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Abstract

Increased aortic stiffness may contribute to kidney damage by transferring excessive flow 

pulsatility to susceptible renal microvasculature, leading to constriction or vessel loss. We 

previously demonstrated that 5 weeks of dietary sodium restriction (DSR) reduces large-elastic 

artery stiffness as well as blood pressure in healthy middle-aged/older adults with moderately 

elevated systolic blood pressure (SBP) who are free from chronic kidney disease (CKD). We 

hypothesized that DSR in this cohort would also reduce urinary concentrations of renal tubular 

injury biomarkers, which predict incident CKD in the general population. We performed a post 

hoc analysis using stored 24 hours urine samples collected in 13 participants as part of a 

randomized, double-blind, crossover clinical trial of DSR (low sodium (LS) target: 50 mmol/day; 

normal sodium (NS) target: 150 mmol/day). Participants were 61±2 (mean±SEM) years (8 M/5 F) 

with a baseline blood pressure of 139±2/82±2 mm Hg and an estimated glomerular filtration rate 

of 79±3 mL/min/1.73 m2. Twenty-four hour urinary sodium excretion was reduced from 149±7 to 

66±8 mmol/day during week 5. Despite having preserved kidney function, participants had a 31% 

reduction in urinary neutrophil gelatinase-associated lipocalin concentrations with just 5 weeks of 

DSR (LS: 2.8±0.6 vs NS: 4.2±0.8 ng/mL, p<0.05). Results were similar when normalized to 

urinary creatinine (urinary creatinine did not change between conditions). Concentrations of 

another kidney tubular injury biomarker, kidney injury molecule-1, were below the detectable limit 

in all but one sample. In conclusion, DSR reduces an established clinical biomarker of kidney 

tubular damage in adults with moderately elevated SBP who are free from prevalent kidney 

disease.
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INTRODUCTION

Arterial stiffness increases with aging and is a major risk factor for cardiovascular diseases 

(CVD).1 Increased arterial stiffness may contribute to kidney damage by transferring 

excessive flow pulsatility to susceptible renal microvasculature, leading to constriction or 

vessel loss.2 It precedes the development of hypertension and contributes to pathogenesis of 

target organ damage, including the kidney.34 Using a randomized, placebo-controlled 

crossover study design, we recently demonstrated that DSR reduced arterial stiffness 

(measured by aortic pulse-wave velocity (aPWV)) and systolic blood pressure (SBP), in 

middle-aged and older adults with moderately elevated SBP who were otherwise healthy and 

free of kidney disease.5 Given these previous findings, we hypothesized that DSR may also 

reduce biomarkers of renal tubular injury, via reduced arterial stiffness and blood pressure, 

or other multifactorial effects of reduced dietary sodium.

High sodium intake promotes hypertension and also has detrimental effect on the kidney, 

including promoting proteinuria, hyperfiltration and reducing responsiveness to renin-

angiotensin-aldosterone system blockade.6–10 Previous research on the effects of DSR on 

the kidneys has mainly focused on patients with CKD, with observed benefits including 

reduced BP, extracellular fluid volume and proteinuria.11–13 Urinary kidney injury 

molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are well-

developed biomarkers for acute and chronic renal injury.14–17 Higher levels of these 

biomarkers independently predict incident CKD in the general population,1518 thus any 

reduction would be of high clinical significance in this cohort free from prevalent CKD.

Therefore, our objective was to examine the effect of DSR on these kidney injury markers in 

the aforementioned randomized double-blinded trial. We evaluated stored 24 hours urine 

samples collected during the trial.

MATERIALS AND METHODS

This was a post hoc analysis of a randomized, placebo-controlled crossover trial. The details 

of the parent study, conducted from February 2009 to January 2012, have been published 

previously.5 The trial was conducted at the University of Colorado Boulder Clinical and 

Translational Research Center.

