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Abstract

Fluid–structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed 

methods provide mathematical and computational frameworks for modeling fluid–structure 

systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian 

description of the structure, can treat thin immersed boundaries and volumetric bodies, and they 

can model structures that are flexible or rigid or that move with prescribed deformational 

kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid 

the frequent grid regeneration that can otherwise be required for models involving large 

deformations and displacements. This article reviews immersed methods for both elastic structures 

and structures with prescribed kinematics. It considers formulations using integral operators to 

connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions 

along fluid–structure interfaces. Benchmark problems demonstrate the effectiveness of these 

methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight 

their impact in biological and biomedical modeling and simulation.
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1. INTRODUCTION

Fluid–structure interaction is ubiquitous in nature. It occurs at every biological length scale, 

from the writhing of DNA in nucleoplasm to the beating of cilia and flagella and the 

projection of lamellipodia and bleb-like protrusions by motile cells, the flow of blood in the 

heart and throughout the circulation, swimming fish and flying birds and insects, and the 

dispersal of seeds and pollen by the wind. Many of these systems can be described as elastic 

structures immersed in viscous incompressible fluids. A challenge in simulating these 

systems is that the fluid–structure interface can be subject to large deformations and 

displacements. Mathematical descriptions that use partitioned descriptions of the fluid and 
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structure can be approximated using separate, nonoverlapping meshes for the fluid and solid 

regions, as in arbitrary Lagrangian–Eulerian methods (Donea et al. 1982, Hu et al. 2001, 

Bazilevs et al. 2008), and these body-fitted formulations yield excellent resolution of the 

flows and stress distributions along the interface between the fluid and the structure. 

However, body-fitted methods can require frequent remeshing that can limit their feasibility 

for models involving very large deformations, thin structures, or transient contact.

The immersed formulation of fluid–structure interaction offers an alternative to body-fitted 

approaches. These methods use overlapping descriptions of the fluid and structure. It is 

common for them to describe the fluid in Eulerian form and the structure in Lagrangian 

form, and to use nonconforming discretizations along the fluid–structure interface. 

Immersed methods can thereby avoid many of the difficulties of mesh regeneration 

encountered in body-conforming discretizations. The key challenge in developing immersed 

methods, however, is the coupling operators that link the Eulerian and Lagrangian variables.

An earlier review in this journal by Mittal & Iaccarino (2005) also described immersed 

methods. Its major focus was on methods for treating stationary and rigid-body models. In 

the intervening years, the popularity of immersed methods for fluid–structure interaction has 

continued to grow. Here we concentrate on formulations and applications of fluid–structure 

interaction involving immersed elastic structures and structures with prescribed kinematics, 

which includes rigid bodies as a special case. The methods that we detail are primarily 

related to an approach introduced by Peskin (1972, 1977) that is now known as the 

immersed boundary method (Peskin 2002). Peskin’s approach couples the Eulerian and 

Lagrangian frames through integral transforms with Dirac delta function kernels, and 

numerical treatments of this formulation often replace these singular kernels with 

regularized delta functions. Immersed methods that use regularized delta function kernels 

are straightforward to implement but appear to be limited to lower-order accuracy at fluid–

structure interfaces because they smooth stress discontinuities that generically occur along 

such interfaces. In addition, these methods can yield slowly converging force distributions 

along the fluid–structure interface. We also describe immersed interface methods for the 

incompressible Navier–Stokes equations (Li & Lai 2001, Kolahdouz et al. 2019), which can 

improve accuracy in velocity, deformation, and stresses by avoiding regularized kernels, 

although they also require coupling algorithms that involve more complex geometrical 

computations than conventional immersed boundary methods. We outline approaches to 

modeling elastic structures with these methods, including fiber-based elasticity models and 

finite-strain continuum mechanics formulations that are well suited for finite-element 

structural models. Immersed methods have also been developed that use the framework of 

isogeometric analysis (Hughes et al. 2005), including methods developed by Hsu et al. 

(2014, 2015), Kamensky et al. (2015), and Casquero et al. (2018).

In some cases, it is desirable or even necessary to develop models of deforming structures 

without a fully detailed mechanics model. For instance, some models of fish swimming for 

understanding neuromuscular coupling may require detailed descriptions of the underlying 

physiology, but models that seek to understand the impact of a particular gait on swimming 

efficiency may not. To treat the latter case, we also discuss closely related distributed 
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Lagrange multiplier methods, which were originally introduced by Glowinski, Patankar, and 

coworkers (Glowinski et al. 1998, 1999; Patankar et al. 2000) for immersed rigid structures.

Another advantage of the present immersed formulations is that they do not appear to suffer 

from instabilities related to the added mass effect, even when explicit coupling strategies are 

used to link the Eulerian and Lagrangian variables. A challenge in using explicit coupling 

strategies, however, is that applications that involve stiff elastic structures or penalty 

methods with large penalty parameter values require small time steps. These time step size 

restrictions can be eliminated by adopting implicit coupling methods, but the efficient 

solvers demanded by these approaches are still lacking for many practical cases of interest 

and remain a topic of ongoing research.

This paper includes examples showing the performance of the methodology at Reynolds 

numbers as high as approximately 20,000. There does not appear to be a fundamental 

limitation in using these methods in higher Reynolds number applications given adequate 

computing resources. Efficiently treating such problems, however, motivates future research 

on developing suitable turbulence modeling capabilities into the framework described 

herein.

Other immersed methods have been developed for modeling fluid–structure interaction and 

flows in complex geometries. These include the immersed boundary methods of Ye et al. 

(1999), Fadlun et al. (2000), Udaykumar et al. (2001), Iaccarino & Verzicco (2003), 

Gilmanov & Sotiropoulos (2005), Mittal et al. (2008), and Borazjani et al. (2008). Many of 

these are sharp-interface immersed boundary methods that modify the finite-difference 

stencils near the immersed boundary to ensure an accurate representation of the fluid 

boundary layer. Typically they consider the immersed boundary to be a boundary of the flow 

domain and will solve the equations of fluid dynamics on only one side of the interface. This 

is in contrast to the approaches that are the focus of this review, which model structures that 

are completely immersed in fluid.

2. MODEL FORMULATIONS

2.1. Interfacial Models

Consider an infinitesimally thin elastic boundary or interface that is immersed in a viscous 

incompressible fluid (Figure 1a). We assume that the interface is massless and that the fluid 

is incompressible and has uniform density ρ and uniform dynamic viscosity μ. The 

mathematical formulation and numerical methods can be extended to variable-density and 

variable-viscosity fluid models (Fai et al. 2013, 2014; Nangia et al. 2019) and to thin 

interfaces with mass (Zhu & Peskin 2002, Kim et al. 2003, Kim & Peskin 2007).

