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Abstract

We develop a semiparametric Bayesian approach to missing outcome data in longitudinal studies 

in the presence of auxiliary covariates. We consider a joint model for the full data response, 

missingness and auxiliary covariates. We include auxiliary covariates to “move” the missingness 

“closer” to missing at random (MAR). In particular, we specify a semiparametric Bayesian model 

for the observed data via Gaussian process priors and Bayesian additive regression trees. These 

model specifications allow us to capture non-linear and non-additive effects, in contrast to existing 

parametric methods. We then separately specify the conditional distribution of the missing data 

response given the observed data response, missingness and auxiliary covariates (i.e. the 

extrapolation distribution) using identifying restrictions. We introduce meaningful sensitivity 

parameters that allow for a simple sensitivity analysis. Informative priors on those sensitivity 

parameters can be elicited from subject-matter experts. We use Monte Carlo integration to 

compute the full data estimands. Performance of our approach is assessed using simulated 

datasets. Our methodology is motivated by, and applied to, data from a clinical trial on treatments 

for schizophrenia.
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1 Introduction

In longitudinal clinical studies, the research objective is often to make inference on a 

subject’s full data response conditional on covariates that are of primary interest; for 

example, to calculate the treatment effect of a test drug at the end of a study. However, the 

vector of responses for a research subject is often incomplete due to dropout. Dropout is 
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typically non-ignorable (Rubin, 1976; Daniels and Hogan, 2008) and in such cases the joint 

distribution of the full data response and missingness needs to be modeled. In addition to the 

covariates that are of primary interest, we would often have access to some auxiliary 
covariates (often collected at baseline) that are not desired in the model for the primary 

research question. Such variables can often provide information about the missing responses 

and missing data mechanism. For example, missing at random (MAR) (Rubin, 1976) might 

only hold conditionally on auxiliary covariates (Daniels and Hogan, 2008). In this setting, 

auxiliary covariates should be incorporated in the joint model as well, but we should proceed 

with inference unconditional on these auxiliary covariates.

The full data distribution can be factored into the observed data distribution and the 

extrapolation distribution (Daniels and Hogan, 2008). The observed data distribution can be 

identified by the observed data, while the extrapolation distribution cannot. Identifying the 

extrapolation distribution relies on untestable assumptions such as parametric models for the 

full data distribution or identifying restrictions (Linero and Daniels, 2018). Such 

assumptions can be indexed by unidentified parameters called sensitivity parameters 
(Daniels and Hogan, 2008). The observed data do not provide any information to estimate 

the sensitivity parameters. Under the Bayesian paradigm, informative priors can be elicited 

from subject-matter experts and be placed on those sensitivity parameters. Finally, it is 

desirable to conduct a sensitivity analysis (Daniels and Hogan, 2008; National Research 

Council, 2011) to assess the sensitivity of inferences to such assumptions. The inclusion of 

auxiliary covariates can ideally reduce the extent of sensitivity analysis that is needed for 

drawing accurate inferences.

In this paper, we propose a Bayesian semiparametric model for the joint distribution of the 

full data response, missingness and auxiliary covariates. We use identifying restrictions to 

identify the extrapolation distribution and introduce sensitivity parameters that are 

meaningful to subject-matter experts and allow for a simple sensitivity analysis.

1.1 Missing Data in Longitudinal Studies

Literature about longitudinal missing data with non-ignorable dropout can be mainly divided 

into two categories: likelihood-based and moment-based (semiparametric). Likelihood-based 

approaches include selection models (e.g. Heckman, 1979; Diggle and Kenward, 1994; 

Molenberghs et al., 1997), pattern mixture models (e.g. Little, 1993, 1994; Hogan and Laird, 

1997) and shared-parameter models (e.g. Wu and Carroll, 1988; Follmann and Wu, 1995; 

Pulkstenis et al., 1998; Henderson et al., 2000). These three types of models differ from how 

the joint distribution of the response and missingness is factorized. Likelihood-based 

approaches often make strong parametric model assumptions to identify the full data 

distribution. For a comprehensive review see, for example, Daniels and Hogan (2008) or 

Little and Rubin (2014). Moment-based approaches, on the other hand, typically specify a 

semiparametric model for the marginal distribution of the response, and a semiparametric or 

parametric model for the missingness conditional on the response. Moment-based 

approaches are in general more robust to model misspecification since they make minimal 

distributional assumptions. See, for example, Robins et al. (1995); Rotnitzky et al. (1998); 

Scharfstein et al. (1999); Tsiatis (2007); Tsiatis et al. (2011).
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There are several recent papers under the likelihood-based paradigm that are relevant to our 

approach, such as Wang et al. (2010); Linero and Daniels (2015); Linero (2017); Linero and 

Daniels (2018). These papers specify Bayesian semiparametric or nonparametric models for 

the observed data distribution, and thus have similar robustness to moment-based 

approaches. However, existing approaches do not utilize information from auxiliary 

covariates. We will highlight more of our contribution and distinction compared to existing 

methods, in particular Linero and Daniels (2015) and Linero (2017), after we have 

introduced the required notation. In the presence of auxiliary covariates, Daniels et al. 