Subjects

In this post hoc analysis, total of 13 of the 17 subjects from the parent study who had 

sufficient stored urine samples remaining were included. The inclusion and exclusion 

criteria for the parent study have been described previously.5 Briefly, all subjects had a 

resting SBP within 130–159 mm Hg, that is, high normal or stage I systolic hypertension, 

and diastolic blood pressure <99 mm Hg, verified on a minimum of two occasions,19 but 

were otherwise free of CVD, diabetes, kidney disease and other clinical disorders as 

assessed by medical history, physical examination, ankle-brachial index (≤0.9), blood 

chemistries and resting and exercise ECG. All subjects were non-smokers, had a body mass 

index <40 kg/m2 and were not taking dietary supplements known to influence vascular 

function, including those with antioxidant properties. Women (n=5) were postmenopausal 
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and were not taking hormone replacement therapy. Subjects were either sedentary or 

recreationally active, but none were performing regular, vigorous exercise.

Experimental design and dietary sodium restriction

The trial used a double-blind, placebo-controlled, randomized, crossover design, as 

described previously.5 Briefly, a LS intake of ~1500 mg/day (65 mmol/day) was compared 

with an NS intake of 3600 mg/day (150 mmol/day). During the entire 10-week intervention 

period, subjects reduced dietary sodium (target was 50 mmol/day) and were instructed to 

take a total of 10 tablets spread across the day with meals. For five of the weeks the tablets 

were placebo pills, whereas, for the other 5 weeks the tablets were slow-release NaCl tablets 

(10 mmol (0.23 g) per tablet) (HK Pharma, UK), in a randomized order. The slow-release 

NaCl tablets aimed to return sodium intake to the ~150 mmol/day target. Subjects were 

provided with comprehensive dietary education and weekly counseling by Clinical and 

Translational Research Center bionutritionists in order to reduce dietary sodium intake 

without changing caloric intake, dietary composition or potassium intake (these data have all 

been published previously).5 The investigators were blinded to sodium condition in the 

analysis and recording of all variables (including blood pressure). There was no washout 

period between conditions and no evidence of a carryover effect.5

Blood pressure, urine assays and aortic pulse-wave velocity

Resting blood pressure assessment and 24 hours urine collections were performed at 

baseline (twice) and then weekly throughout the 10-week dietary intervention (twice during 

the final week of each condition), for a total of 14 measurements per subject, as previously 

described in detail for this study.5 Urine NGAL (uNGAL) and KIM-1 (uKIM-1) levels were 

assessed using ELISA (R&D Systems) using stored samples collected during the final week 

of each sodium condition. The sensitivity for assays is 0.04 ng/mL for uNGAL and 0.045 

ng/mL for uKIM-1. The intra-assay precisions are 3.7% and 4.2%; the interassay precisions 

are 6.5% and 6.4% for uNGAL and uKIM-1, respectively. aPVW was measured during the 

final week (week 5) of each sodium condition and methods have been described previously.
19

Statistics

Differences in subject characteristics and outcome variables were assessed using paired t-

tests between dietary sodium conditions. The influence of SBP on sodium-related 

differences in uNGAL was analyzed using analysis of covariance. Bivariate associations 

were determined using the Pearson’s correlation coefficient. All data are reported as means

±SEM. Analyses were performed using SPSS V.24 and statistical significance for all 

analyses was set at p<0.05.

RESULTS

Effectiveness of dietary sodium restriction and baseline clinical characteristics

Participants were 61±2 years (8 M/5 F) with a baseline SBP of 139±2, diastolic BP (DBP) of 

82±2 mm Hg and a baseline estimated glomerular filtration rate (eGFR) of 79±3 mL/min/

1.73 m2 (modification of diet in renal disease study equation). DSR successfully reduced 
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sodium excretion, SBP (and aPVW, as reported previously).520 It also significantly reduced 

