Skip to main content
. 2019 Jul 2;10(1):24–33. doi: 10.2478/joeb-2019-0004

Table 2.

Comparison of prediction performance for the different ANN architectures in three different cases of difficulty based on the liver-to-liver variance, noise and drift in the measurement. The selection of input frequencies and hyperparameters for the best prediction performance of the different ANN architectures is provided in the rows below the prediction performances. The last row presents the best prediction performance when all 70 frequencies are used as input to the ANN. RMSEP=root mean square error of prediction, RMSEC=root mean square error of calibration, both having units of ischemia duration in hours.

Case Easy Medium Hard
Liver variance 5 % 5 % 20 %
Noise 0 10 30
Drift 0 100 100
Drift direction None Increasing Both
Training examples 100 100 100
Best performance FNN LSTM 2LSTM FNN LSTM 2LSTM FNN LSTM 2LSTM
Mean RMSEP 0.124 0.016 0.017 0.173 0.029 0.026 0.256 0.079 0.066
Std RMSEP 0.025 0.003 0.009 0.044 0.003 0.012 0.044 0.013 0.015
Mean RMSEC 0.112 0.014 0.015 0.175 0.026 0.021 0.256 0.037 0.038
Std RMSEC 0.029 0.005 0.007 0.029 0.006 0.009 0.029 0.006 0.018
Frequencies 70 3 7 70 7 3 70 3 3
Hidden layer size 25 25 5 5 5 25 2 25 25
l2 regularization 0.1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Training epochs NA 500 500 NA 500 500 NA 500 500
Minibatch size NA 32 32 NA 32 32 NA 32 16
Mean RMSEP (freq=70) 0.124 0.056 0.022 0.173 0.073 0.035 0.256 0.142 0.106