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Abstract

This work investigates the computation of maximum likelihood estimators in Gaussian copula 

models for geostatistical count data. This is a computationally challenging task because the 

likelihood function is only expressible as a high dimensional multivariate normal integral. Two 

previously proposed Monte Carlo methods are reviewed, the Genz–Bretz and Geweke–

Hajivassiliou–Keane simulators, and a new method is investigated. The new method is based on 

the so–called data cloning algorithm, which uses Markov chain Monte Carlo algorithms to 

approximate maximum likelihood estimators and their (asymptotic) variances in models with 

computationally challenging likelihoods. A simulation study is carried out to compare the 

statistical and computational efficiencies of the three methods. It is found that the three methods 

have similar statistical properties, but the Geweke–Hajivassiliou–Keane simulator requires the 

least computational effort. Hence, this is the method we recommend. A data analysis of Lansing 

Woods tree counts is used to illustrate the methods.
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1 Introduction

Geostatistical data are a kind of spatial data collected in many earth and social sciences such 

as ecology, demography and geology. The literature offers a large number of models for the 

analysis of continuous geostatistical data but, in comparison, the number of models for the 

analysis of count geostatistical data is rather limited. Two main classes of models have been 

proposed for the analysis of the latter, both of which use Gaussian random fields as building 
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blocks. The first is the class of hierarchical models proposed by Diggle et al. (1998), which 

can also be viewed as a class of generalized linear mixed models. De Oliveira (2013) 

proposed a class of hierarchical Poisson models that generalize the Poisson–lognormal 

model used by Diggle et al. (1998), and studied the second–order properties of these models. 

It was shown in De Oliveira (2013) that these models lack the flexibility to describe 

moderate or strong correlation in datasets that consist mostly of small counts or have small 

overdispersion. The second is the class of Gaussian copula models proposed by Madsen 

(2009), Kazianka and Pilz (2010) and Kazianka (2013). Han and De Oliveira (2016) studied 

the correlation structure of geostatistical Gaussian copula models with two types of marginal 

distributions, and found that their correlation structure is more flexible than that of 

hierarchical Poisson models. The latter is the class of models to be considered in this work.

Likelihood–based inference for Gaussian copula models with discrete marginals is 

computationally challenging, because evaluation of the likelihood functions require 

approximating high dimensional multivariate normal integrals. To avoid this computational 

challenge, Kazianka and Pilz (2010), Kazianka (2013) and Bai et al. (2014) proposed basing 

inference on some form of pseudo–likelihood that has similar properties as a true likelihood, 

but takes less time to compute. These works proposed the use of pairwise likelihoods and 

generalized quantile transforms. The former uses bivariate copulas, which is an example of 

the composite likelihood approach (see Varin et al. (2011) for a thorough review), while the 

latter uses a continuous approximation of the discrete distribution, which is based on copula 

densities. The statistical efficiencies of these approaches were numerically explored by 

Kazianka (2013) and Nikoloulopoulos (2013, 2016). These authors found that, compared to 

maximum likelihood estimators, the time savings in the computation of these pseudo–

likelihood based estimators are obtained at the expense of a substantial increase of their 

biases and variances. Hence maximum likelihood estimators are preferable in situations in 

which they can be computed in a reasonable amount of time. In this work we study methods 

for efficient evaluation of likelihood functions of Gaussian copula models with count 

marginal distributions.

The goals of this work are threefold. First, we review two simulated likelihood methods that 

have been proposed in the literature for the approximation of high dimensional multivariate 

normal integrals using Monte Carlo methods. One of them is the quasi–Monte Carlo method 

proposed by Genz (1992) and Genz and Bretz (2002), while the other is the Geweke–

Hajivassiliou–Keane simulator proposed by Geweke (1991), Hajivassiliou et al. (1996) and 

Keane (1994). Nikoloulopoulos (2013, 2016) and Masarotto and Varin (2012) used these 

methods to approximate likelihoods of Gaussian copula models with count marginals, which 

were then used to numerically compute the maximum simulated likelihood estimators. 

Second, we investigate the use of data cloning to compute maximum likelihood estimators 

(MLE). Data cloning is a method proposed by Lele et al. (2007) to approximate MLE and 

their (asymptotic) variances using Markov chain Monte Carlo methods. Finally, we carry out 

a simulation study to compare the statistical and computational efficiencies of these three 

methods, and compare the behavior of three types of confidence intervals for the model 

parameters. The simulated likelihood methods are implemented in the R packages mvtnorm 

(Genz and Bretz, 2009), gcmr (Masarotto and Varin, 2017) and gcKrig (Han and De 
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Oliveira, 2018), while the data cloning method was coded and implemented by us in R and 

C++.

Similar simulation studies were carried out by Nikoloulopoulos (2013, 2016), in which the 

quasi–Monte Carlo, simple Monte Carlo and the pseudo–likelihood methods were 

compared. In those, the quasi–Monte Carlo method was the most effective regarding bias 

and variance, but the computational effort was not considered. Our study, tailored to the 

geostatistical context, compares methods not considered by Nikoloulopoulos, includes larger 

dimensional settings and compares both statistical and computational efficiency. The results 

of this simulation study indicate that, on the one hand, the three methods to approximate 

MLE have similar statistical properties. On the other hand, the quasi–Monte Carlo and data 

cloning methods require the most computational effort, while the Geweke–Hajivassiliou–

Keane simulator requires substantially least computational effort. So the latter provides the 

best balance between statistical and computational efficiency. An analysis of the Lansing 

Woods tree counts dataset is used to illustrate the application of the methods for several 

inferential tasks.

2 Gaussian Copula Models with Discrete Marginals

2.1 Model Description

Let {Y (s): s ∈ D}, D ⊂ ℝ2, be a random field taking values on ℕ0 = {0, 1, 2, …}, and let {Fs(· ; 

ψ) : s ∈ D} be a family of marginal cdfs with support contained in ℕ0 and corresponding 

pmfs fs(· ; ψ), where ψ are marginal parameters. It is assumed that Fs(· ; ψ) is parameterized 

by ψ = (β⊤, σ2), in a way that

E(Y (s)) = t(s) exp (β⊺f(s)),

where β = (β1, …, βp)⊤ are regression parameters, f(s) = (f1(s), …, fp(s))⊤ are known 

location–dependent covariates, and t(s) is a known ‘sampling effort’. The parameter σ2 > 0 

controls dispersion (usually overdispersion). For instance, when the support of the cdfs is ℕ0, 

σ2 may control the departure of Fs(· ; ψ) from the Poisson distribution with the same mean. 

The negative binomial and zero–inflated Poisson distributions are two common examples.

The Gaussian copula model for Y(·) is the random field defined by the property that for 

every m ∈ ℕ and s1, …, sm ∈ D, the joint cdf of (Y(s1), …, Y(sm)) is

P Y (s1) ≤ y1, …, Y (sm) ≤ ym = Φm Φ−1(Fs1(y1; ψ)), …, Φ−1(Fsm(ym; ψ)); Ψϑ , (1)

where Φ(·) is the cdf of the standard normal distribution and Φm(· ; Ψϑ) is the cdf of the 

Nm(0, Ψϑ) distribution. The (i, j)th entry of the m × m correlation matrix Ψϑ is assumed to 

be

Kϑ(si, sj) = (1 − τ2)K̄θ(si, sj) + τ21{si = sj}, (2)
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where K̄θ(si, sj) ≥ 0 is a correlation function in ℝ2 that is continuous everywhere, ϑ = (θ⊤, 

τ2) are correlation parameters, with τ2 ∈ [0, 1], and 1{A} is the indicator function of A. This 

includes both correlation functions that are continuous everywhere and correlation functions 

that are discontinuous along the ‘diagonal’ si = sj.

2.2 Likelihood

The computation of the likelihood function of Gaussian copulas with discrete marginals is 

challenging because it lacks a closed–form expression (unlike the case with continuous 

marginals), so numerical computation is required. Here we review several representations of 

this likelihood that have appeared in the literature.

Suppose that Y(·) is observed at n distinct sampling locations s1, …, sn ∈ D, resulting in the 

counts y = (y1, …, yn), where yi is the realization of Y(si). Then the likelihood function of η 
= (ψ⊤, ϑ⊤) based on the data y is given by

L(η; y) = Pη(Y (s1) = y1, …, Y (sn) = yn)

= ∑
j1 = 1

2
⋯ ∑

jn = 1

2
( − 1)∑i = 1

n jiΦn Φ−1(Fs1(t1; ψ)), …, Φ−1(Fsn(tn; ψ)); Ψϑ , (3)

with ti = yi + 1 – ji, where the latter equality follows by taking the Radon–Nikodym 

derivative of (1) with respect to the counting measure on ℕ0
n (Song, 2000). Evaluation of (3) 

is computationally intractable, even for moderate n, since it requires computing 2n terms, 

each involving an n–dimensional integral.