We take the fluid to occupy a fixed region Ω ⊂ ℝ3, and we let x = x1, x2, x3 ∈ Ω be physical 

coordinates. The fluid is described in Eulerian form in terms of its velocity, u(x, t), and 

hydrostatic pressure, p(x, t). The interface is described in Lagrangian form using curvilinear 

coordinates, q = q1, q2 ∈ U ⊂ ℝ2, attached to the structure. The expression χ q, t ∈ Ω
indicates the physical position of material point q at time t, and Γt = χ U, t  is the position of 
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the interface at time t. A force density F(q, t) is applied by the interface to the fluid, such 

that F(q, t) dq is the total force applied by surface patch dq. We assume that the no-slip 

condition holds between the fluid and the interface, although extensions to porous interfaces 

relax the no-slip condition along the boundary (Stockie 2009).

2.1.1. Integral formulation.—The immersed boundary method (Peskin 2002) uses 

integral equations with Dirac delta function kernels to couple the Eulerian and Lagrangian 

variables,

ρDu
Dt x, t = − ∇p x, t + μ∇2u x, t + f x, t , 1.

∇ ⋅ u x, t = 0 2.

f x, t =
U

F q t δ x − χ q, t dq, 3.

∂χ
∂t q, t =

Ω
u x t δ x χ q t dx 4.

in which U is the curvilinear coordinate domain, D/Dt = ∂ / ∂t + u x, t ⋅ ∇ is the convective 

derivative, and δ x = i 1
3 δ xi  is the three-dimensional Dirac delta function. Section 2.1.3 

discusses a specific force model that has been used with the method, but this formulation is 

amenable to any structural model using positional degrees of freedom along a material 

surface, such as the center surface of a thin shell (Eggleton & Popel 1998, Givelberg 2004, 

Fai et al. 2013, Le 2010, Maxian et al. 2018). Shell theories for thin elastic structures that 

include rotational degrees of freedom such as director vectors (Bischoff et al. 2004) would 

require an extension to this formulation similar to the method developed by Lim et al. (2008) 

for immersed rods.

It is important to notice that in this formulation, the Eulerian elastic force density f(x, t) is 

not a regular function. Instead, it is a distribution with a singular force layer concentrated 

along the current configuration of the immersed boundary, Γt. Nonetheless, the defining 

property of the Dirac delta function implies that f(x, t) and F(q, t) are equivalent as 

distributions (Peskin 2002). Because the fluid is viscous, u(x, t) is continuous on Ω, and the 

defining property of the delta function also implies that Equation 4 is equivalent to 
∂χ
∂t q, t = u χ q, t , t , which is the immersed boundary form of the no-slip condition (Peskin 

2002).

Some methods for Equations 1–4 replace the singular delta function by a smoothed delta 

function, δϵ(x), in which ϵ is a regularization parameter (Figure 1a). The construction of 

δϵ(x) is tied to the details of the spatial discretization, but typically ϵ is chosen to be linearly 

proportional to h, where h characterizes the Eulerian grid spacing. This allows the 
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regularization to act over a distance that is comparable to the fluid grid spacing and recovers 

the singular formulation as h ↓ 0.

2.1.2. Jump condition formulation.—The force applied by a thin boundary to the 

fluid will induce discontinuities in the fluid traction along the interface, and it is possible to 

rewrite Equations 1–4 in terms of jump conditions for the pressure and normal shear stress 

that must be satisfied along the immersed boundary (Peskin & Printz 1993, Lai & Li 2001). 

Discretizing these equations leads to the immersed interface method, which was first 

developed as a numerical method for the incompressible Navier-Stokes equations by Li & 

Lai (2001).

Let c x*, t  denote the value of a discontinuity in an Eulerian field c(x, t) at x* ∈ Γt. 

Discontinuities in the fluid stress along the interface balance the applied interfacial force, 

σn = F/ ∂χ
∂q1

× ∂χ
∂q2

, which can be directly related to jump conditions for p and ∂u/ ∂n. Xu 

& Wang (2006b) systematically derived successively higher-order jump conditions from 

these low-order jump conditions. In practice, it is necessary to consider only a finite number 

of interface conditions, and effective numerical schemes can be developed that use only the 

lowest-order jump conditions (Kolahdouz et al. 2019). Methods can also be developed that 

use higher-order jump conditions (Li & Lai 2001; Xu & Wang 2006a, 2008).

2.1.3. Membrane mechanics.—Many models by Peskin and coworkers describe the 

structural mechanics in terms of a strain energy functional E = E χ ⋅ , t  that is associated 

with the total energy of the structural configuration (Peskin 2002). The corresponding 

Lagrangian elastic force density is obtained by taking the total (Fréchet) derivative of E with 

respect to the deformation. It is straightforward to use this approach to model a fiber-

reinforced membrane. Assume that the Lagrangian coordinates q = (q1, q2) have been 

constructed so that q1 labels a fiber and q2 χ q1*, q2  is a parametric description of the 

particular fiber labeled by q1*. We obtain the global energy E from local stretching energies ε 

via E χ = ε χ q2 dq, which yields F = ∂
∂q2

ε′ ∂χ
∂q2

∂χ/ ∂q2
∂χ/ ∂q2

= ∂ Tτ
∂q2

, in which 

T = ε′ ∂χ/ ∂q2  is the fiber tension and τ =
∂χ/ ∂q2
∂χ/ ∂q2

 is the unit fiber tangent vector. A 

particularly simple example corresponds to a generalization of a Hookean spring with a zero 

resting length, for which we have T = S ∂χ/ ∂q2 , in which S is the fiber stiffness. In this 

case, we have F = S ∂2χ/ ∂q2
2. This approach also accommodates nonlinear length–tension 

relationships, and it can treat bending through energies that depend on higher derivatives of 

the deformation χ (McQueen & Peskin 2000, 2001; Griffith et al. 2007, 2009a,b; Griffith 

2012). It also can be readily applied to model volumetric bodies (McQueen & Peskin 2000, 

2001; Peskin 2002; Griffith & Peskin 2005; Griffith et al. 2007,2009a). More general strain 

measures can also be used to describe the elasticity of the interface, as in the neo-Hookean 

membrane model of Evans & Skalak (1980) used by Fai et al. (2013) to simulate red blood 

cells. Other membrane and shell models have also been used with the immersed boundary 

formulation (Eggleton & Popel 1998; Le 2010; Pranay et al. 2010, 2012; Zhu & Brandt 
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2015; Banaei et al. 2017). Bischoff et al.’s (2004) review provides an overview of the 

formulation and discretization of models of thin elastic structures.

2.2. Volumetric Models

The formulation introduced in Section 2.1 can be extended to describe volumetric bodies 

immersed in fluid. Now, however, we divide Ω into fluid and solid subregions, Ωt
f ⊂ Ω and 

Ωt
s ⊂ Ω, both indexed by time t. The fluid and solid fill Ω and meet along the fluid–solid 

interface Γt
fs = Ωt

f ∩ Ωt
s. As with an immersed boundary, we assume that the no-slip 

condition holds between the fluid and the structure.