DBP, although to a lesser degree. Other clinical characteristics, including eGFR and dietary 

components were not changed (table 1 and previous publication).5

DSR and uNGAL and KIM-1 excretion

uNGAL excretion was reduced by 31% following 5 weeks of LS compared with 5 weeks of 

high sodium (LS: 2.8±0.6 ng/mL vs NS: 4.2±0.8 ng/mL, p<0.05, figure 1A). Individual 

changes in uNGAL with DSR are also shown (figure 1B), with all but two subjects reducing 

uNGAL concentrations with LS versus NS. Results were similar when normalized to urinary 

creatinine (LS: 5.0±1.1 vs NS: 8.5±2. μg/g, p<0.05) (urinary creatinine did not change 

between conditions). The group difference in NGAL was attenuated when adjusting for SBP 

(p=0.09), but not for aPWV (p<0.01). uKim-1 concentrations, however, were below the 

detectable limit in all but one sample. There were no significant correlations between 

uNGAL, SBP, aPWV or sodium excretion, or among changes in these variables.

DISCUSSION

This is the first evidence that DSR reduces the kidney injury marker NGAL in individuals 

with moderately elevated SBP but otherwise in good health. Our results provide initial 

support to the hypothesis that DSR may be an effective strategy to reduce kidney tubular 

injury. As markers of kidney tubular injury predict incident CKD in the general population,
1518 this finding is of great clinical relevance.

Our initial hypothesis was that DSR would reduce evidence of kidney tubular injury via 

reduced arterial stiffness (less transfer of excessive flow pulsatility to susceptible renal 

microvasculature). However, we did not observe any association between uNGAL, aPWV, 

SBP, urinary sodium excretion or among changes in any of these variables, limiting direct 

support for this mechanistic explanation of the observed change in NGAL with DSR. This is 

very likely due to the very small sample size and a lack of power. Notably, the observed 

reduction in uNGAL with sodium restriction was no longer statistically significant when it 

was adjusted for SBP. Thus, reduced SBP by DSR could also be a factor mediating the 

beneficial effects of DSR on uNAGL. However, the modest change in the p value following 

adjustment for SBP suggests that the beneficial effect of DSR on uNGAL likely goes 

beyond reduced SBP. This could be explained by the multifactorial effects of DSR beyond 

these mechanisms. For example, in the setting of DSR, the resulting relative volume 

contraction could lead to increased proximal tubular reabsorption of NGAL and thus less 

excretion. Our original observation that DSR trended to increase (although statistically 

insignificant) serum levels of renin, angiotensin II and aldosterone supports this notion.5

DSR may also have other direct effects on the kidneys. Prior evidence suggests that sodium 

intake modifies both proteinuria and kidney function in the setting of kidney disease. High 

salt intake blunts the antiproteinuric effects of ACE inhibitors (ACEI), independent of BP 

control, and increases the risk of progression to end-stage renal disease in patients without 

diabetes but with CKD.6 Short-term high salt intake also increases microalbuminuria in 

patients with type II diabetes.10 Similarly, angiotensin receptor blockers (ARBs) are more 

efficacious for slowing renal disease progression in patients with diabetes consuming a low 
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compared with high sodium diet.21 Consistent with epidemiological evidence, dietary 

sodium intake modifies the antiproteinuric effects of ACEI/ARB in clinical trials of 

proteinuric patients.2223 In the a large number of participants with prevalent CKD in the 

Chronic Renal Insufficiency Cohort study, higher 24 hours urinary sodium excretion was 

associated with increased risk of CKD progression.24

Mechanisms underlying the direct effect of DSR on kidney injury remain unclear. A high 

sodium diet has direct effects on the kidney via induction of transforming growth factor-β, 

oxidative stress25 and compensatory renal growth.26 A beneficial effect of DSR on kidney 

injury could be attributed to its ability to potentiate the effect of the renin-angiotensin-

aldosterone system blockade.2227 We have previously shown that DSR reduces endothelial 

cell NADPH oxidase expression and vascular oxidative stress20 supporting the hypothesis 

that the beneficial effect of DSR on the kidney may be due in part to a reduction in oxidative 

stress.