Alternatively, note that

Y (s) =d Fs
−1 Φ(Z(s)); ψ , (4)

where Fs
−1(u; ψ) = inf{x ∈ ℝ:Fs(x; ψ) ≥ u}, u ∈ (0, 1), is the quantile function of Fs(· ; ψ), 

and Z(·) is the Gaussian random field with mean 0 and covariance function (2) (Han and De 

Oliveira, 2016). For count cdfs, Fs
−1( ⋅ ; ψ) is a step function so for any s ∈ D and y ∈ ℕ0 it 

holds that Y(s) = y if and only of Fs(y – 1; ψ) < Φ(Z(s)) ≤ Fs(y; ψ). Then the likelihood 

function can also be written as

L(η; y) = Pη(Φ−1(Fsi(yi − 1; ψ)) < Z(si) ≤ Φ−1(Fsi(yi; ψ)) : i = 1, …, n)

= ∫Φ−1(Fs1(y1 − 1; ψ))

Φ−1(Fs1(y1; ψ))
⋯∫Φ−1(Fsn(yn − 1; ψ))

Φ−1(Fsn(yn − 1; ψ))
ϕn(z1, …, zn; Ψϑ)dz1, …dzn,

(5)

where φn(· ; Ψϑ) is the pdf of the Nn(0, Ψϑ) distribution. The latter expression is much more 

amenable for numerical computation, and will be used in the next section as the starting 

point for likelihood approximation.

Yet another likelihood representation is given in Masarotto and Varin (2012). Consider the 

change of variables (z1, …, zn) → (u1, …, un) given by
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ui =
Fsi(yi; ψ) − Φ(zi)

fsi(yi; ψ) , i = 1, …, n, (6)

with inverse zi = zi(ui) = Φ−1 (Fsi(yi; ψ)–uifsi(yi; ψ)). Then the integral (5) can be rewritten 

as

L(η; y) = ∏
i = 1

n
fsi(yi; ψ) ⋅ ∫

0

1
⋯∫

0

1
∣ Ψϑ ∣ − 1

2exp − 1
2z(u)⊺(Ψϑ

−1 − In)z(u) du, (7)

where z(u) = (z1(u1), …, zn(un))⊤; see Appendix A for the proof. It is also shown in 

Appendix A that the right-hand side of (7) agrees with the likelihood representation obtained 

by Madsen and Fang (2011) using a ‘continuous extension’ argument.

Madsen and Fang (2011) approximated the right–hand side of (7) using simple Monte Carlo 

based on independent draws from the unif(0, 1) distribution, but this results in an inefficient 

algorithm, even when the dimension n is small (Nikoloulopoulos, 2013). Approximating the 

right–hand side of (5) using the simple Monte Carlo algorithm based on independent draws 

from the Nn(0, Ψϑ) distribution would also be inefficient, so more efficient algorithms are 

described in the next section.

Remark 1. In the statistical literature about copulas it is well known the lack of uniqueness 

of copula representations for multivariate distributions with discrete marginals. We do not 

view this as a weakness of copulas models for discrete spatial data though, as long as the 

copula model that is used is flexible and fits well the data under study; this is illustrated in 

Section 7. In addition, it is worth noting that the aforementioned lack of uniqueness does not 

arise within the class of Gaussian copula models because for any n and u1, …, un, the copula 

Φn(Φ−1(u1), …, Φ−1(un); Ψϑ) is a one–to–one function of Ψϑ.

3 Simulated Likelihood Methods

Approximating the n–dimensional integral in (5) by (deterministic) quadrature methods is 

not practical for moderate or large n, due to the high computational cost and large errors 

involved, so Monte Carlo or quasi–Monte Carlo methods are preferable. We describe in this 

section two such methods that have been proposed in the literature. Then the (simulated) 

maximum likelihood estimates would be computed by (numerically) maximizing an 

approximation to the likelihood that is obtained by simulation.

3.1 Genz–Bretz Method

We briefly summarize the method proposed by Genz (1992) and Genz and Bretz (2002) to 

compute n–dimensional integrals of normal densities over bounded hyper–rectangles; it will 

be called here the GB method. First, a three–step transformation (change of variable) is 

applied to the integrand, aimed at transforming (5) into an integral where the integration 

region is the hypercube [0, 1]n–1. To simplify the expressions that follow, let ai = Φ−1(Fsi(yi 

– 1; ψ)) and bi = Φ−1(Fsi (yi; ψ)). After such transformation the likelihood (5) is rewritten as
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L(η; y) = ∫
0

1
⋯∫

0

1
∏
i = 1

n
(ei − di) dw1…dwn − 1, (8)

where ei = Φ((bi − ∑j = 1
i − 1 cijΦ−1(dj + wj(ej − dj))) ∕ cii), 

di = Φ((ai − ∑j = 1
i − 1 cijΦ−1(dj + wj(ej − dj))) ∕ cii) and1 (cjk)1≤k≤j≤n are the entries of the lower 

triangular matrix in the Cholesky decomposition of Ψϑ. Note that the dimension of the 

integral was reduced by one. Second, a randomized quasi–Monte Carlo method with 

antithetic variables is used. Given the Monte Carlo size M and number of quasi–random 

points P, the GB method approximates (8) by

LGB(η; y) = 1
M ∑

k = 1

M 1
2P ∑

j = 1

P
(f( ∣ 2{pj + W k} − 1n − 1 ∣ ) + f(1n − 1 − ∣ 2{pj + W k} − 1n − 1 ∣ )),

where f(·) is the integrand in (8), {t} and ∣t∣ denote, respectively, the vectors obtained by 

taking the fractional part and absolute value of each component of t, and 1n–1 is the vector of 

ones. For k = 1, …, M and j = 1, …, P, Wk is an (n – 1)–vector whose components are 

independent draws from the unif(0, 1) distribution, and pj is an (n – 1)–vector whose 

components are quasi–random numbers in (0, 1). Genz and Bretz (2002) recommended the 

use of quasi–random points as good lattice points; see Sloan and Kachoyan (1987) and 

Hickernell (1998). The GB method is implemented in the R package mvtnorm (Genz and 

Bretz, 2009).

Nikoloulopoulos (2013) compared the GB method with the simple Monte Carlo 

approximation proposed by Madsen and Fang (2011), and Nikoloulopoulos (2016) 

compared the GB method with generalized quantile transform proposed by Kazianka and 

Pilz (2010) and Kazianka (2013). Both comparisons found the GB method to be more 

efficient than the competing methods, but these comparisons did not involve the alternative 

simulated likelihood method described next.

3.2 Geweke–Hajivassiliou–Keane Method

Masarotto and Varin (2012) noticed the similarity between the likelihood function (5) and 

that of multivariate probit models, and adapted the algorithm proposed by Geweke (1991), 

Hajivassiliou et al. (1996) and Keane (1994) to compute multivariate normal rectangle 

probabilities. This is known as the Geweke–Hajivassiliou–Keane simulator, and will be 

called here the GHK method.

The integral (5) can be approximated by importance sampling, using the importance 

sampling density with support

Φ−1(Fs1(y1 − 1; ψ)), Φ−1(Fs1(y1; ψ)) × ⋯ × Φ−1(Fsn(yn − 1; ψ)), Φ−1(Fsn(yn; ψ)) ,

1With the convention that ∑j = 1
0 vi = 0.
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given by

gη(z) = ∏
i = 1

n
pη(zi ∣ zi − 1, …, z1, yi),

where pη(zi ∣ zi–1, …, z1, yi) is the conditional density of Z(si) given Z(si–1), …, Z(s1), and 

Y(si) = yi, and Z(·) is the Gaussian random field defined after (4). Since 

Z(si) ∣ Z(si − 1), …, Z(s1) ∼ N(mi, vi2), with mi = Eϑ(Z(si) ∣ Z(si–1), …, Z(s1)) = mi(Z(si–1), …, 

Z(s1);ϑ) and vi2 = varϑ(Z(si) ∣ Z(si − 1), …, Z(s1)) = vi2(ϑ), it follows from (4) that pη(zi ∣ Zi–1, 

…, Z1, yi) is the density of the N(mi, vi2) distribution truncated to (Φ−1(FSi(yi – 1; ψ)), Φ
−1(Fsi(yi; ψ))). Then the GHK method approximates (5) by

LGHK(η; y) = 1
M ∑

k = 1

M ϕn(Z(k); Ψϑ)
gη(Z(k))

= 1
M ∑

k = 1

M
∏

i = 1

n pϑ(Zi
(k) ∣ Zi − 1

(k) , …, Z1
(k))

pη(Zi
(k) ∣ Zi − 1

(k) , …, Z1
(k), yi)

= 1
M ∑

k = 1

M
∏

i = 1

n
Φ

Φ−1(Fsi(yi; ψ)) − mki
vki

− Φ
Φ−1(Fsi(yi − 1; ψ)) − mki

vki
,

where Z(1), …, Z(M) are i.i.d. draws from gη(z), with 

Z(k) = (Z1
(k), …, Zn

(k)), mki = mi(Zi − 1
(k) , …, Z1

(k); ϑ) and vki
2 = vi2(ϑ). The simulation of each Z(k) 

is done sequentially, Z1
(k), Z2

(k), …, Zn
(k), using the standard algorithm for simulating from 

truncated normal distributions: For k = 1, …, M and i = 1, …, n, set

Zi
(k) = mki + vkiΦ−1 (1 − Uki)Φ

Φ−1(Fsi(yi − 1; ψ))) − mki
vki

+ UkiΦ
Φ−1(Fsi(yi; ψ))) − mki

vki
,

where the Uki are i.i.d. with unif(0, 1) distribution. The GHK method is implemented in the 

R packages gcmr (Masarotto and Varin, 2017) and gcKrig (Han and De Oliveira, 2018).