(2014) model longitudinal binary responses using a parametric model under ignorable 

missingness. Our goal is to develop a flexible Bayesian approach to longitudinal missing 

data with non-ignorable dropout that also allows for incorporating auxiliary covariates. As 

mentioned earlier, the reason to include auxiliary covariates is that we anticipate it will make 

the missingness “closer” to MAR.

1.2 Notation and Terminology

We introduce some notation and terminology as follows. Consider the responses for a 

subject i at J time points. Let Y i = (Y i1, … , Y iJ) be the vector of longitudinal outcomes that 

was planned to be collected, Y ij = (Y i1, … , Y ij) be the history of outcomes through the first j 

times, and Y ij = (Y i, j + 1, … , Y iJ) be the future outcomes after time j. Let Si denote the 

dropout time or dropout pattern, which is defined as the last time a subject’s response is 

recorded, i.e. Si = max{j : Yij is observed}. Missingness is called monotone if Yij is 

observed for all j ≤ Si, and missingness is called intermittent if Yij is missing for some j < Si. 

For monotone missingness, Si captures all the information about missingness. In the 

following discussion, we will concern ourselves with monotone missingness. Dropout is 

called random (Diggle and Kenward, 1994) if the dropout process only depends on the 

observed responses, i.e. the missing data are MAR; dropout is called informative if the 

dropout process also depends on the unobserved responses, i.e. the missing data are missing 

not at random (MNAR). We denote by Xi the covariates that are of primary interest, and Vi = 

(Vi1,…,ViQ) the Q auxiliary covariates that are not of primary interest. Those auxiliary 

covariates should be related to the outcome and missingness. The observed data for subject i 
is (Y iSi, Si, Vi, Xi), and the full data is (Yi, Si,Vi, Xi). In general, we are interested in 

expectation of the form E[t (Yi) | Xi], where t denotes some functional of Yi. Finally, denote 

by p (y, s, v | x, ω) the joint model for the full data response, missingness and auxiliary 

covariates conditional on the covariates that are of primary interest, where ω represents the 

parameter vector.

1.3 The Schizophrenia Clinical Trial

Our work is motivated by a multicenter, randomized, double-blind clinical trial on 

treatments for schizophrenia. The trial data were previously analyzed in Linero and Daniels 

(2015), which took a Bayesian nonparametric approach, but did not utilize information from 

the auxiliary covariates. For this clinical trial, the longitudinal outcomes are the positive and 

negative syndrome scale (PANSS) scores, which measure the severity of symptoms for 

patients with schizophrenia (Kay et al., 1987). The outcomes are collected at J = 6 time 

points corresponding to baseline, day 4 after baseline, and weeks 1, 2, 3 and 4 after baseline. 
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The possible dropout patterns are Si = 2, 3, 4, 5, 6. The covariate of primary interest is 

treatment, with Xi = T, A or P corresponding to test drug, active control or placebo, 

respectively. In addition, we have access to Q = 7 auxiliary covariates including age, onset 

(of schizophrenia) age, height, weight, country, sex and education level.

The dataset consists of N = 204 subjects, with 45 subjects for the active control arm, 78 

subjects for the placebo arm, and 81 subjects for the test drug arm. Detailed individual 

trajectories and mean responses over time for the three treatment arms can be found in 

Appendix Figure A.1. The dropout rates are 33.3%, 20.0% and 25.6% for the test drug, 

active control and placebo arms, respectively. Subjects drop out for a variety of reasons. 

Some reasons including adverse events (e.g. occurrence of side effects), pregnancy and 

protocol violation are thought to be random dropouts, while the other reasons such as 

disease progression, lack of efficacy, physician decision and withdraw by patient are thought 

to be informative dropouts. It is ideal to treat those reasons differently while making 

inference. The informative dropout rates are 29.6%, 15.6% and 25.6% for the test drug, 

active control and placebo arms, respectively. Detailed dropout rates for each dropout pattern 

can be found in Appendix Table A.1. The dataset has a few intermittent missing outcomes (1 

for the test drug arm, 1 for the active control arm, and 2 for the placebo arm). We focus our 

study on monotone missingness and assume partial ignorability (Harel and Schafer, 2009) 

for the few intermittent missing outcomes.