Decreased eGFR (increased serum creatinine) has been previously observed with DSR.1113 

This was likely caused by the correction of hyperfiltration, a sign of poor renal prognosis.728 

In our study, baseline eGFR was normal and not changed by DSR, indicating minimal renal 

hemodynamic change in this population. Notably, renal tubular injury biomarkers are 

sensitive to change is response to an intervention, with reductions observed response to 

intensive blood pressure lowering in the Systolic Blood Pressure Intervention Trial, despite 

loss of eGFR thought to reflect hemodynamic changes.2930 Of note, there was also no 

difference in the current study between the two groups in urinary potassium excretion, 

another potential confounding factor that might affect renal outcomes.24

Even though eGFR of our hypertensive subjects was normal, the likelihood of early renal 

structural damage related to aging is quite plausible.31 The observed 30% reduction in 

uNGAL with DSR supports this notion. Traditional markers of kidney injury, such as serum 

creatinine, are neither sensitive nor specific for the diagnosis of acute kidney injury.3233 

NGAL is a small secreted protein initially identified in mature neutrophil granules,34 but has 

since been found to be expressed in many cells including renal cells.35 It is synthesized in 

the distal nephron and secreted freely into the urine in response to structural kidney injury.36 

uNGAL is stable and resistant to proteases, making it a good candidate for clinical use.36 

Both urinary and circulating levels increase markedly in various acute and chronic kidney 

injuries.37 We have observed that although uNGAL concentrations were relatively low in our 

healthy cohort, they were significantly reduced with DSR, which could have clinically 

significant implications long-term. However, the low concentrations of uNGAL even in the 

NS group, may potentially limit the clinical relevance of the observed reduction with DSR. 

The relatively low concentrations compared with other studies1538 could be partly due to 

different detection methods (eg, immunoblot38 vs ELISA).

It is also important to highlight that the predictive value of uNGAL for CKD progression is 

not consistently reported, particularly after adjustment for other variables such as urinary 

creatinine and albumin levels.153940 However, in a subset of patients with CKD with 

primarily inflammatory renal diseases, urinary biomarkers including uNGAL appear to be 

favorable candidates.40 Thus, the clinical relevance of urinary NGAL as a biomarker might 
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be dependent on type and stage of renal disease.41 Additionally, the utility of NGAL as a 

biomarker in acute kidney injury is inconsistent and complicated by the fact that it is a 

complex molecule produced by multiple tissues is different molecular forms41. Of note, 

although the current study cannot distinguish between homodimeric (mainly by neutrophils) 

and monomeric (by stressed kidney) forms of NGAL, it is unlikely that neutrophils would be 

a major source of urinary NGAL in this cohort, due to the nature of the study population 

(hypertensive otherwise healthy normal adults).

uKIM-1 is a marker for proximal tubular injury and its concentrations are strongly related to 

its tubular expression in acute kidney injury.1742 uKIM-1 concentrations, however, were not 

detectable in our cohort of relatively healthy middle-aged and older adults. It is unlikely that 

uKIM-1 was degraded since it is very stable even at ambient temperature.43 The absence of 

uKIM-1 in the study could be a sign of minimal proximal tubular injury. Plasma KIM-1 

(pKIM-1) was recently found to be a biomarker for acute and chronic kidney injury.44 It 

predicts progression to ESRD in type I diabetes,44 and predicts future decline of eGFR and 

risk of CKD in a healthy middle-aged population.18 While we did not have sufficient 

remaining sample to measure pKIM-1 in the current study, pKIM-1 should be investigated 

as an alternate biomarker in future research.