Hajivassiliou et al. (1996) compared the GHK method with several other competing methods 

for the approximation of multivariate normal rectangle probabilities. They found that the 

GHK method was the most efficient, but this comparison did not involve the GB method nor 

the method to be described next.

Remark 2. The GHK method requires specifying an ordering of the sampling locations. 

Although there is a natural ordering in the case of time series data, no natural ordering exists 

in the case of spatial data, so any choice is somewhat arbitrary. In numerical explorations, 

we found that when the sampling locations are on a regular grid, the parameter estimates 

displayed little sensitivity to the chosen ordering. On the other hand, when the sampling 

locations are on an irregular grid, a common situation with geostatistical data, the parameter 
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estimates displayed a bit more sensitivity for some of the chosen orderings, but not all, 

especially regarding the covariance parameter estimates. Based on our limited experience we 

conjecture that the sensitivity of the parameter estimates to the chosen ordering of the 

sampling locations is minor and will decrease as the sample size grows.

4 Data Cloning

Data cloning is a method proposed by Lele et al. (2007), and later studied further by Lele et 

al. (2010), to compute maximum likelihood estimators (MLE) and their asymptotic standard 

errors in statistical models with difficulty to compute likelihoods; this is the case for most 

hierarchical models. The method consists of using a Markov chain Monte Carlo (MCMC) 

algorithm to carry out an apparent Bayesian calculation. Instead of the likelihood based on 

the observed data, it uses the likelihood that results in the hypothetical scenario that K > 1 

independent copies (clones) of the data had been observed, together with an arbitrary prior 

on the parameter space. The resulting posterior in the so–called DC–based distribution with 

the parameter space as its support. The idea is that when K is large, the DC–based 

distribution becomes highly concentrated at the MLE, regardless of the prior distribution. 

Then, the MLE can be approximated by the sample mean of draws from the DC–based 

distribution, and the asymptotic variance of the MLE can be approximated by K times the 

sample variance of these draws; this will be called the DC method. In spite of its Bayesian 

motivation, the DC method follows the classical frequentist inferential approach, and uses 

the MCMC machinery only as a computational device. The DC method was used by 

Baghishani and Mohammadzadeh (2011) and Torabi (2015) to fit spatial generalized linear 

mixed models.

4.1 Hierarchical Formulation of Gaussian Copula Models

We show here that the Gaussian copula model (4) can be written as a hierarchical model 

when the correlation function (2) has a ‘nugget effect’, i.e., when τ2 > 0. The Gaussian 

random field Z(·) admits the representation Z(s) =d Γ(s) + ϵ(s), where Γ(·) is a Gaussian 

random field with mean 0 and covariance function (1 − τ2)K̄θ(s, u), ϵ(·) is Gaussian white 

noise with N(0, τ2) distribution, and Γ(·) and ϵ(·) are independent random fields. Let Γ = 

(Γ(s1), …, Γ(sn)). Then, the Gaussian copula model for Y(·) is equivalent to the following 

hierarchical model:

1. For any set of distinct locations {s1, …, sn} ⊂ D, the counts Y(s1), …, Y(sn) are 

conditionally independent given Γ, and

Y (si) ∣ Γ =d Y (si) ∣ Γ(si), i = 1, …, n

∼ ℎi(y ∣ γi; ψ, τ2),

where for any y ∈ ℕ0
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ℎi(y ∣ γi; ψ, τ2) = Φ
Φ−1(Fsi(y; ψ)) − γi

τ − Φ
Φ−1(Fsi(y − 1; ψ)) − γi

τ ; (9)

see Appendix A.

2. Γ(·) is Gaussian random field with mean 0 and covariance function 

(1 − τ2)K̄θ(s, u), so Γ ~ Nn(0, (1 – τ2)Rθ), with (Rθ)ij = K̄θ(si, sj).

4.2 Algorithm

Let y = (y1, …, yn) be the data observed at the n sampling locations, γ = (γ1, …, γn) an 

(unobservable) realization of Γ, which correspond to ‘random effects’ at the sampling 

locations, and π(η) = π(β, σ2, θ, τ2) the prior distribution of the model parameters, assumed 

proper. Then, the posterior distribution of (η, γ) based on y is

π(η, γ ∣ y) ∝ π(η)ϕn(γ; (1 − τ2)Rθ) ∏
i = 1

n
ℎi(yi ∣ γi; ψ, τ2),

where hi(· ∣ γi; ψ, τ2) is given in (9). Now, let y(K) = (y, …, y) be the vector of ‘cloned data’, 

formed by concatenating K independent copies of the observed counts, and γ(K) = (γ1, …, 

γK), where γ1, …, γK ∼iid Nn(0, (1 − τ2)Rθ), with γk = (γk1, …, γkn), so γki is the random 

effect at the ith sampling location from the kth replicate of Γ. Then the ‘posterior 

distribution’ of (η, γ(K)) based on y(K) is

π(K)(η, γ(K) ∣ y(K)) ∝ π(η)π(γ(K) ∣ η)p(y(K) ∣ γ(K), η)

= π(η) ∏
k = 1

K
ϕn(γk; (1 − τ2)Rθ) ∏

k = 1

K
∏
i = 1

n
ℎi(yi ∣ γki; ψ, τ2) .

(10)

Let η be the MLE of η based on the observed data y. If {(η(l), γ(K)
(l) ): l = 1, …, M} is a large 

sample from the distribution (10), it follows from results in Lele et al. (2010) that, under 

suitable conditions, for K large and regardless of the prior π(η)

η ≈ 1
M ∑

l = 1

M
η(l) and var(η) ≈ K

M − 1 ∑
l = 1

M
(η(l) − η)(η(l) − η)⊺,

where these approximations improve as K → ∞; see also Walker (1969) and Baghishani 

and Mohammadzadeh (2011) for similar results. Unlike simulated likelihood methods, the 

DC method approximates η and its (asymptotic) variance directly, without approximating 

the likelihood function.

The number of clones K is chosen to strike a balance between computational accuracy and 

effort. Lele et al. (2010) proposed a simple rule to diagnose whether the DC–based 

distribution is close to ‘degenerate’, based on the fact that as K → ∞ the largest eigenvalue 

of the variance matrix of the DC–based distribution converges to zero at the same rate as 1/
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K. They proposed plotting λK/λ1 versus K, K = 1, 2, …, where λK is the largest eigenvalue 

of the variance matrix of the DC–based distribution based on K clones, and comparing this 

plot with the plot of 1/K. The number of clones is chosen as the smallest K for which λK/λ1 

falls below a small positive threshold, say 0.1.

We use priors of the form π(β, σ2, θ, τ2) = π(β)π(σ2)π(θ)π(τ2), where the marginal priors 

are chosen to be informative, as such priors require fewer clones than non–informative priors 

to achieve a desired accuracy; the MLE obtained by the DC method is insensitive to the 

chosen prior. Any Monte Carlo algorithm that produces samples from (10) would work. We 

found, after some experimentation, that the following ‘Metropolis–within–Gibbs’ sampler 

algorithm works well. The state variables (β, σ2, θ, τ2, γ(K)) are updated by separately 

updating two blocks, (β, σ2) and (θ, τ2, γ(K)), where each block is updated using a 

Metropolis–Hastings algorithm. The details of the algorithm are given in Appendix B.

The requirement that the covariance function of the latent process Z(·) includes a nugget 

effect is a limitation of the above MCMC algorithm for implementing the DC method, 

arguably a moderate one since geostatistical data often contain measurement error. Although 

a model with a fixed small nugget effect could be used to approximately fit data with no 

measurement error, this is likely to produce computational instabilities in the evaluation of 

hi(· ∣ γi; ψ, τ2).