2.2.1. Eulerian and Lagrangian equations of motion.—In the formulation 

described here, we describe the structural kinematics in Lagrangian form using the mapping 

χ: Ω0
s, t Ωt

s, which connects the reference configuration to the current configuration at 

time t (Figure 1b). Specifically, χ X, t ∈ Ωt
s is the position at time t of material point X ∈ Ω0

s. 

We introduce a composite material velocity field on Ω defined so that u(x, t) is the velocity 

of whichever material happens to be located at position x at time t. Our formulation uses the 

first Piola–Kirchhoff solid stress tensor ℙs, which is related to the corresponding Cauchy 

stress tensor σs by ℙs X, t = J X, t σs χ X, t , t F X, t −T , in which F = ∂χ/ ∂X is the 

deformation gradient tensor and J = det F  is the Jacobian determinant. Constitutive models 

to determine ℙs are briefly described in Section 2.2.2.

We restrict our discussion to a neutrally buoyant, incompressible structure immersed in a 

viscous incompressible fluid, so that ρ is the mass density of both the fluid and the solid. 

Further, we assume that the structure is viscoelastic and that the form of the solid viscosity is 

the same as that of the fluid. Under these assumptions, the immersed equations are

ρDu
Dt x, t = − ∇p x, t + μ∇2u x, t + f x, t + t x, t , 5.

∇ ⋅ u x, t = 0, 6.

f x, t = Ω0
s x ℙs X, t δ x − χ x, t dX, 7.

t x, t = − Ω0
sℙs X, t N X δ x − χ X, t dA, 8.

∂χ
∂t X, t =

Ω
u x t δ x χ X t dx, 9.

in which N is the outward unit normal to ∂Ω0
s in the reference configuration, so that ℙsN is 

the solid traction along the fluid-solid interface and −ℙsN dA is the traction force applied by 
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the structure to the fluid on interfacial patch dA. Notice that Equation 5 accounts for the 

momentum of both the fluid and the immersed structure. Generalizations of the thin 

interface methods of Zhu & Peskin (2002), Kim et al. (2003), and Kim & Peskin (2007), or 

variable-coefficient solvers like those of Nangia et al. (2019), can be used to treat the case in 

which the mass density of the structure is different from that of the fluid. The present 

formulation is more challenging to extend to treat a purely elastic structure, and although in 

principle variable-viscosity solvers could allow for the elimination of viscous stresses within 

the solid region, at present, this approach is not widely used in practice. Extensions have 

also been introduced that allow for the treatment of immersed compressible solids (Roy et 

al. 2015, Boffi et al. 2018).

To interpret this formulation, we define fluid and solid stress tensors throughout Ω via

σf x, t = − p x, t I + μ ∇u x, t + ∇u x, t T
10.

and

σs x, t =
0, x ∈ Ωt

f,

σs x, t , x ∈ Ωt
s .

11.

The composite stress is σ = σf + σs, and the right-hand side of Equation 5 is ∇ ⋅ σ. In 

addition, the Eulerian force density f is equivalent as a density to F = ∇x ⋅ ℙs, and we have

f x, t =
0, x ∈ Ωt

f,

J−1 X, t F X, t , x ∈ Ωt
s,

12.

with x = χ(X, t). In contrast, t is a force distribution that is similar to the Eulerian force 

density defined in Section 2.1 for the case of a thin interface. Here, t induces a discontinuity 

in the traction associated with the extended fluid stress, σf. In fact, traction continuity 

requires σn = 0, but because we have σs = 0 in Ωt
f and σ = σf + σs force balance requires 

σfn = − σsn on Γt
fs, in which σsn is taken to be the limiting value of the solid traction as 

we approach Γt
fs. This is precisely the discontinuity generated by t along Γt

fs.

It is possible to obtain an equivalent formulation of Equations 5–9 that eliminates t and 

involves only a single volumetric Lagrangian force density by requiring F to satisfy

Ω0
sF X t V X dX = − Ω0

sℙs X t xV X dX 13.

for all smooth Lagrangian test functions V(X) (Boffi et al. 2008, Griffith & Luo 2017). As in 

the case of an immersed boundary, some numerical methods replace the singular delta 

function by a regularized delta function. The immersed finite-element method of Zhang et 

al. (2004) was the first numerical method developed for this formulation. It uses finite-

element discretizations of both the Lagrangian and Eulerian domains. Boffi et al. 
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(2008)introduced a variational formulation of these equations that avoids regularizing the 

delta function and that is naturally implemented using finite-element methods. This 

formulation yields improved accuracy as compared to regularized discretization schemes, 

but this method does not typically realize the optimal convergence rates of the underlying 

finite-element spaces (Boffi et al. 2008). Achieving higher-order accuracy appears to require 

a more direct treatment of the stress discontinuity along the interface. Methods have also 

been developed that retain finite-difference or finite-volume schemes for the Eulerian 

equations (Zhao et al. 2008, Devendran & Peksin 2012, Griffith & Luo 2017, Saadat et al. 

2018).

2.2.2. Elasticity models.—This volumetric formulation is well suited for structural 

models formulated using the framework of nonlinear continuum mechanics (Holzapfel 

2000). We sketch only briefly the formulation of hyperelastic structural models, which are 

widely used to describe biological materials. These models describe the elastic material 

response by a (local) strain energy functional Ψ F  of the deformation gradient tensor 

F = ∂χ/ ∂X. For such a material, the first Piola–Kirchhoff stress is ℙs = ∂Ψ/ ∂F . To obtain an 

isotropic material model that is invariant under rigid-body motions, we formulate Ψ using 

the principal invariants of an objective strain measure such as the right Cauchy–Green strain, 

ℂ = FTF . Anisotropic material models can be defined similarly in terms of pseudo-invariants 

of ℂ.

In principle, the immersed formulations described herein ensure that the structure is exactly 

incompressible because we have ∇ · u ≡ 0 in Ω and ∂χ
∂t X, t = u χ X, t , t . However, 

numerical methods for these formulations may allow for compressive or dilational motions, 

and it is useful to consider elasticity formulations for nearly incompressible large-

deformation elasticity. In such formulations, it is common to postulate a decoupled 

volumetric response, Ψ = W F + U J , in which W F  characterizes the response of the 

material to shearing deformations and U(J) is a volumetric energy that penalizes 

compression or dilation. In this context, it is useful for U to satisfy U(1) = U′(1) = 0, so that 

no additional energy or stress is associated with incompressible deformations. Choosing a 

penalty term of the form U J = k
2 ln J 2 yields the pressure −K ln J/J, and K can be related 

to the bulk modulus of the compressible material model. Because the immersed formulation 

implies J ≡ 1, however, K is more clearly interpreted as a stabilization parameter in 

numerical methods for the equations of motion.

