with the minimum Kmer count set to 
10. The same reads then clustered together as a unique tag. Loci with a tag alignment value higher than the gap 
alignment threshold (ratio of InDel contrasts to non-InDel contrasts) of 1.0 were then excluded from the pool. 
SNPs were called with the average sequencing error rate per base set to 0.01, and the minimum quality score for 
a SNP position set to zero. Genotype data for each sample was then obtained from a set 955,690 SNPs, among 
which the position information for 570 SNPs was unclear. Finally, 955,120 SNPs from all ten chromosomes for 
each individual were used for further analysis.

After SNP calling, missing data were imputed using TASSEL 5.0 software49. Either FSFHap for full-sib families 
or FILLIN for inbred lines were used for imputation of GBS data15. FILLIN was based on haplotype information. 
Haplotype block sizes at sites were set to 8000, the minimum number of informative minor alleles in the search 
window was set to 20, and the maximum error rates for applying one haplotype or the Viterbi algorithm with 
two haplotypes to an entire site window were set to 0.01 and 0.003, separately.

Genotyping error.  For the bi-parental populations, the parental lines together with an equally mixed sam-
ple of parental lines (considered as F1 only for Pop3 and Pop5) were sequenced two or more times at different 
levels of multiplexing to calculate the error rate of sequencing. The missing data were removed first. Then the 
proportions of loci between replications were designated as an error rate. The error rate for the entire data and 
for only homozygous loci were calculated separately.

SNP filtering in each population.  Unimputed data for each population were filtered as follows: (1) For 
the association panels, first the inbred lines with SNP heterozygosity rate over 5% and missing genotype rate 
over 40% for the 96-plex data or 75% for the 384-plex data were removed. Then, the SNPs were filtered with 
MAF > 0.05 and SNP calling rate > 50% were filtered out. (2) For the bi-parental populations, first the sites that 
were polymorphic in the parents without missing genotypes were identified. Then the individuals from Pop6, 
Pop7, and Pop8 were filtered in the same manner as the inbred lines in the association panels. However, indi-
viduals of Pop3, Pop4, and Pop5 were only removed if their missing genotype rate exceed 40% for the 96-plex 
data or 75% for the-384 plex data, as all of these individuals exhibited high rates of heterozygosity. Finally, the 

https://www.panzea.org/
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SNP of the six bi-parental populations were filtered in the same manner as the association panels by eliminating 
any SNPs with MAF > 0.05 and SNP calling rate > 50%.

After imputation, data for all populations were again filtered. After filtering, the imputed data for samples 
from each population were consistent with the unimputed data. SNPs with MAF > 0.05 and SNP calling rate > 50% 
were filtered out, just as for the unimputed data.

Population structure analysis.  Principal component analysis (PCA) was performed in the two associa-
tion panels using TASSEL software with a covariance matrix of both filtered unimputed and imputed SNP data 
sets. Five major components were identified for each population. The first two major components with highest 
variants explanation levels were used.

Principal coordinate analysis or multidimensional scaling (MDS) of six bi-parental populations were per-
formed in TASSEL using both filtered unimputed and imputed SNP databases. The MDS analysis started with a 
distance matrix calculated using identity-by-state similarity; the results were similar to PCA.

LD and association mapping analyses.  In the tropical maize association mapping panel, 167,617 unim-
puted and 341,312 imputed SNPs were used separately for LD and association mapping analysis, respectively. 
LD between SNPs was first calculated in TASSEL 5.0 software using the Sliding Window method with the LD 
window size set to 50. LD across all chromosomes was then calculated using R software.

Data for kernel color in Pop1 was used for GWAS. Among the 242 inbred lines, 159 lines had yellow kernels 
and the remaining lines had white kernels. A GLM (PCA) was used to identify SNPs associated with kernel color 
in TASSEL 5.0 software. A Bonferroni correction (0.01/n, where n equals number of SNPs) was used to detect 
significant association signals with thresholds of – log10(P) > 7.22 and – log10(P) > 7.53 for the unimputed and 
imputed data, separately.

Linkage mapping analysis.  TSC disease resistance score data in the DH population Pop6 from Cao et al.37 
were used to perform linkage analysis. We used a set of 49,608 unimputed SNPs that were was further filtered as 
follows: (i) the similarity rate of SNPs within a window size of eight was calculated and the unlinked SNPs were 
removed (similar rate < 95%); (ii) then each bin was merged with any linked high-quality consecutive SNPs; (iii) 
finally, each bin was treated as a marker for constructing a genetic map.

The length of the resulting genetic map was 987.35 cM with 437 bin markers and an average marker density 
was of 2.26 cM. QTLs for TSC resistance were detected using the composite composition-interval mapping 
method in R/qtl package with threshold LOD scores of 3.5.

Genomic prediction.  The phenotypic data for grain yield (GY) and TSC disease scores of the Pop1 panel 
were collected from Cairns et al.48 and Cao et al.37, separately. The GY of Pop1 were collected in Mexico in 2008, 
2009, and 2010 and Thailand in 2009 and 2010. Average GY ranged from 4.37 to 8.60 t ha−1 with an overall aver-
age of 6.84 t ha−1.

GP was performed using the rrBLUP package50 in Pop1. A five-fold cross validation was used to estimate 
prediction accuracy with 100 replications. The correlation between the predicted yield values and the observed 
yield values represented prediction accuracy. In order to study the effect of SNP imputation on prediction accu-
racy, 167,617 unimputed and 341,312 imputed SNPs were used for GP.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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