5 Initial Values

All of the previously described methods require good initial values for the parameters for an 

efficient implementation. Good initial values would produce fast convergence of the iterative 

algorithm used for likelihood optimization in the GB and GHK methods, and good initial 

values allow the use of informative priors in the DC method.

We use a simple two–stage estimation method to obtain initial values, which shares some 

similarities with one of the methods proposed by Zhao and Joe (2005). The first stage 

consists of estimating the marginal parameters by maximizing the pseudo–likelihood 

obtained under the working assumption of independence, resulting in

ψ ≔ arg maxψ ∏
i = 1

n
fsi(yi; ψ) .

Next, note from (4) that for any s ∈ D and k ∈ ℕ0

Z(s) ∣ Y (s) = k ∼ N(0, 1) truncated to (Φ−1(Fs(k − 1; ψ)), Φ−1(Fs(k; ψ))),

so a kind of ‘residuals’ can be defined as

Zi ≔ Eψ{Z(si) ∣ Y (si) = yi} =
ϕ(Φ−1(Fsi(yi − 1; ψ))) − ϕ(Φ−1(Fsi(yi; ψ)))

Fsi(yi; ψ) − Fsi(yi − 1; ψ) , i = 1, …, n,
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where φ(·) is the pdf of the standard normal distribution. The second stage consists of 

estimating the covariance parameters by maximizing the pseudo–likelihood obtained under 

the working assumption that the joint distribution of Z = (Z1, …, Zn)⊺ is Gaussian with mean 

vector 0 and covariance matrix Ψϑ, resulting in

ϑ ≔ arg maxϑ ∣ Ψϑ ∣ −1 ∕ 2exp{ − 1
2Z⊺Ψϑ

−1Z} .

Remark 3. The GB and GHK methods provide approximations to likelihood functions at the 

MLEs (or any other parameter values), so they can be used for likelihood–based inferential 

tasks such as model selection, testing of nested hypotheses and computation of likelihood–

based confidence intervals. Although the DC method does not approximate likelihood 

functions directly, likelihoods and likelihood ratios can be approximated using Monte Carlo 

techniques described in Thompson (1994), as long as the models under study are 

hierarchical. Ponciano et al. (2009) described how to perform the aforementioned 

likelihood–based inferential tasks using MLEs obtained from the DC method and a sample 

from the conditional distribution of the random effects given the data and parameter 

estimates. An application of some of these inferential tasks will be illustrated in Section 7.

6 Simulation Study

We conduct a simulation study to compare the three methods described above, GB, GHK 

and DC, to approximate the MLEs of the model parameters, and investigate some of their 

statistical properties. The properties to be investigated are absolute relative bias and mean 

absolute error, as well as coverage and length of different types of confidence intervals. In 

addition, we also compare the required computational effort to implement these methods. 

The results for the GB and GHK methods were obtained using, respectively, the R packages 

mvtnorm (Genz and Bretz, 2009) and gcKrig (Han and De Oliveira, 2018), while the DC 

method was coded and implemented by us in R and C++.

6.1 Design

Below we describe the factors of the simulation design, where some are fixed and others 

vary, as well as the MCMC settings required for the DC method.

• The study region is D = [0, 1] × [0, 1]. The sampling locations form an 11 × 11 

regular lattice within D, so n = 121 and the minimum distance between sampling 

locations is 0.1.

• As marginals we use the family of negative binomial distributions parameterized 

in terms of their mean and a ‘size’ parameter (the so–called NB2 distribution; 

Cameron and Trivedi (2013)), where the pmf of Y(s) is given by

fs
NB(y; ψ) = Γ(y + 1 ∕ σ2)

Γ(1 ∕ σ2)y!
1

1 + σ2μ(s)
1 ∕ σ2

1 − 1
1 + σ2μ(s)

y
, y = 0, 1, 2, … (11)
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With this parameterization it holds that E(Y(s)) = μ(s) and var(Y(s)) = μ(s)(1 + 

σ2μ(s)).

• The mean function μ(s) is exp(0.5 + 0.5x + y), so (β1, β2, β3) = (0.5, 0.5, 1). The 

marginal priors for β used in the DC method is N3((0.5, 0.5,1)⊤, 30I3).

• The dispersion parameter σ2 is either 0.2 (small overdispersion) or 2 (large 

overdispersion). The marginal priors for σ2 used in the DC method are 

IG(0.2,0.4) (inverse Gaussian) and IG(2, 4), respectively.

• The continuous correlation function K̄θ(s, u) in (2) is either exp(−d/0.1) or 

exp(−d/0.3), with d = ∥s – u∥ being Euclidean distance, so θ = 0.1 (weak 

dependence) or θ = 0.3 (strong dependence). The marginal priors for θ used in 

the DC method are LN(−2, 1) (lognormal) and LN(−1, 0.5), respectively.

• The nugget effect τ2 in the correlation function (2) is 0.25, and its marginal prior 

used in the DC method is unif(0, 1).

• The number of clones for the DC method is K = 40. This choice was made based 

on plots of λK/λ1 versus K obtained from a few pilot runs; see Section 4.2 and 

Figure 1.

• For the MCMC algorithm in the DC method, η(0) were set at the initial values 

described in Section 5. The tuning constants c1, c2, c3, c4 > 0 were updated every 

1000 iterations with memory parameter equal to 1000, while the tuning constant 

c5 was fixed at 0.03; see Appendix B for details. The length of each MCMC run 

is 15000, with the first 5000 iterations as ‘burn–in’. These choices ensure the 

automaticity and robustness of the simulations.

For each of the four simulation scenarios (two values of σ2 and two values of θ) we 

simulated 1000 datasets, each of size n = 121, and computed the approximate MLE using the 

three methods. The approximate MLEs will be compared in terms of absolute relative bias 

(ARB) and mean absolute error (MAE). These are defined, for each simulation scenario, 

method and parameter ‘a’, as

ARB =
MLE−atrue

atrue
and MAE = 1

1000 ∑
i = 1

1000
∣ ai − atrue ∣ ,

where ature is the true value of a, ai is the estimate of ature based on the ith simulated dataset, 

1000 and MLE = 1
1000 ∑i = 1

1000 ai. In addition, for each simulation scenario we also compare 

the coverage and length of three types of (approximate) 95% confidence intervals (see 

below), defined as

coverage = 1
1000 ∑

i = 1

1000
1{LBi < atrue < UBi}, length = median{UBi − LBi : i = 1, …, 1000},
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where LBi, UBi are the endpoints of a confidence interval based on the ith simulated dataset. 

The 95% confidence intervals to be considered are:

• Wald: The Wald–type confidence interval has endpoints 

(LBi, UBi) = ai ∓ 1.96(var(ai))1 ∕ 2, where var(ai) is an estimate of the (asymptotic) 

variance of ai based on the ith simulated dataset. For the GHK method the 

variance estimates are obtained from the diagonal elements of the (estimated) 

inverse Hessian matrix obtained at the end of the optimization process.

• Wald–Tran: This is a Wald–type confidence interval obtained using the 

reparametrization of the likelihood in terms of the original regression parameters 

(β1, β2, β3) and the transformed parameters (ξ2, ξ3, ξ4) = (log(σ2), log(θ), 

logit(τ2)). The confidence intervals for the original parameters are obtained by 

back–transforming the endpoints of the Wald–type confidence intervals for the 

transformed parameters.

• PL: This is the confidence interval obtained by evaluating the profile likelihood 

and inverting a likelihood ratio test (Meeker and Escobar, 1995). LBi and UBi 

can be computed either by evaluating the profile likelihood on a selected grid of 

parameter values or by evaluating the profile likelihood over parameter values 

selected by an iterative algorithm; gcmr uses the former while gcKrig uses the 

latter.

6.2 Results

Table 1 displays the ARB and MAE results. Overall, the three methods to approximate the 

maximum likelihood estimators are comparable, in the sense that they produce similar ARB 

and MAE. In regard to the regression parameters, all methods produce MLEs for β2 and β3 

that are close to being unbiased, but the MLEs of β1 are (downward) biased when the 

dependence is strong. All the methods produce MLEs for σ2, θ and τ2 that are (downward) 

biased, with the ARB tending to increase when either the overdispersion or strength of 

dependence increase. Also, except for τ2, the MAE of the MLEs of all parameters increase 

with overdispersion and strength of dependence.

Next, for each simulation scenario and parameter we computed the three types of 

(approximate) 95% confidence intervals described above, and compare them in terms of 

their coverage and length. This is done only for the GHK method since the other methods 

produce very similar results.