It can also be beneficial to formulate the shearing energy using modified invariants that are 

based on multiplicatively decomposing F  into dilational and deviatoric parts, F = J
1
3F . If we 

use the invariants of ℂ = FTF  to define the shearing energy, W = W F , then the Cauchy 

stress, σs = J−1∂W
∂F F−T , is traceless. Notice that by construction, det F  equals 1, and so 

energies that depend only on modified invariants are oblivious to volume changes.
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2.3. Constrained Kinematics

When introducing deformational constraints on the motion of the structure, the Lagrangian 

force becomes a Lagrange multiplier for the kinematic constraint. The simplest case to 

consider is that of a body that moves with a prescribed velocity V(X, t),

ρDu
Dt x, t = − ∇p x, t + μ∇2u x, t + Ω0

sF X t δ x χ X t dx, 14.

∇ ⋅ u x, t = 0, 15.

U X, t =
Ω

u x t δ x χ X t dx, 16.

U X, t = V X, t , 17.

∂χ
∂t X, t = V X, t . 18.

This formulation can be extended to treat structures with prescribed deformational 

kinematics, including both rigid and deforming bodies (Glowinski et al. 1999, Patankar et al. 

2000, Sharma & Patankar 2005, Apte et al. 2009, Shirgaonkar et al. 2009, Bhalla et al. 2013, 

Balboa Usabiaga et al. 2016, Kallemov et al. 2016, Nangia et al. 2017b).

Effective solution methods have been developed for the fully constrained formulation (Taira 

& Colonius 2007, Balboa Usabiaga et al. 2016, Kallemov et al. 2016), but in practice, it can 

suffice to use penalty formulations that relax the constraint. One approach uses frictional 

penalty forces. This formulation is identical to Equations 14–18, except that it does not 

require U ≡ V, and the Lagrangian force density is proportional to the velocity mismatch, 

F X, t = η V X, t − U X, t . In the limit η → ∞, the Lagrangian representation of the 

Eulerian velocity, U(X, t), approaches the motion prescribed by V(X, t). These methods are 

particularly effective if shear stresses dominate the fluid forcing on the structure, as in 

external flow problems at moderate to high Reynolds numbers (Re).

An alternative approach introduces spring-like penalty forces, which can be more effective 

than frictional forces if the structure must support a substantial pressure load. In this 

approach, the deformation mapping χ(X, t) moves with the fluid, ∂χ
∂t X, t = U X, t , and an 

auxiliary mapping ϕ(X, t) moves according to the prescribed velocity field, ∂ϕ
∂t X, t = V X, t . 

A Lagrangian force density acts to keep these two configurations together, 

F X, t = κ ϕ X, t − χ X, t . In the limit κ → ∞, the deformation mapping that moves with 

the Eulerian velocity, χ(X, t), approaches the motion prescribed by ϕ(X, t), and the penalty 

method recovers the exactly constrained formulation. In practice, combining frictional and 

spring-like forces can limit spurious oscillations.
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3. NUMERICAL METHODS

3.1. Eulerian Spatial Discretization

Although many different Eulerian discretizations may be used, for concreteness, consider Ω 
= [0, L]3 and introduce a uniform N × N × N Cartesian grid on Ω with grid spacing h = L/N. 

Let (i, j, k) index the Cartesian grid cells, 0 ≤ i, j, k < N, with 

xi, j, k = i + 1
2 ℎ, j + 1

2 ℎ, k + 1
2 ℎ . The pressure is approximated at the cell centers, and the 

normal components of u = (u1, u2, u3) are approximated on the grid cell faces, so that 

component ug (g = 1, 2, 3) is approximated at position 

xi + α1g, j + α2g, k + α3g = i + 1
2 + α1g ℎ, j + 1

2 + α2g ℎ, k + 1
2 + α3g ℎ , with αij = −

δij
2  and δij 

the Kronecker delta. Eulerian forces, including the pressure gradient, are also approximated 

on the cell faces. We use staggered second-order approximations to ∇ · u at the cell centers, 

denoted D · u, and to ∇p on the grid faces, denoted Gp, for which we have D · = −GT and L 
= D · G is the seven-point Laplacian (Griffith 2009). We use shifted versions of the scalar 

Laplacian to approximate the viscous term on the grid faces, μLu = μ(Lu1, Lu2, Lu3). These 

approximations can be extended to locally refined grids (Griffith 2012, Griffith & Lim 

2012).

An effective approach to approximating u · ∇u is to construct control volumes centered 

about the velocity components and to apply a high-resolution convective discretization 

(Colella & Sekora 2008, Nonaka et al. 2011, Ketcheson et al. 2013) on each control volume 

(Griffith 2009). It also is possible to construct centered approximations to the convective 

term on staggered grids (Morinishi et al. 1998). Such schemes can be used across a very 

broad range of flow regimes (Morinishi et al. 1998, Balboa Usabiaga et al. 2012).

3.2. Lagrangian Spatial Discretizations

This section briefly describes structural discretizations commonly used with these 

formulations.

3.2.1. Marker points.—A simple Lagrangian spatial discretization is to describe the 

structure using a collection of marker points that move according to the interpolated 

Eulerian velocity field. These descriptions are well suited for the fiber-based elasticity model 

outlined in Section 2.1.3. We use l to label individual Lagrangian markers and staggered 

differences to approximate T and τ. For a Hookean spring model with zero resting length, 

we have Fl = S
Δq2 χl − 1 − 2χl + χl + 1 . Nonlinear length-tension relationships can also be 

used.

3.2.2. Finite-element meshes.—If {ϕl(x)} are nodal finite-element basis functions 

associated with a triangulation of Ω0
s, we can construct a continuous representation of the 

structural deformation and force via χ X, t = lχl t ϕl x  and F X, t = lFl t ϕl x , in 

which χl and Fl are nodal deformations and forces, respectively. Using these representations 

with Equation 13 and restricting the test functions to the finite-element basis functions leads 

to a standard Galerkin finite-element method for the structural mechanics model. This 
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approach has been used in various versions of the immersed finite-element method. One 

strength of this formulation is that the discrete representations of χ(X, t) and F(X, t) can be 

evaluated anywhere on the triangulation of Ω0
s and not only at the nodes. Marker point-based 

descriptions of the structure can be viewed as special cases in which discrete approximations 

to χ(X, t) and F(X, t) are evaluated only at the nodes of the finite-element mesh.

3.3. Lagrangian–Eulerian Interaction

This section briefly details numerical strategies for coupling the Lagrangian and Eulerian 

variables.

3.3.1. Regularized delta functions.—On a uniform Cartesian grid, it is natural to 

construct the three-dimensional delta function as the tensor product of one-dimensional delta 

functions and to relate the regularization parameter to the grid spacing h, so that the 

regularized delta function is δℎ x = i 1
3 δℎ xi , with δℎ x = 1

ℎφ x
ℎ . If a nodal quadrature 

rule with quadrature weights Δql is used to approximate a regularized version of Equation 3, 

the discretized Eulerian and Lagrangian forces are related by

fg i + α1g, j + α2g, k + α3g =
l

Fg lδℎ xi α1g j α2g k α3g χl Δql g 1 2 3 19.

with f = (f1, f2, f3) and F = (F1, F2, F3). As above, we use αij = −
δij
2  and δij is the Kronecker 

delta. More compactly, we have f = SIB χ F, in which SIB is the force-spreading operator. 