The goal of this study is to estimate the change from baseline treatment effect,

rx = E[Y i6 − Yi1 Xi = x] .

In particular, the treatment effect improvements over placebo, i.e. rT – rP and rA – rP, are of 

interest.

1.4 Overview and Contribution

We stratify the model by treatment, and suppress the treatment variable x to simplify 

notation hereafter. The extrapolation factorization (Daniels and Hogan, 2008) is

p(y, s, v ω) = p(ys ys, s, v, ωE)p(ys, s, v ωo),

where the extrapolation distribution, p(ys | ys, s, v, ωE), is not identified by the data in the 

absence of uncheckable assumptions or constraints on the parameter space. The observed 

data distribution p(ys, s, v |ωo) is identified and can be estimated semiparametrically or 

nonparametrically. We factorize the observed data distribution based on pattern-mixture 

modeling (Little, 1993),

p(ys, s, v ωo) = p(ys s, v, π)p(s v, φ)p(v η), (1)

where we assume distinct parameters ωo = (π, φ, η) parameterizing the response model, the 

missingness and the distribution of the auxiliary covariates, respectively.
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The model specification (1) brings two challenges:

1. For the models p(ys | s, v, π) and p (s | v, φ), it is unclear how the auxiliary 

covariates are related to the responses and dropout patterns. For example, the 

auxiliary covariates contain height and weight, which might not have a linear and 

additive effect on the responses. For example, the responses might have a linear 

relationship with the body mass index, which is calculated by weight / height2.

2. For the model p(ys | s, v, π), the observed patterns are sparse. For example the 

dropout pattern, Si = 2 for the active control arm has only 1 observation.

To mitigate challenge 1, we specify semiparametric models for p(ys | s, v, π) and p (s | v, φ) 

via Gaussian process (GP) priors and Bayesian additive regression trees (BART), 

respectively. Such models, although still making some parametric assumptions, are highly 

flexible and robust to model misspecification. To address challenge 2, we utilize informative 

priors such as autoregressive (AR) and conditional autoregressive (CAR) priors to share 

information across neighboring patterns. Detailed model specifications will be described in 

Section 2.

We would like to emphasize the distinction between our approach and the approaches 

proposed in Linero and Daniels (2015) and Linero (2017). The earlier works by Linero and 

Daniels and Linero specified the observed data distribution (1) based on a working model 

for the full data constructed as a Dirichlet process mixture of selection models, i.e., 

p∗(y, s |ω) = p(y |θ1)p(s |y, θ2)F(dθ) with F following a Dirichlet process; the approaches did 

not consider covariates but they could be added in a very simple way by introducing them 

independently (from y and s and from each other in the Dirichlet process mixture) as 

mentioned in the discussion of Linero (2017). These approaches can thus accommodate 

(auxiliary) covariates but they were not constructed to include them in a careful, efficient 

way. In contrast, the proposed approach was design specifically to allow (auxiliary) 

covariates and to estimate an average (mean) treatment effect. To address the former, we use 

a pattern-mixture model parameterization, and exploit the expected structure including 

sparse patterns and similar covariate effects across patterns and over time via GP, AR/CAR 

priors, and shrinkage priors. Later we will show through simulation studies that our 

approach indeed performs better than the approaches proposed in Linero and Daniels (2015) 

and Linero (2017) with a simple extension that accommodates auxiliary covariates.

The remainder of this article is structured as follows. In Section 2 we specify Bayesian 

(semiparametric) models for (1). In Section 3, we use identifying restrictions to identify the 

extrapolation distribution. In Section 4, we describe our posterior inference and computation 

approaches. In Section 5, we present simulation studies to validate our model and compare 

with results using other methods. In Section 6, we apply our method to a clinical trial on 

treatments for schizophrenia. We conclude with a discussion in Section 7.

Zhou et al. Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Probability Model for the Observed Data

2.1 Model for the Observed Data Responses Conditional on Pattern and Auxiliary 
Covariates

We define the model for observed data responses conditional on drop out time and auxiliary 

covariates, i.e.p(ys | s, v, π), as follows. The distribution p(ys | s, v, π) can be factorized as

ps ys v, π = ps(ys ys − 1, v, π)⋯ps(y2 y1, v, π)ps(y1 v, π), (2)

where the subscript s corresponds to conditioning on dropping out pattern S = s.