Table 2 displays the confidence intervals results. For the regression parameters, all the 

confidence intervals display undercoverage, and this undercoverage becomes more 

substantial as the strength of dependence increases. Among all the confidence intervals the 

profile likelihood confidence intervals have coverage that are closest to nominal, while that 

of the other two are similar. The profile likelihood confidence intervals are in general wider, 

which partly explain their better coverage.

For the overdispersion parameter, all confidence intervals tend to display undercoverage, 

except when both dependence and overdispersion are small. The undercoverage of the 
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Wald–Tran and profile likelihood confidence intervals are smaller than that of the Wald 

confidence interval, an the length of the all confidence intervals are similar, with Wald–Tran 

being slightly larger sometimes. For the range parameter, the Wald confidence interval 

displays overcoverage when the strength of dependence is small, and undercoverage when 

the strength of dependence is large. The Wald–Tran confidence interval always displays 

undercoverage. The profile likelihood confidence interval has coverage that is closest to 

nominal, and is wider than the other two confidence intervals. Finally for the nugget 

parameter, all three confidence intervals have similar coverages that are close to nominal, 

and the Wald confidence interval is wider than the profile likelihood confidence interval. 

Overall, profile likelihood confidence intervals seem to perform better than the other two, in 

agreement with what has been observed in other models and settings; see Meeker and 

Escobar (1995).

Although the above properties of point and interval estimators are somewhat unsatisfactory, 

they are in agreement with properties of maximum likelihood parameter inferences in 

Gaussian random fields; see Irvine et al. (2007) and the references therein. We expect the 

above properties of point and interval estimators to improve as the sample size grows in an 

increasing domain asymptotic regime (but not necessarily so in an infill asymptotic regime). 

To investigate this conjecture, we ran a second simulation study with the same design as 

before, except for the factor in the first bullet. Now we consider the larger study region D = 

[0, 2] × [0, 2], where the sampling locations form a 21 × 21 regular lattice so n = 441 and the 

minimum distance between sampling locations is still 0.1.

Table 3 displays the combined results for point and interval estimators using the GHK 

method (results for Wald confidence intervals are not reported since they are similar to or 

inferior than the results for Wald–Tran confidence intervals.) The MLEs for this larger 

sample size are, for most parameters and scenarios, approximately unbiased and the MAE 

are substantially reduced. The coverage probabilities of both confidence intervals are, for 

most parameters and scenarios, closer to nominal than those for the smaller sample size. The 

exception occurs for the Wald–Tran confidence interval for the range parameter that displays 

severe undercoverage for some scenarios. For most parameters and scenarios, the profile 

likelihood confidence intervals have coverages that are similar or better than those of the 

Wald–Tran confidence intervals, and theirs lengths are similar. Again, the profile likelihood 

confidence intervals are preferable. We end by pointing out that we did not include the GB 

and DC methods in this larger simulation study because their required computational effort 

is substantially much larger than that of the GHK method; see the next subsection.

6.3 Computational Time

We now compare the three methods to approximate the MLE in terms of computational 

effort. The conclusions derived from such comparisons are arguably tentative, since 

computational times depend heavily on many implementation factors that are bound to 

change (evolve), such as programming environment and language, the method of 

optimization and even starting points in the optimization. Nevertheless, the following 

comparison provides information about the relative computational efforts required for the 
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three methods under their current implementations, and how these efforts increase with 

sample size.

For the GB method the maximum number of function evaluations (maxpts) in mvtnorm was 

set to 25000, while the choices of M and P are selected (optimized) automatically by the 

package. For the GHK method the Monte Carlo size was set at M = 1000. For both 

simulated likelihood methods the R function optim was used with box constrained quasi-

Newton method for optimization method = "L-BFGS-B" using same initial values. For the 

DC method the heavy-duty number crunching, like generation of proposal distributions, was 

coded in C++ with interface to R using the packages Rcpp and RcppArmadillo (Eddelbuettel 

and Sanderson, 2014), and the MCMC iterations were coded in R. We controlled other 

factors so the computational environment under different methods is the same. All 

computations were carried out on a Macbook Pro computer with a 2.8 GHz Intel Core i7 

processor, 16 GB RAM and 6 MB L3 Cache using 4 cores working in parallel. To speed up 

the computations we used the R package snowfall (Knaus, 2015) to parallelize the 

computations in the three methods.

Table 4 displays the times (in seconds) that took for each of the three methods to compute 

the average of the MLE from 100 simulations with different sample sizes. Clearly, the GHK 

simulator is substantially faster than its competitors, more than ten times faster on average. It 

is faster than the GB method due to the generation of quasi–random points required for the 

latter, at least for the tested sample sizes (the maximum allowed dimension in the current 

version of mvtnorm is n = 1000). On the other hand, the DC method is the most 

computationally intensive due to its use of MCMC and clones of data. Given these findings 

and the results in Table 1, we conclude that the GHK method provides the best balance 

between statistical and computational efficiency.

7 Example: Lansing Woods Dataset

In this section we illustrate the application of the proposed methods for the analysis of a 

dataset previously analyzed by Kazianka (2013) using other methods. For comparison we 

follow and extend his analyses. The original dataset consists of the locations of 2251 trees 

and their botanical classification as hickories, maples, red oaks, white oaks, black oaks or 

miscellaneous trees, within a plot of 924 × 924 feet in Lansing Woods, Michigan, USA; it is 

available in the R package spatstat. The question of interest is to determine whether the 

presence of hickory trees tend to discourage the presence of maple trees nearby. These data 

were summarized by rescaling the original plot into the unit square and dividing the latter 

into 256 square quadrats of equal area. Let Y(si) denote the number of maple trees and f2(si) 

the number of hickory trees in the quadrat with center si, i = 1,…, 256. Figure 2 displays the 

spatial distribution of these variables.

As in Kazianka (2013), we first fit the Gaussian copula model with Poi(exp(β1 + β2f2(s))) 

marginals and correlation function Kϑ(s, u) = (1 – τ2)exp(−d/θ) + τ21{s = u}. This model is 

fit using two methods, GHK and DC, where for the latter we used 40 clones and the priors 

β ∼ N2(βINI, 30I2), θ ~ LN(−2, 1) and τ2 ~ unif(0,1), with βINI the initial value of β whose 

computation is described in Section 5. The GHK implementation is carried out using the R 
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package gcKrig. Table 5 displays the MLE and their standard errors (in parentheses) for 

each method, as well as the estimates obtained by Kazianka (2013) using two other 

estimation methods (generalized quantile transform (GQT) and composite likelihood (CL)). 

The estimates from both methods are quite similar for all parameters, and the standard errors 

display small discrepancies. For both methods the Wald–type 99% confidence interval for β2 

is made out entirely of negative numbers, suggesting the counts of hickory and maple trees 

in the quadrats are negatively associated. These findings agree with those in Kazianka 

(2013).

To investigate the adequacy of the Poisson family of marginal distributions, we also fit 

Gaussian copula models with negative binomial distributions, as in (11), and zero–inflated 

Poisson (ZIP) distributions as marginals, the latter having pmf given by

fsZIP(y; ψ) =

σ2
σ2 + 1

+ 1
σ2 + 1

exp( − (1 + σ2)μ(s)) if y = 0

1
σ2 + 1

exp( − (1 + σ2)μ(s))((1 + σ2)μ(s))y
y! if y = 1, 2, …

;

see Han and De Oliveira (2016). Both families are parameterized in terms of the mean 

function μ(s) = exp(β1 + β2f2(s)) and a ‘size’ parameter σ2 ≥ 0 that controls overdispersion, 

and both include the aforementioned family of Poisson distributions (that results when σ2 = 

0). We continue using the aforementioned exponential correlation function with nugget τ2 ∈ 
[0, 1].

Table 6 displays the MLE and asymptotic standard errors (in parenthesis) using the GHK 

and DC methods under both families of marginals. To fit the models with negative binomial 

and zero-inflated Poisson family of marginals using the DC method we used the same priors 

as in the fit with Poisson marginals, plus σ2 ~ IG(1,1). The parameter estimates under 

Poisson and zero–inflated Poisson marginals are similar, while some differences are 

apparent under the negative binomial marginals. Under these families of marginals the 

Wald–type 99% confidence interval for β2 are also made out entirely of negative numbers, 

supporting again the conclusion that there exist negative association between the number of 

hickory and maple trees in the quadrats. In addition, the estimates of σ2 are positive and 

away from zero for both methods and both families of marginals, supporting the presence of 

overdispersion.