Lagrangian and Eulerian velocities can be related by a similar discretization of Equation 4,

Ug l =
i j k

ug i α1g j α2g k α3gδℎ xi α1g j α2g k α3g χl ℎ3 g 1 2

3,
20.

with U = (U1, U2, U3) and u = (u1, u2, u3). We write U = JIB χ u, in which JIB is the 

velocity interpolation operator. In this construction, the spreading and interpolation 

operators are discretely adjoint with respect to discrete Eulerian and Lagrangian inner 

products induced by the quadrature rules. If the Lagrangian quadrature weights are uniform, 

so that Δql ≡ Δq, then the force-spreading operator and the velocity-interpolation operators 

satisfy the relation JIB = ℎ3
ΔqSIB

T . More generally, we have JIB = SIB* = ℎ3ℳ−1SIB
T , in which 

ℳ is a diagonal mass matrix with Mll = Δql.

If χ and F can be evaluated at arbitrary material positions, and not just at the marker points 

or nodes, it is possible to use other quadrature rules to approximate the interaction equations. 

For instance, Griffith & Luo (2017) developed an adjoint pair of coupling operators for 

finite-element structural models that use Gaussian quadrature to approximate these integrals. 

With nodal quadrature rules, if the Lagrangian nodes or marker points become too far apart 

with respect to the background grid, the structure will develop leaks (Peskin 2002). Using 

non-nodal quadrature rules permits the structural discretization to be relatively coarse 
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compared to the background Cartesian grid without allowing fluid to leak through the 

structural discretization so long as the net of quadrature points is sufficiently dense (Griffith 

& Luo 2017).

It remains to specify the basic kernel function, φ(r). Computational considerations motivate 

choices of φ(r) with the minimum support that provide a required level of accuracy. A 

fundamental accuracy requirement is that φ(r) ensures that the Eulerian and Lagrangian 

expressions for the total force and total torque agree, so that the coupling scheme does not 

induce spurious rigid-body motions. As detailed by Peskin (2002), these identities follow 

from imposing two discrete moment conditions on φ r , jφ r j = 1 and 

j r j φ r − j = 0 for all r ∈ ℝ. These conditions imply that JIB interpolates linear fields 

exactly, which yields an interpolation error of O ℎ2  for smooth fields. Peskin’s construction 

also imposes an approximate translation invariance property, j φ r j 2 = C for all r ∈ ℝ. 

It is possible to impose higher-order discrete moment conditions, which yield improved 

interpolation accuracy for smooth fields but generate kernels that do not satisfy φ ≥ 0. Bao et 

al. (2016) introduced an alternative construction that imposes a constant, but nonzero, 

second moment condition along with a standard third moment condition, and they showed 

that it is possible to choose the second moment condition so that φ is non-negative and has 

three continuous derivatives.

One alternative approach is to use B-spline kernels (Figure 2), which is effective at 

moderate-to-high Reynolds numbers, including the cardiovascular modeling application 

shown in Section 5.3.1 in which the Reynolds number reaches approximately 20,000. We 

define B0(r) to be the lowest-order B-spline kernel,

B0 r = 1, if r ≤ 1
2,

0, otherwise .
21.

The k-th-order B-spline kernel is built recursively via convolution, Bk = Bk−1 * B0. Bk is a 

Ck−1-continuous piecewise polynomial function with a support of k + 1 mesh widths.

On nonuniform grids, alternative methods are required to construct regularized delta 

functions. For instance, the immersed finite-element method of Zhang et al. (2004)uses 

regularized kernel functions that are determined by the reproducing particle kernel method 

(Liu et al. 1995), which ensures that the interpolation operator is able to reproduce certain 

fields exactly. These conditions can be seen to be generalizations of the discrete moment 

conditions that are readily used with regular Cartesian grids.

3.3.2. Jump conditions.—It is possible to build discontinuities directly into finite-

difference approximations (Xu & Wang 2006b). Briefly, if u(x) has a known collection of 

discontinuities at x* ∈ [xi, xi+1], then a generalized Taylor analysis yields

du
dt xi + 1

2
= ui + 1 − ui

ℎ − 1
ℎ m 0

2 rm

m
dmu
dxm x* + O ℎ2 , 22.
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with r = min(x* − xi, xi+1 − x*). If the jump conditions are independent of u, this expression 

splits into a standard finite-difference approximation and an inhomogeneous term that can be 

treated as a forcing. Similar expressions can be developed for higher-order derivatives.

For the immersed interface formulation described here, the jump conditions depend only on 

F(q, t) and the configuration of the interface, and so at the level of the discrete equations, we 

can account for the jump conditions through a discrete force spreading operator, 

f = SIIM χ F, that is tailored to the finite-difference approximations used in solving the 

incompressible Navier–Stokes equations. It is possible to build a velocity interpolation 

operator JIIM that accounts for the known discontinuities in the derivatives of u. Unlike the 

immersed boundary method, however, generally JIIM is not SIIM* .

3.4. Time Stepping

For dynamic simulations involving immersed elastic structures, it often suffices to employ 

explicit coupling between the fluid and the structure. We index the time step by n and for 

simplicity assume a uniform time step size Δt, so that tn corresponds to the time nΔt. A 

prototypical second-order accurate time stepping scheme takes the form

ρ un + 1 − un

Δt + Nn + 1
2 = − Gpn + 1

2 + μL un + 1 + un

2 + S χn + 1
2 F χn + 1

2 , 23.

D ⋅ un + 1 = 0, 24.

χn + 1
2 − χn

Δt/2 = J χn un, 25.

χn + 1 − χn

Δt = J χn + 1
2

un + 1 + un

2 , 26.

in which Nn + 1
2  is an explicit, time step–centered approximation to u · ∇u. Using an explicit 

scheme for the convective term imposes a stability constraint on the largest stable time step 

size, but that constraint is usually less severe than the constraint imposed by treating the 

coupling between the Eulerian and the Lagrangian variables explicitly in time. Newren et al. 

(2007) determined sufficient conditions to obtain a linearly stable implicit time-stepping 

scheme, but explicit coupling schemes remain widely used in large-scale simulations 

because efficient general-purpose implicit solver algorithms are still lacking.

The penalty methods described in Section 2.3 introduce force models that approximately 

impose kinematic constraints, and such formulations can be accommodated by this time-

stepping scheme. Effective methods for constrained problems also can be developed through 

physical considerations. An example is the time step–splitting scheme of Bhalla et al. (2013) 

for immersed structures with prescribed deformational kinematics. The success of splitting 

methods like that of Bhalla et al. (2013) fundamentally relies on the presence of inertia. 
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Such methods can break down in the overdamped limit, and it then becomes necessary to 

use a fully implicit formulation (Balboa Usabiaga et al. 2016, Kallemov et al. 2016).