We assume

Y j Y j − 1 = yj − 1, S = s, V = v, a0, a, π

=
a0(v, s) + ε1s, j = 1;

a(yj − 1, v, j, s) + yj − 2
T ϕjs + εjs, j ≥ 2,

(3)

where j = 1,…, s; s = 2,…, J. Here a0 and a are stochastic processes indexed by U0 = V × J0
and U = Y × V × J respectively, where V is the state space of v, J0 = 2, … , J  is the state 

space of s, J ⊂ 1, … , J 2 is the state space of (j, s), and Y is the state space of yj−1. 

Furthermore, is the vector of lag ϕjs coefficients (of order 2 and above) for each time/pattern, 

and εjs ‘s are independent Gaussian errors,

εjs N(0, σjs2 ) .

In order to have a flexible mean model for Yj as a function of previous response and 

covariates, we place Gaussian process priors (Rasmussen and Williams, 2006) on a0 and a,

a0(v, s) GP μ0(v, s), C0(v, s; v′, s′) ;

a(yj − 1, v, j, s) GP μ(yj − 1, v, j, s), C(yj − 1, v, j, s; yj′ − 1′, v′, j′, s′) ,

with mean functions μ0:U0 ℝ and μ:U ℝ and covariance functions C0:U0 × U0 ℝ+

and C:U × U ℝ+, respectively. Specifically,

μ0(v, s)   = vTβ0s + b1s;
μ(yj − 1, v, j, s) = ψjsyj − 1 + vTβs + bjs,

(4)

and
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C0(v, s; v′, s′) = κ0
2D0(v, s; v′, s′) + κ0

2I(v, s; v′, s′);
C(yj − 1, v, j, s; yj′ − 1′, v′, j′, s′) = κ2D(yj − 1, v, j, s; yj′ − 1′, v′, j′, s′) +

κ2I(yj − 1, v, j, s; yj′ − 1′, v′, j′, s′) .
(5)

We use two different stochastic processes a0 and a for j = 1 and j ≥ 2. The reason is that for j 
= 1, a0 represent the mean initial response with no past; for j ≥ 2, a represents the mean at 

subsequent thus with a measured past. In the mean functions (4), β0s and βs are the vectors 

of regression coefficients of the auxiliary covariates, ψjs is the lag-1 coefficient, and bjs is 

the time/pattern specific intercepts. In the covariance functions (5), D0(a; b) and D( a; b) are 

the exponential distances between a and b, defined by

D0(v, s; v′, s′) = exp −
v − v′ 2

2

2γv0
2 − s − s′

γs0
,

D(yj − 1, v, j, s; yj′ − 1′, v′, j′, s′) = exp[−
yj − 1yj′ − 1′ 2

2

2γy2
−

v − v′ 2
2

2γv2
− j − j′

γj
− s − s′

γs
] .

Here κ0
2, γv0, γs0, κ0

2, κ2, Y y, Y v, Y j, Y s, κ2 are the hyperparameters. Details about the hyper-

priors or choices of these hyperparameters are described in Appendix A.2. The values v, 

yj − 1, j and s are standardized values for v, yj−1, j and s (details in Appendix A.2). For 

categorical covariates, the distance between v and v′ is calculated by counting the number of 

different values. In addition, in (5), I(a; b) is the Kronecker delta function that takes the 

value 1 if a = b and 0 otherwise. The function I(a; b) is used to introduce a small nugget for 

the diagonal covariances, which overcomes near-singularity of the covariance matrices and 

improves numerical stability. The Gaussian processes flexibly model the relationship 

between auxiliary covariates and the previous response with the current response (Yj) and 

accounts for possibly non-linear and non-additive effects in the auxiliary covariates and 

previous response.

For the noise variance σjs2 , we assume an inverse Gamma shrinkage prior,

σjs2 |νσ
iidIG(λσ, λσνσ), j = 1, …, s, s = 2, …, J,

With E(1/σjs2 ) = 1/ νσ and Var(1/σjs2 ) = 1/λσ νσ2. This prior prior shrinks the time/pattern 

specific variances to a common value,νσ. We put hyper-priors on λσ and νσ.

λσ − 2 ∼ IG(λ1
λσ, λ2

λσ), νσ ∼ Gamma(λ1
νσ, λ2

νσ),

where we assume λσ > 2 to impose more shrinkage and borrowing of information.