As indicated in Remark 3, the GHK method approximates the likelihood function evaluated 

at the MLE, so information criteria can be used for selecting among candidate models. Table 

7 reports the log–likelihood, AICc and BIC values for the fitted Gaussian copula models 

with families of Poisson, ZIP and NB2 marginals. The model with NB2 marginal is the one 

selected for both the AICc and BIC criteria. Based on the DC method, Ponciano et al. (2009) 

described a Monte Carlo method to approximate likelihood ratios which can be used to 

compute the difference in information criteria between two competing models, say 

BICmodel1 – BICmodel2, which reaches the same conclusion. Neither the models with Poisson 

or ZIP marginals are competitive, so the model with negative binomial marginals seems the 

more appropriate for this dataset.

Han and De Oliveira Page 16

Commun Stat Simul Comput. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To assess the adequacy of the fitted Gaussian copula model with negative binomial 

marginals selected above we use the kind of residuals advocated by Masarotto and Varin 

(2012). Specifically, we use the randomized quantile residuals defined as

ri = Φ−1{UiFsi(yi ∣ yi − 1, …, y1; η) + (1 − Ui)Fsi(yi − 1 ∣ yi − 1, …, y1; η)},

for i = 1, …, n, where η = (β1, β2, σ2, θ , τ2), Fsi(· ∣ yi–1, …, y1; η) is the conditional cdf of 

Y(si) given Y(si–1),…, Y(s1) and U1,…,Un is an independent random sample from the 

unif(0,1) distribution; these are computed using the R package gcmr. If the model is 

correctly specified, then r1,…,rn behave (approximately) as a random sample from the 

standard normal distribution. Figure 3 displays different graphical summaries of these 

residuals. All of them support the normality assumption, and consequently the adequacy of 

the fitted model.

Finally, likelihood–based inferences are possible using the GHK method. Figure 4 displays 

the profile log–likelihoods of β2 and σ2 under the NB2 model, from which follow that 

(approximate) 99% confidence intervals for these parameters are (−0.210, −0.019) and 

(0.534, 5.012), respectively; the corresponding Wald–type 99% confidence intervals are 

(−0.206, −0.018) and (0.031, 2.524). These support even more strongly the above 

conclusions regarding the presence of a negative association between the number of hickory 

and maple trees in the quadrats, and the existence of overdispersion in the marginal 

distributions of the counts.

A script with code to replicate the data analysis of this section can be obtained from https://

github.com/hanzifei/Code_GC_MLE.

8 Conclusions

In this work we considered the computationally challenging task of (numerically) computing 

MLE of parameters in Gaussian copula models for geostatistical count data. We reviewed 

two previously proposed Monte Carlo methods to approximate the likelihood function, the 

GB and GHK methods, and investigated the implementation for this model of the DC 

method. We also proposed a simple and fast way to obtain initial values that are needed for 

all the methods.

Based on our simulation study, the statistical properties of the MLE approximated by the 

three methods are similar. Of the three types of confidence intervals we explored, the profile 

likelihood confidence intervals displayed the best coverage, at the price of being on average 

wider, while the Wald–type confidence intervals displayed the worst coverage. Overall, we 

recommend using the former. The estimation bias of MLE and undercoverage of confidence 

intervals can be substantial when the sample size is small, but these become better as the 

sample size grows following an increasing domain asymptotic regime.

In terms of computational effort, the GHK method is the least computationally intensive of 

the three methods, while the GB and DC methods are much more computationally intensive, 

about ten times more on average. Because of all of the above, the GHK method provides the 
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best balance between statistical efficiency and computational efficiency, so it is the method 

we recommend. Nevertheless, it is worth noting the ‘hybrid’ method proposed by 

Baghishani et al. (2012) that blends the DC method and integrated nested Laplace 

approximations. That article showed that the computational effort of this hybrid method is 

substantially smaller than that of the DC methods when fitting some simple hierarchical 

models, so investigating the properties of this hybrid method for fitting Gaussian copula 

models to geostatistical count data seems a worthwhile research problem.

Finally, note that spatial prediction/interpolation is often the end goal of many geostatistical 

analyses. For parameter estimates η and prediction location s0, the (plug–in) predictive 

distribution Pη(Y (s0) = y0 ∣ Y = y) is the ratio of two multivariate integrals like that in (5), so 

these can also be approximated using the GHK method. Details on this prediction method 

are given in Han and De Oliveira (2018).
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Appendix A

Proof of Identity (7)

For the inverse of the map (6) we have

d
dui

zi(ui) =
−fsi(yi; ψ)

ϕ(Φ−1(Fsi(yi; ψ) − uifsi(yi; ψ))
=

−fsi(yi; ψ)
ϕ(zi(ui))

, i = 1, …, n .

Since zi is a function of ui alone, the Jacobian matrix J = ∂(z1(u1), … , zn(un))/∂(u1, … , un) 

of the inverse mapping is diagonal, so

∣ det(J) ∣ = ∏
i = 1

n fsi(yi; ψ)
ϕ(zi(ui))

.

Since (6) maps (Φ−1(Fs1(y1–1; ψ)), Φ−1(Fs1(y1; ψ))) ×⋯× (Φ−1(Fsn(yn–1; ψ)), Φ−1(Fsn(yn; 

ψ))) into (0, 1)n, by the change of variable formula for multivariate integrals, (5) becomes

L(η; y) = ∫0
1

⋯∫0
1

ϕn(z1(u1), …, zn(un); Ψϑ) ∣ det(J) ∣ du1…dun

= ∏
i = 1

n
fsi(yi; ψ) ⋅ ∫0

1
⋯∫0

1 ϕn(z1(u1), …, zn(un); Ψϑ)

∏i = 1
n ϕ(zi(ui))

du1…dun

= ∏
i = 1

n
fsi(yi; ψ) ⋅ ∫0

1
⋯∫0

1
∣ Ψϑ ∣ −1 ∕ 2exp − 1

2z⊺(u)(Ψϑ
−1 − In)z(u) du .
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Equivalence Between (7) and Madsen and Fang Likelihood Representation

Madsen and Fang (2011) showed that the likelihood in (5) can be written as

L(η; y) = EU ∣ Ψϑ ∣ −1 ∕ 2exp − 1
2z ∗ ⊺ (U)(Ψϑ

−1 − In)z∗(U) ⋅ ∏
i = 1

n
fsi

∗ (yi − Ui;

ψ) ,
(12)

where

z∗(U) = Φ−1(Fs1
∗ (y1 − U1; ψ)), …, Φ−1(Fsn

∗ (yn − Un; ψ)) ⊺,

U = (U1,…,Un) ~ unif((0, 1)n), and fsi
∗ ( ⋅ ; ψ) and Fsi

∗ ( ⋅ ; ψ) are, respectively, the pdf and cdf 

of the ‘continuously extended’ random variable Y i
∗ = Y (si) − Ui. Now, it can be shown that 

for every s ∈ D and y ∈ ℝ, Fs
∗(y; ψ) = Fs( y ; ψ) + (y − y )fs( y + 1 ; ψ) and 

fs
∗(y; ψ) = fs( y + 1 ; ψ), where [y] is the largest integer not greater than y. Hence for any 

y ∈ ℕ0 and u ∈ (0, 1), we have fs
∗(y − u; ψ) = fs(y; ψ) and 

Fs
∗(y − u; ψ) = Fs(y − 1; ψ) + (1 − u)fs(y; ψ) = Fs(y; ψ) − ufs(y; ψ). Substituting these into(12) 

shows that the right–hand sides of (12) and (7) are the same.

Proof of Identity (9)

As indicated in Section 2.2, the events {Y(s) = y} and {Fs(y – 1; ψ) < Φ(Z(s)) ≤ Fs(y; ψ)} 

are equivalent, so for y ∈ ℕ0 and i = 1,…,n we have

P(Y (si) = y ∣ Γ(si) = γi; ψ, τ2)

= P(Φ−1(Fsi(y − 1; ψ)) < Z(si) ≤ Φ−1(Fsi(y; ψ)) ∣ Γ(si) = γi; ψ, τ2)

= P
Φ−1(Fsi(y − 1; ψ)) − γi

τ <
ϵ(si)

τ ≤
Φ−1(Fsi(y; ψ)) − γi

τ Γ(si) = γi; ψ, τ2

= Φ
Φ−1(Fsi(y; ψ)) − γi

τ − Φ
Φ−1(Fsi(y − 1; ψ)) − γi

τ .

Appendix B

MCMC Algorithm for the DC Method

In the Gaussian copula model, β ∈ ℝp, θ, σ2 > 0 and τ2 ∈ [0, 1]. To ease updating the 

parameters using a random–walk Metropolis–Hastings algorithm with Gaussian proposals, 

we transform each parameter to the real line. Specifically, let ξ1 = β, ξ2 = log(σ2), ξ3 = 

log(θ) and ξ4 = logit(τ2). As customary in the statistical literature, qa(· ∣ aold) would denote 
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the proposal distribution for the state component ‘a’ in the current iteration, given its value 

in the previous iteration is aold. The algorithm proceeds as follows:

Step 0: Choose the initial values for the parameters η(0); simulate γ1
(0), …, γK

(0) ∼iid Nn(0, Rθ(0))

and set the initial values for the replicated latent process as γ(K)
(0) = (γ1

(0), …, γK
(0)); set the 

tuning constants c1, c2, c3, c4, c5 > 0; set l = 0.