4. BENCHMARK PROBLEMS

4.1. External Flows

The benchmark problem of viscous flow passing over a stationary cylinder has been very 

widely studied in the literature, including by Lai & Peskin (2000) and Taira & Colonius 

(2007). We used the domain geometry and boundary conditions specified by Taira & 

Colonius (2007) along with a spring-based penalty method and achieved lift and drag 

coefficients and Strouhal numbers that are in agreement with the results reported therein 

(Griffith & Luo 2017, Kolahdouz et al. 2019). Figure 3 compares immersed boundary and 

immersed interface simulations of this problem at Re = 200. Both formulations reproduce 

the large-scale flow features of the wake, but the immersed boundary formulation generates 

spurious interior fluid motion that is eliminated in the immersed interface calculation. The 

reason for this difference is that the immersed boundary method determines the motion of 

the interface through a local averaging operation, and so an exterior flow along the boundary 

will tend to generate a counter-rotating interior flow. In contrast, the immersed interface 

method is able to reconstruct the discontinuity in the derivative of the velocity that occurs 

along the interface.

4.2. Large-Deformation Incompressible Elasticity

Benchmarking studies reported by Wang & Zhang (2010) demonstrated poor volume 

conservation by the immersed finite-element method (Zhang et al. 2004), and although they 

proposed a volume-correction scheme to mitigate these errors, this scheme is ad hoc and 

somewhat expensive to use in practice. These difficulties were largely resolved by Vadala-

Roth et al. (2018), who considered the performance of a similar method in the context of 

several standard test cases from the nonlinear mechanics literature. Their key finding was 

that immersed methods can realize an accuracy comparable to that provided by stabilized 

finite-element methods for incompressible nonlinear elasticity by adopting a nearly 

incompressible elasticity formulation like that detailed in Section 2.2.2. In particular, the 

accuracy of the immersed formulation is improved dramatically for invariant-based elasticity 

formulations by using both a volumetric penalization term, which we view as a stabilization 

method, and invariants based on the modified deformation gradient tensor, F = J− 1
3F . Figure 

4 shows results from a torsion test, similar to one by Bonet et al. (2015), that demonstrates 

the effectiveness of the methodology.

5. APPLICATIONS

5.1. Aquatic Locomotion

Immersed methods are well suited for the study of aquatic locomotion (i.e., swimming), and 

this section outlines examples of studies enabled by these methods.

There is a longstanding interest in understanding what role hydrodynamics may have played 

in the evolution of fish form (Webb 1984), and this same understanding can also help in 
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designing underwater vehicles (MacIver et al. 2004). Immersed methods have been 

especially successful in studies of optimal conditions for swimming at finite Reynolds 

number. Examples include investigations of optimal deformation kinematics (Kern & 

Koumoutsakos 2006; Borazjani & Sotiropoulos 2008, 2009; Shirgaonkar et al. 2008; 

Gazzola et al. 2012; Bale et al. 2015; Nangia et al. 2017a; Sprinkle et al. 2017b), body 

shapes (van Rees et al. 2013), and swimming configurations (Verma et al. 2018). Swimming 

and flying animals have been reported to cruise at Strouhal numbers of 0.2–0.4 (Taylor et al. 

2003). A related optimality condition has been discovered from simulations and experiments 

for undulatory swimming: A wavelength-to-mean amplitude ratio of 20 maximizes the speed 

(or thrust) in undulatory propulsion (Bale et al. 2015, Nangia et al. 2017a). This optimality 

condition appears to have convergently evolved at least eight times in elongated fin 

swimmers (Bale et al. 2015).

Immersed simulations have provided insight into long-debated issues, including the 

separation of drag and thrust on swimming bodies (Bale et al. 2014c), Gray’s paradox (Bale 

et al. 2014b), and energy efficiency (Bale et al. 2014a). The standard conceptual framework 

seeks to understand swimming as a balance between drag and thrust, but it is not obvious 

how to arrive at such a separation for undulatory swimmers because their drag- and thrust-

producing regions are not distinct. Nonetheless, such a separation is possible under certain 

conditions (Bale et al. 2014c). Remarkably, this particular drag–thrust separation framework 

helps to predict the observed height of the ribbon fin of the electric knifefish, which is an 

important model system for highly maneuverable underwater vehicles. Similar simulations 

also reveal questions about the common assumption that swimmers necessarily spend 

muscle energy to overcome drag in the direction of swimming. For example, in undulatory 

swimming, most of the muscle energy is expended to produce lateral undulations of the 

body. Drag power is balanced by thrust power, not by muscle power. In fact, depending on 

the drag model utilized, the drag power may be greater than muscle power, which would 

otherwise be considered paradoxical [as in Gray’s paradox (Bale et al. 2014b)]. Finally, 

simulations have also provided insights into defining the efficiency of self-propelled bodies. 

Because all of the energy expended by swimming animals is eventually dissipated in the 

fluid, an appropriate efficiency measure is not obvious. One approach is to define an energy-

consumption coefficient, which is a nondimensional measure of fuel consumption (Bale et 

al. 2014a). This measure is analogous to the concept of the drag coefficient.

The fluid dynamics of swimming is also important in developing neuromechanical models to 

understand the complex interactions between neuronal, sensory, muscular, and mechanical 

components of locomotor systems (Pearson et al. 2006). Neuromechanical models take as 

input the muscle activation pattern and solve for the motion of the swimming body and fluid. 

Two-dimensional (Tytell et al. 2010) and three-dimensional (Patel et al. 2018) models 

(Figure 5a) have been reported. These simulations can help to understand control strategies 

for swimmers, as well as biologically observed phenomena such as the neuromechanical 

phase lag (Patel et al. 2018). Hoover et al. (2017, 2019) have developed similar models of 

jellyfish swimming using hyperelastic models of the jellyfish bell (Figure 5b).
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5.2. Esophageal Transport

Esophageal transport is a mechanical and physiological process that transfers the ingested 

food bolus from the pharynx to the stomach through the multilayered esophageal tube. This 

process involves interactions between the bolus; the esophageal wall, which is composed of 

mucosal, circular muscle (CM), and longitudinal muscle (LM) layers; and the neurally 

coordinated muscle activation, including CM contraction and LM shortening (Pouderoux et 

al. 1997, Nicosia & Brasseur 2002, Ghosh et al. 2005, Mittal et al. 2006). According to 

Cook (2008), 5–8% of the general population over 50 years of age exhibit symptoms of 

esophageal dysphagia (i.e., difficulty swallowing). Dysphagia is observed in 16% of the 

elderly and is common in chronic care settings (Cook 2008). It is a symptom of esophageal 

cancer, which is diagnosed in over 500,000 patients each year worldwide (Wheeler & Reed 

2012). Dysphagia originates from mechanical abnormalities (e.g., of the muscles and 

mucosa) or neuromuscular disorders (i.e., abnormal muscle activation) (Castell & Donner 

1987).