The major limitation of the study is its small sample size and short follow-up. With a limited 

sample size, uNGAL did not correlate with aPWV, limiting our ability to support the 

hypothesis that dietary sodium may promote end-organ kidney damage via increased arterial 

stiffness. We also did not investigate other potential contributing mechanisms beyond arterial 

stiffness and blood pressure. Our population was primarily Caucasian adults, limited 

generalizability. Urinary protein was not measured, although this population was known to 

be free from CKD. Additionally, we did not measure uNGAL at baseline in participants; 

thus, it is possible that dietary changes across both conditions lowered uNGAL as compared 

with usual diet. However, our crossover design comparing the LS and NS allowed for 

isolation of sodium as the sole variable differing between the two conditions when uNGAL 

was measured. Our study also has notable strengths. Importantly, the application of 

measuring markers of kidney tubule damage in the setting of an intervention in a non-CKD 

population is innovative. Additionally, our crossover design allowed with isolation of dietary 

sodium as the sole manipulated dietary factor with outcomes assessed in the same 

participants under each sodium condition.

In conclusion, this is the first trial to demonstrate that DSR reduces a sensitive kidney injury 

marker, uNGAL, in middle-aged and older adults with moderately elevated SBP and 

preserved kidney function. Future research should further evaluate DSR as a potential 

strategy to prevent incident CKD, as well as slow progression of prevalent CKD. A 

randomized controlled trial involving large number of participants and longer duration of 

follow-up is warranted to fully understand the effects of DSR on kidney tubule damage and 

the effects on renal function.
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Significance of this study

What is already known about this subject?

• Dietary sodium restriction (DSR) lowers blood pressure.

• DSR reduces arterial stiffness.

• Renal tubular injury biomarkers predict incident chronic kidney disease 

(CKD) in the general population.

What are the new findings?

• DSR reduces urinary neutrophil gelatinase-associated lipocalin (NGAL) 

concentrations, a biomarker of kidney tubular damage in healthy middle-aged 

and older adults with moderately elevated blood pressure.

• Concentrations of another kidney tubular injury biomarker, kidney injury 

molecule-1, were below the detectable limit in all but one sample.

• Changes in urinary NGAL did not correlate with previously observed 

reductions in arterial stiffness or blood pressure; however, the sample size was 

limited.

How might these results change the focus of research or clinical practice?

• Future research should further evaluate DSR as a potential strategy to prevent 

incident CKD, as well as slow progression of prevalent CKD.

• A randomized controlled trial involving large number of participants and 

longer duration of follow-up is warranted to fully understand the effects of 

DSR on kidney tubule damage and the effects on renal function in this 

population.

• The effects of DSR on kidney tubule damage should also be evaluated in a 

population with prevalent CKD.
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Figure 1. 
Dietary sodium restriction reduces urinary NGAL concentrations. (A) Tweny-four hour 

urinary NGAL concentrations as measured during the final week (week 5) of each sodium 

condition; (B) individual changes of urinary NGAL concentrations as measured during the 

final week (week 5) of each sodium condition. LS, low sodium; NGAL, neutrophil 

gelatinase-associated lipocalin; NS, normal sodium. Data are mean±SEM. *P<0.05.
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Table 1

Clinical characteristics

Variable Low sodium (n=13) Normal sodium (n=13) P value

Sex (female/male) (5/8) – –

Age (years) 61±2 –

Race (% (n) Caucasian, Asian) 85% (11), 15% (2) – –

MDRD eGFR (mL/min/1.73 m2) 80±4 83±5 0.28

Urine sodium (mmol/24 hour) 66±8 150±7 <0.0001

Urine creatinine (mg/L) 645±69 586±75 0.42

Urine potassium (mmol/24 hour) 71 ±6 77±7 0.32

SBP (mm Hg) 126±2 138±4 <0.001

DBP (mm Hg) 77±2 80±2 0.01

aPWV (cm/s) 747±42 884±32 <0.0001

Data are mean±SEM.

aPWV, aortic pulse-wave velocity; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; MDRD, modification of diet in renal 
disease; SBP, systolic blood pressure.

J Investig Med. Author manuscript; available in PMC 2021 October 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Subjects
	Experimental design and dietary sodium restriction
	Blood pressure, urine assays and aortic pulse-wave velocity
	Statistics

	RESULTS
	Effectiveness of dietary sodium restriction and baseline clinical characteristics
	DSR and uNGAL and KIM-1 excretion

	DISCUSSION
	References
	Figure 1
	Table 1