Step 1: Simulate independently β∗ ∼ Np(β(l), c1Ip), ξ2
∗ ∼ N(ξ2

(l), c2) and U1 ~ unif(0, 1).

Step 2: Compute the acceptance probability α1 = min{1, t1}, where

t1 =
π(K)(β∗, σ2 ∗ ∣ θ(l), τ2(l), γ(K)

(l) , y(K))qβ(β(l) ∣ β∗)qσ2(σ2(l) ∣ σ2 ∗ )

π(K)(β(l), σ2(l) ∣ θ(l), τ2(l), γ(K)
(l) , y(K))qβ(β∗ ∣ β(l))qσ2(σ2 ∗ ∣ σ2(l))

=
π(β∗)π(σ2 ∗ )∏k = 1

K ∏i = 1
n ℎi(yi ∣ γki

(l); β∗, σ2 ∗ , τ2(l))σ2 ∗

π(β(l))π(σ2(l))∏k = 1
K ∏i = 1

n ℎi(yi ∣ γki
(l); β(l), σ2(l), τ2(l))σ2(l)

,

where it was used that 
qβ(β(l) ∣ β∗)

qβ(β∗ ∣ β(l))
= 1 and 

qσ2(σ2(l) ∣ σ2 ∗ )
qσ2(σ2 ∗ ∣ σ2(l))

= σ2 ∗
σ2(l) . Then set

(β(l + 1), σ2(l + 1)) =
(β∗, σ2 ∗ ) if U1 < α1

(β(l), σ2(l)) otherwise
.

Step 3: Simulate independently ξ3
∗ ∼ N(ξ3

(l), c3), ξ4
∗ ∼ N(ξ4

(l), c4) and U2 ~ unif(0, 1). The latent 

process is updated via the Langevin–Hastings algorithm which uses gradient information of 

the target density (Christensen et al., 2006). For k, k′ = 1,…, K, the proposed kth set of 

random effects is simulated independently of the k′th set (k ≠ k′) as then set 

γ(K)
∗ = (γ1

∗, …, γK∗ ).

γk
∗ ∼ Nn γk

(l) +
c5
2 ∇ log π(γk

(l) ∣ y, β(l + 1), σ2(l + 1), θ(l), τ2(l)), c5In ;

Step 4: Compute the acceptance probability α2 = min{1, t2}, where

t2 =
π(K)(θ∗, τ2 ∗ , γ(K)

∗ ∣ β(l), σ2(l), y(K))qθ(θ(l) ∣ θ∗)qτ2(τ2(l) ∣ τ2 ∗ )qγ(K)(γ(K)
(l) ∣ γ(K)

∗ )

π(K)(θ(l), τ2(l), γ(K)
(l) ∣ β(l), σ2(l), y(K))qθ(θ∗ ∣ θ(l))qτ2(τ2 ∗ ∣ τ2(l))qγ(K)(γ(K)

∗ ∣ γ(K)
(l) )

=
π(θ∗)π(τ2 ∗ )∏k = 1

K ϕn(γk
∗; (1 − τ2 ∗ )Rθ∗)∏k = 1

K ∏i = 1
n ℎi(yi ∣ γki

∗ ; β(l), σ2(l), τ2 ∗ )qγ(K)(γ(K)
(l) ∣ γ(K)

∗ )θ∗τ2 ∗ (1 − τ2 ∗ )

π(θ(l))π(τ2(l))∏k = 1
K ϕn(γk

∗; (1 − τ2(l))Rθ(l))∏k = 1
K ∏i = 1

n ℎi(yi ∣ γki
(l); β(l), σ2(l), τ2(l))qγ(K)(γ(K)

∗ ∣ γ(K)
(l) )θ(l)τ2(l)(1 − τ2(l))

where
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qγ(K)(γ(K)
∗ ∣ γ(K)

(l) ) = ∏
k = 1

K
qγk(γk

∗ ∣ γk
(l))

= ∏
k = 1

K
ϕn γk

∗ − γk
(l) −

c5
2 ∇ log π(γk

(l) ∣ y, β(l + 1), σ2(l + 1), θ(l), τ2(l)); c5In ,

qγ(K)(γ(K)
(l) ∣ γ(K)

∗ ) is similarly defined, and it was used that 
qθ(θ(l) ∣ θ∗)

qθ(θ∗ ∣ θ(l))
= θ∗

θ(l)  and 

qτ2(τ2(l) ∣ τ2 ∗ )
qτ2(τ2 ∗ ∣ τ2(l))

= τ2 ∗ (1 − τ2 ∗ )
τ2(l)(1 − τ2(l))

. Then set

(θ(l + 1), τ2(l + 1), γ(K)
(l + 1)) =

(θ∗, τ2 ∗ , γ(K)
∗ ) if U2 < α2

(θ(l), τ2(l), γ(K)
(l) ) otherwise

.

Step 5: Increase l by 1, and repeat steps 1–4 until the states have reached the equilibrium 

distribution of the Markov chain.

Posterior Calculation of the Gradient of the Latent Process

The log of the full conditional distribution of the latent field γ is given by

log(π(γ ∣ y, ψ, θ, τ2)) = log(ϕn(γ; (1 − τ2)Rθ)) + ∑
i = 1

n
log(ℎi(yi ∣ γi; ψ, τ2)) + const .

For i = 1,…,n we have

∂
∂γi

log(ℎi(yi ∣ γi; ψ, τ2)) =
ϕ

Φ−1(Fsi(yi − 1; ψ)) − γi
τ − ϕ

Φ−1(Fsi(yi; ψ)) − γi
τ

τ Φ
Φ−1(Fsi(yi; ψ)) − γi

τ − Φ
Φ−1(Fsi(yi − 1; ψ)) − γi

τ

, (13)

and since log(ϕn(γ; (1 − τ2)Rθ)) = − 1
2 (log ∣ (1 − τ2)Rθ ∣ + (1 − τ2)−1γ⊺Rθ

−1γ + n log(2π)),

∂
∂γ log(ϕn(γ; (1 − τ2)Rθ)) = − Rθ

−1γ
1 − τ2 . (14)

Combining (13) and (14) we get ∇ log (π(γ ∣ γ, ∣ y, ψ, θ, τ2)).

Remark 4. The tuning constants c1,…,c4 could be selected by trial and error until both 

Metropolis–Hastings steps have good acceptance probabilities (in the range 0.25–0.5, say). 

Instead, in the simulation we used the algorithm in Haario et al. (1999) that automatically 

adjusts these constants every so often. Let ξ1
(l), ξ2

(l), ξ3
(l), ξ4

(l) be the transformed parameters at 
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the 1th iteration. The variances of their proposal distributions are adjusted every 1000 

iterations, at iterations l ∈ {1001, 2001, …}, as 

qξ1( ⋅ ∣ ξ1
(l − 1000), …, ξ1

(l − 1)) ∼ N(ξ1
(l − 1), rd1

2 var(ξ1
(l))), 

qξ2( ⋅ ∣ ξ2
(l − 1000), …, ξ2

(l − 1)) ∼ N(ξ2
(l − 1), rd1

2 var(ξ2
(l))), 

qξ3( ⋅ ∣ ξ3
(l − 1000), …, ξ3

(l − 1)) ∼ N(ξ3
(l − 1), rd2

2 var(ξ3
(l))) and 

qξ4( ⋅ ∣ ξ4
(l − 1000), …, ξ4

(l − 1)) ∼ N(ξ4
(l − 1), rd2

2 var(ξ4
(l))), where var(ξ1

(l)), var(ξ2
(l)), var(ξ3

(l)) and 

var(ξ4
(l)) are the sample variance matrices computed from their previous 1000 iterations, 

rd1 = 2.38 ∕ d1 and rd2 = 2.38 ∕ d2, with d1 and d2 the dimensions of (ξ1
(l), ξ2

(l)) and (ξ3
(l), ξ4

(l)).
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Figure 1: 
Plots of standardized eigenvalues of the posterior variance matrix based on the number of 

clones K (solid line), and the function 1/K (dashed line).
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Figure 2: 
Lansing wood dataset: spatial distribution of hickory counts (left) and maple counts (right).
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Figure 3: 
Graphical summaries of residuals from the fitted Gaussian copula model with negative 

binomial marginals.
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Figure 4: 
Profile likelihoods of the parameter β2 and σ2 under the NB2 marginal and their 

corresponding 99% confidence intervals.
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Table 1:

Absolute relative bias (ARB) and mean absolute errors (MAE) for the three methods (GB, GHK and DC) and 

four simulation scenarios. The summaries are based on 1000 simulated datasets.