Simulating esophageal transport is challenging because it involves highly disparate length 

scales, from 0.3 mm to around 200 mm as the esophagus expands and contracts. It also 

involves very large deformations that result from interactions between the bolus and the 

esophagus. Kou et al. (2015a,b, 2017a,b, 2018) developed immersed models of esophageal 

transport in which the bolus is treated as a viscous fluid that is actively transported by the 

muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-

reinforced tube. Figure 6a shows a case from Kou et al. (2015a). Such models have 

enhanced our understanding of the roles of CM contraction and LM shortening in 

esophageal transport. For instance, Kou et al. (2015b) found that CM contraction is 

sufficient to transport the bolus, but LM shortening is not.

Immersed models can also capture experimental observations, such as the manometric 

pressure transition zone in the esophagus shown in Figure 6b (Kou et al. 2017a). This 

information helps to relate clinical data from manometry to the underlying esophageal 

function. Ultimately, we envision translating these simulations into a clinical tool to inform 

diagnostic protocols of esophageal motility disorders, quantify disease pathogenesis, and 

plan treatment strategies. The models developed by Kou et al. (2015a,b, 2017a,b, 2018) are 

also directly applicable to medical device design. One set of devices can be used to assess 

the function and efficiency of the organ, loosely considered as diagnostic devices, and 

another set of devices can serve to restore lost function and provide structural support for 

weak tissue (e.g., stents). These models could also serve as the foundation for the 

development of a bioengineered esophagus for patients that undergo esophagectomy.

5.3. Cardiovascular Dynamics

The immersed boundary method was introduced by Peskin to model the fluid dynamics of 

heart valves. This section highlights recent applications of these methods to modeling 

cardiovascular dynamics.

5.3.1. Bioprosthetic heart valves.—Computer models must be rigorously verified and 

validated before they can be used to design, optimize, or test medical devices or to 
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customize patient treatment strategies. There has been substantial prior work on simulating 

heart valves, but nearly all validated valve models consider mechanical heart valves (MHVs) 

(Votta et al. 2013), including studies of bileaflet MHVs using high-speed cinematography 

(Nobili et al. 2008) and particle image velocimetry (Dasi et al. 2007, Ge et al. 2008, Guivier-

Curien et al. 2009, Jun et al. 2014). Fewer studies have validated models of flexible valves 

such as bioprosthetic heart valves (BHVs). Quaini et al. (2012) validated a simplified elastic 

aperture model of a flexible heart valve using Doppler ultrasound. Wu et al. (2016) 

compared leaflet kinematics and valve open areas for an in vitro model of a transcatheter 

aortic valve replacement device, but did not provide detailed comparisons for hemodynamic 

parameters (pressures and flow rates) or comparisons to detailed flow patterns. Other recent 

work on fluid–structure interaction models of BHVs includes important aspects of validation 

(Hsu et al. 2015, Siguenza et al. 2018, Tango et al. 2018, Wu et al. 2018, Xu et al. 2018), but 

few of these studies use simulated flow conditions that are directly comparable to a 

corresponding experimental system, which is an important step toward validating such 

models.

Lee et al. (2019) developed immersed models of porcine tissue and bovine pericardial BHVs 

and simulated their performance in a model of a pulse duplicator, which is an in vitro 

experimental system for studying heart valve performance. The valve leaflets were described 

as fiber-reinforced hyperelastic structures, and the rigid wall of the pulse duplicator was 

described using a spring-based penalty method. Figure 7 shows results obtained using the 

porcine tissue valve. Comparisons to experimental flow measurements are excellent, and the 

simulated and experimental leaflet kinematics are shown to be in good agreement. This 

study represents a necessary step toward the validation of immersed models of BHV 

dynamics.

5.3.2. Inferior vena cava flows.—The inferior vena cava (IVC) returns deoxygenated 

blood to the heart from the lower extremities. Simulations of IVC flows are needed to study 

medical devices such as IVC filters, which are used in some patients with deep vein 

thrombosis who are at risk of developing a pulmonary embolism but are unable to tolerate 

anticoagulation therapy. Figure 8 shows initial comparisons between an immersed interface 

simulation of an idealized IVC model and corresponding simulations performed using a 

body-conforming discretization (Craven et al. 2018, Kolahdouz et al. 2019). The immersed 

interface simulation resolves the swirling flow patterns captured by the body-conforming 

method. Extensions of these models can be used to simulate clot-trapping IVC filters in 

studies that aim to improve our understanding of the safety and efficacy of these devices.

5.3.3. Fluid–structure interaction models of the heart.—Since its inception, a 

major impetus to develop the immersed boundary method has been to enable simulations of 

cardiac dynamics (McQueen & Peskin 1989, 2000, 2001; Peskin & McQueen 1989, 1996). 

Figure 9 shows results from two different immersed approaches to simulating cardiac 

dynamics. One, developed by Peskin, McQueen, and cowokers, uses a fiber-based 

construction of a patient-specific heart failure model (McQueen et al. 2015). The other, 

currently being developed by Griffith and coworkers, uses a finite-element description of the 

biomechanics of the heart, its valves, and the nearby great vessels. That modeling strategy 
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facilitates incorporating experimentally constrained tissue mechanics models. Both models 

are derived from medical image data. With suitable validation, they promise to enable 

mechanistic simulations of cardiac physiology and pathophysiology for device design or 

treatment planning.

6. CONCLUSIONS

This review discussed the formulation of immersed methods for fluid–structure interaction 

and the application of these methods to selected biological and biomedical applications, but 

given the scope of the field, it is necessarily incomplete. For instance, there is active research 

that aims to improve the accuracy of immersed formulations while retaining the simplicity 

of the regularized delta function approach, including work by Stein et al. (2016, 2017). 

Other structural representations have also been introduced. For instance, Shankar et al. 

(2015) used radial basis functions, and Gil et al. (2010) developed a mesh-free structure 

discretization that tracks the displacement and deformation gradient of a system of marker 

points.

Immersed methods have also been used in other biological and biomedical modeling 

applications, including flows of cells and capsules (Eggleton & Popel 1998; Liu & Liu 2006; 

Fogelson & Guy 2008; Le 2010; Pranay et al. 2010, 2012; Crowl & Fogelson 2011; Fai et al. 

2013, 2017; Zhu & Brandt 2015; Banaei et al. 2017; Saadat et al. 2018), cell migration and 

locomotion (Lewis et al. 2015, Li et al. 2017), insect flight (Miller & Peskin 2005, 2009; 

Bergou et al. 2007; Vargas et al. 2008), and phonation (Luo et al. 2008, Yang et al. 2017).