True
parameters

ARB MAE

GB GHK DC GB GHK DC

β1 = 0.5 0.06 0.06 0.14 0.25 0.24 0.26

β2 = 0.5 0.00 0.00 0.02 0.28 0.28 0.29

β3 = 1.0 0.02 0.01 0.00 0.28 0.28 0.29

σ2 = 0.2 0.15 0.15 0.10 0.07 0.07 0.08

θ = 0.1 0.10 0.20 0.20 0.04 0.04 0.04

τ2 = 0.25 0.40 0.36 0.32 0.22 0.21 0.20

β1 = 0.5 0.30 0.26 0.30 0.44 0.43 0.44

β2 = 0.5 0.10 0.10 0.04 0.44 0.45 0.45

β3 = 1.0 0.07 0.05 0.02 0.44 0.44 0.47

σ2 = 0.2 0.50 0.55 0.35 0.13 0.14 0.15

θ = 0.3 0.40 0.43 0.33 0.15 0.15 0.13

τ2 = 0.25 0.28 0.24 0.24 0.16 0.15 0.15

β1 = 0.5 0.18 0.16 0.12 0.46 0.45 0.46

β2 = 0.5 0.02 0.02 0.06 0.54 0.54 0.58

β3 = 1.0 0.03 0.03 0.08 0.55 0.55 0.60

σ2 = 2.0 0.06 0.05 0.04 0.37 0.38 0.40

θ = 0.1 0.10 0.10 0.10 0.04 0.04 0.04

τ2 = 0.25 0.32 0.32 0.28 0.21 0.22 0.22

β1 = 0.5 0.64 0.56 0.58 0.75 0.74 0.73

β2 = 0.5 0.10 0.06 0.02 0.78 0.77 0.80

β3 = 1.0 0.06 0.05 0.12 0.76 0.77 0.82

σ2 = 2.0 0.14 0.14 0.09 0.71 0.71 0.70

θ = 0.3 0.33 0.33 0.30 0.17 0.16 0.16

τ2 = 0.25 0.24 0.24 0.20 0.17 0.17 0.18
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Table 2:

Empirical coverage probability and median length of different nominal 95% confidence intervals using the 

GHK method. The summaries are based on 1000 simulated datasets.

True
parameters

Coverage Length

Wald Wald–Tran PL Wald Wald–Tran PL

β1 = 0.5 0.902 0.900 0.927 0.977 0.974 1.076

β2 = 0.5 0.904 0.901 0.918 1.135 1.131 1.232

β3 = 1.0 0.908 0.907 0.929 1.142 1.140 1.243

σ2 = 0.2 0.875 0.979 0.972 0.268 0.500 0.355

θ = 0.1 0.971 0.767 0.941 0.291 0.318 0.348

τ2 = 0.25 0.968 0.954 0.952 0.901 0.912 0.735

β1 = 0.5 0.765 0.759 0.831 1.238 1.221 1.439

β2 = 0.5 0.787 0.782 0.842 1.349 1.335 1.521

β3 = 1.0 0.789 0.788 0.839 1.383 1.362 1.542

σ2 = 0.2 0.504 0.822 0.796 0.228 0.502 0.353

θ = 0.3 0.677 0.701 0.929 0.360 0.435 0.678

τ2 = 0.25 0.953 0.948 0.957 0.675 0.726 0.612

β1 = 0.5 0.901 0.899 0.928 1.866 1.859 2.001

β2 = 0.5 0.906 0.904 0.941 2.309 2.300 2.432

β3 = 1.0 0.912 0.912 0.939 2.329 2.321 2.446

σ2 = 2.0 0.859 0.897 0.868 1.651 1.678 1.592

θ = 0.1 0.986 0.785 0.956 0.318 0.385 0.427

τ2 = 0.25 0.971 0.956 0.961 0.886 0.891 0.769

β1 = 0.5 0.782 0.776 0.881 2.293 2.284 2.597

β2 = 0.5 0.846 0.839 0.896 2.711 2.689 2.869

β3 = 1.0 0.847 0.844 0.894 2.694 2.685 2.834

σ2 = 2.0 0.696 0.807 0.804 2.001 2.140 1.964

θ = 0.3 0.698 0.763 0.962 0.414 0.572 0.809

τ2 = 0.25 0.949 0.971 0.973 0.690 0.715 0.633
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Table 3:

ARB, MAE, empirical coverage probability and median length of nominal 95% confidence intervals using the 

GHK method for the second simulation study. The summaries are based on 1000 simulated datasets.

True
parameters

GHK Estimate Coverage Length

ARB MAE Wald–Tran PL Wald–Tran PL

β1 = 0.5 0.02 0.12 0.933 0.938 0.556 0.562

β2 = 0.5 0.00 0.07 0.930 0.935 0.317 0.323

β3 = 1.0 0.01 0.07 0.918 0.932 0.325 0.348

σ2 = 0.2 0.05 0.02 0.950 0.951 0.107 0.108

θ = 0.1 0.10 0.02 0.784 0.967 0.120 0.126

τ2 = 0.25 0.24 0.16 0.944 0.980 0.798 0.539

β1 = 0.5 0.14 0.24 0.882 0.903 0.953 1.019

β2 = 0.5 0.02 0.12 0.897 0.915 0.504 0.534

β3 = 1.0 0.03 0.13 0.880 0.923 0.525 0.584

σ2 = 0.2 0.10 0.05 0.844 0.893 0.173 0.175

θ = 0.3 0.13 0.09 0.849 0.924 0.323 0.384

τ2 = 0.25 0.00 0.08 0.964 0.976 0.296 0.310

β1 = 0.5 0.06 0.23 0.931 0.940 1.082 1.103

β2 = 0.5 0.00 0.14 0.928 0.934 0.662 0.676

β3 = 1.0 0.00 0.14 0.945 0.951 0.666 0.672

σ2 = 2.0 0.01 0.17 0.941 0.929 1.531 1.417

θ = 0.1 0.00 0.02 0.789 0.974 0.123 0.125

τ2 = 0.25 0.16 0.17 0.934 0.972 0.722 0.552

β1 = 0.5 0.12 0.36 0.931 0.938 1.541 1.610

β2 = 0.5 0.00 0.17 0.944 0.948 0.817 0.855

β3 = 1.0 0.00 0.18 0.941 0.945 0.828 0.878

σ2 = 2.0 0.02 0.37 0.937 0.918 1.124 1.093

θ = 0.3 0.07 0.09 0.893 0.936 0.360 0.433

τ2 = 0.25 0.00 0.07 0.966 0.946 0.315 0.312
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Table 4:

Computational time (in seconds) needed to compute the average MLE for the three methods from 100 

simulations with different sample sizes using 4 cores.

n 25 64 121 256 441 961

GB 10.05 18.37 62.23 116.21 286.81 1060.21

GHK 0.38 0.50 1.80 7.88 35.87 108.60

DC 28.20 37.38 69.47 200.17 367.62 1748.41
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Table 5:

MLE and their estimated asymptotic standard deviations (in parentheses) of the GHK and DC methods from 

the Lansing Woods dataset, assuming Poisson marginals. GQT and CL estimates are from Kazianka (2013).

Method β1 β2 θ τ2

GHK 1.124 (0.097) −0.152 (0.027) 0.084 (0.023) 0.504 (0.127)

DC 1.123 (0.113) −0.150 (0.025) 0.083 (0.018) 0.494 (0.101)

GQT 1.057 −0.181 0.063 0.470

CL 1.227 −0.253 0.060 0.421
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Table 6:

MLE and their asymptotic standard errors (in parentheses) for the Lansing Woods dataset, obtained from the 

GHK and DC methods, assuming ZIP and NB2 marginals.

Method β1 β2 σ2 θ τ2

ZIP
GHK 0.905 (0.146) −0.155 (0.030) 0.357 (0.119) 0.084 (0.024) 0.414 (0.149)

DC 0.895 (0.131) −0.155 (0.026) 0.355 (0.108) 0.082 (0.021) 0.408 (0.116)

NB2
GHK 0.747 (0.319) −0.112 (0.037) 1.278 (0.484) 0.172 (0.081) 0.208 (0.097)

DC 0.742 (0.292) −0.113 (0.038) 1.264 (0.439) 0.178 (0.076) 0.212 (0.101)
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Table 7:

Model comparison summaries from the Lansing Woods dataset for Gaussian copula models with different 

marginals.

Model Number of Parameters Log–likelihood AICc BIC

Poisson 4 −477.16 962.48 976.50

ZIP 5 −454.71 919.66 937.15

NB2 5 −422.96 856.16 873.65
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