There is also substantial interest in adapting immersed methods to simulate Brownian 

particle systems by solving the equations of fluctuating hydrodynamics (FHD) together with 

rigid-body formulations (Sharma & Patankar 2004, Chen et al. 2006). For a single spherical 

particle in a fully periodic domain, it is possible to solve the overdamped problem through a 

Stokes version of the FHD equations (Sharma & Patankar 2004, Chen et al. 2006, Atzberger 

et al. 2007). In the case of multiple particles, special algorithms are required to account for 

the stochastic drift term appearing in the overdamped Langevin equation (Sprinkle et al. 

2017a, 2019). These methods will facilitate simulations of microscale and nanoscale systems 

in which thermal fluctuations play a crucial role in the system dynamics, and they promise 

to enable the use of immersed methods in diverse applications in applied physics.
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SUMMARY POINTS

1. Immersed formulations of fluid–structure interaction allow for 

nonconforming discretizations of the fluid and structure. This avoids the 

frequent remeshing that is required by body-conforming discretization 

methods.

2. Modern immersed methods can be used with detailed elasticity models that 

can be parameterized using experimental data. Effective immersed methods 

have also been developed for models involving kinematic constraints.

3. Immersed methods using regularized delta functions are broadly applicable 

but lower-order accurate. Numerical methods based on the explicit treatment 

of jump conditions at fluid–structure interfaces yield improved accuracy, and 

recent versions of these methods enable the use of complex geometries.

4. These methods impact a range of applications in biology and medicine.

Griffith and Patankar Page 26

Annu Rev Fluid Mech. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FUTURE ISSUES

1. Adjoint pairs of Lagrangian–Eulerian coupling operators have not yet been 

developed for immersed interface methods, which limits their applicability in 

very low- and very high–Reynolds number applications.

2. Scalable linear and nonlinear solvers for implicit formulations are still 

lacking. These are needed to overcome severe time step size restrictions 

inherent in current explicit coupling schemes and will enable Brownian 

simulations in the overdamped limit.

3. Further research is needed to determine whether standard turbulence models 

can be used effectively with the formulations detailed herein, or if specialized 

turbulence models are required.

4. Further verification and validation studies are needed for the biomedical 

models to realize their full potential clinical impact.
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Figure 1. 
(a) An immersed boundary in the domain Ω (left) and potential corresponding Eulerian and 

Lagrangian discretizations (right). In formulations that use a regularized delta function, 

forces are applied in a region with finite thickness about the interface, and velocities are 

interpolated to the interface from the same region. (b) In volumetric formulations, the 

coordinate mapping χ connects reference coordinates X ∈ Ω0
s to current coordinates x ∈ Ωt

s.
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Figure 2. 
Two-, three-, four-, and five-point B-spline kernel functions. The limiting function is a 

Gaussian. A one-dimensional regularized delta function δh(x) may be defined in terms of a 

basic kernel function φ(r) via δℎ(x) = 1
ℎφ( x

ℎ ). The three-dimensional regularized delta 

function δh(x) can then be obtained by δh(x) = δh(x)δh(y)δh(z).
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Figure 3. 
Vorticity fields for viscous flow over a circular cylinder at Reynolds number Re = 200 by 

immersed boundary (left) and immersed interface (right) methods. Both methods produce 

essentially identical large-scale flow features in the wake behind the cylinder, but the 

immersed boundary formulation generates spurious interior motion that is eliminated in the 

immersed interface calculation.
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Figure 4. 
Torsion test demonstrating the effect of the form of the elasticity model on the accuracy of 

the immersed finite-element method (FEM). The face of an incompressible elastic beam 

with a Mooney–Rivlin material model is twisted 450°. Four elasticity formulations are 

considered. “Stabilized” indicates that a volumetric energy, U(J), is included in the strain 

energy Ψ; “unstabilized” indicates that this energy is not included in Ψ. “Unmodified” 

indicates that the shearing energy W is expressed in terms of the invariants of the right 

Cauchy–Green tensor, ℂ = FTF , in which F  is the deformation gradient tensor; “modified” 

indicates that the invariants of the modified Cauchy–Green strain ℂ = FTF  are used, with 

F = J− 1
3F . The immersed formulation yields an accuracy comparable to benchmark FEM 

results when using both modified invariants and volumetric stabilization.
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Figure 5. 
(a) Three-dimensional simulation of neurally activated swimming eel using a constraint-

based immersed method (Patel et al. 2018). (Left) Fluid vorticity field; (right) color contour 

of the cross-sectional moment of the body. Magenta lines and white lines show the 

progression of the moment wave and the curvature wave, respectively. The difference in 

slopes of the two lines is the neuromechanical phase lag consistent with experimental 

observations. Panel adapted with permission from Patel et al. (2018). (b) Immersed 

simulation of jellyfish turning using a hyperelastic structural model similar to those of 

Hoover et al. (2017, 2019).
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Figure 6. 
(a) Immersed simulation of bolus transport in an esophagus (Kou et al. 2015b). The brown 

region is the downward-moving bolus, and the blue and gray meshes represent the muscle 

layers. (b) Experimental (left) and simulated (right) esophageal pressure topography (EPT) 

of a normal subject. The fiber architecture, showing circular (green) and longitudinal (red) 

muscles that transition from proximal to distal ends, is shown in the center. Kou et al. 

(2017a) showed that the change in fiber architecture can lead to the well-known pressure 

transition zone in a normal patient. Panels adapted with permission from (a) Kou et al. 

(2015b) and (b) Kou et al. (2017a).
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Figure 7. 
Model of a porcine bioprosthetic heart valve in an experimental pulse duplicator (Lee et al. 

2019). (a) Simulated axial flow in the aortic test section. (b) Comparison of computational 

and experimental flow rates, upstream and downstream pressures, and leaflet kinematics 

quantified by valve open area. Shaded regions show the 95% confidence intervals in 

multicycle experimental data. Confidence intervals for the pressure data are extremely 

narrow and are not shown in panel b.
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Figure 8. 
(a) Idealized inferior vena cava (IVC) model developed at the US Food and Drug 

Administration. (b) Simulation of flow in the idealized IVC model under exercise conditions 

(Kolahdouz et al. 2019). Subpanels i–iv show flow patterns along the cross-sections 

indicated on the three-dimensional model. Results were obtained using an immersed 

interface method (subpanels i–iii) and by a body-conforming method in OpenFOAM 

(subpanel iv) (Craven et al. 2018).
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Figure 9. 
Fluid–structure interaction models of whole-heart dynamics. (a) Patient-specific fiber-based 

model of a failing heart in systole. Note mitral regurgitation has developed after several 

computed cardiac cycles during which the left ventricle enlarges slightly on each beat 

because more blood is returning to it than can be pumped away. (b) A healthy heart model 

that uses hyperelastic constitutive models fit to biaxial tensile test data, here shown in atrial 

systole (left) and ventricular systole (right). The figure highlights the configurations of the 

mitral valve, including model chordae tendenae and papillary muscles, and the aortic valve. 

Transparent views are provided for the remaining structures of the heart and nearby great 

vessels.
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