Next, we consider the parameters in the mean functions (4). We allow the regression 

coefficients of the auxiliary covariates to vary by pattern. However, it is typical to have 
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sparse patterns. As a result, we consider an informative prior that assumes regression 

coefficients for neighboring patterns to be similar. In particular, we specify AR(1) type 

priors on β0s and βs. Let β0 = (β02, β03, …, β0J) and β = (β2, β3, …, βJ) denote the coefficient 

vectors for the auxiliary covariates in Equation (4). We assume

β0 ∼ N Xββ0, σβ0
2

β (ρ0) , β ∼ N Xββ, σβ
2

β (ρ) ,

where Xβ
T = (I, I, …, I), β0 and β are the prior means for β0s and βs, respectively, and 

σβ0
2

β (ρ0) and σβ
2

β (ρ) are the AR(1) type covariance matrices. Details and hyper-priors on 

the hyperparameters are described in Appendix A.2. The time/pattern specific intercepts are 

given conditional autoregressive (CAR) type priors (De Oliveira, 2012; Banerjee et al., 

2014) as we expect them to be similar for neighboring patterns/times. Let b0 = (b12, b13, …, 

b1J) and b = (b22; b23, b33; …; b2J, …, bJJ) denote the time/pattern-specific intercepts in 

Equation (4). We assume

b0 ∼ N 1b0, σb0
2 (I − γb0W b0)−1Nb0 , b ∼ N 1b, σb

2(I − γbW b)−1Nb ,

where b0 and b are the prior means for b0 and b, respectively, and σb0
2 (I − γb0W b0)−1Nb0 and 

σb
2(I − γbW b)−1Nb are the CAR type covariance matrices. Details in Appendix A.2. The 

time/pattern specific lag-1 coefficients are given CAR type priors similar to the priors on bjs 

for the same reason. Let ψ = (ψ22; ψ23, ψ33; …; ψ2J, …, ψJJ) denote the time/pattern-specific 

coefficient vector for the lag-1 responses in Equation (4). We assume

ψ ∼ N 1ψ, σψ2 (I − γψW ψ)−1Nψ ,

where ψ is the prior mean for ψ, and σψ2 (I − γψW ψ)−1Nψ is the CAR type covariance 

matrix. Again, more details in Appendix A.2. We complete the model with a prior for the 

higher-order (≥2) lag coefficients ϕjs. Note that we assume the effect of higher-order lag 

responses on current response is linear. We do not include Y j − 2 in a(·) as the dimension of 

Y j − 2 varies for different time j. We expect to capture most of the non-linear and non-

additive effects from lagged responses by including Yj−1 in a(·) since we expect most of the 

temporal effects come from lag-1 response. We simply put normal priors with more prior 

mass around 0 to indicate the prior belief that higher-order lags have less impact on current 

response. Specifically,

ϕjs ∼ N(0, σϕ
2I), σϕ

2 ∼ IG(λ1
ϕ, λ2

ϕ),

with λ1
ϕ > λ2

ϕ.
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2.2 Model for the Pattern Conditional on Auxiliary Covariates

We model the hazard of dropout at time j with Bayesian additive regression trees (BART) 

(Chipman et al., 2010),

p(S = j S ≥ j, v, φ) = FN(fj(v)),

where FN denotes the standard normal cdf (probit link), and fj(v) is the sum of tree models 

from BART. The BART model captures complex relationships between auxiliary covariates 

and dropout including interactions and nonlinearities. We use the default priors for fj(·) given 

in Chipman et al. (2010).

2.3 Model for the Auxiliary Covariates

We use a Bayesian bootstrap (Rubin, 1981) prior for the distribution for v. Suppose v can 

only take the N discrete values that we observed,V ∈ v1, …, vN . The probability for each is

p(V = vi η) = ηi, (6)

where ∑i = 1
N ηi = 1. We place a Dirichlet distribution prior on η,

(η1, …, ηN) ∼ Dir(δη, …, δη) .

3 The Extrapolation distribution

The extrapolation distribution for our setting can be sequentially factorized as

ps(ys ys, v, ωE) = ps(ys + 1 ys, v, ωE) ⋅
ps(ys + 2 ys + 1, v, ωE)⋯ps(yJ yJ − 1, v, ωE) . (7)

The extrapolation distribution is not identified by the observed data. To identify the 

extrapolation distribution, we use identifying restrictions that express the extrapolation 

distribution as a function of the observed data distribution; see Linero and Daniels (2018) for 

a comprehensive discussion. For example, missing at random (MAR) (Rubin, 1976) is a 

joint identifying restriction that completely identifies the extrapolation distribution. It is 

shown in Molenberghs et al. (1998) that MAR is equivalent to the available case missing 

value (ACMV) restriction in the pattern mixture model framework. The same statement is 

true when conditional on V, in which case MAR is referred to as auxiliary variable MAR 

(A-MAR) (Daniels and Hogan, 2008). ACMV sets

pk(yj yj − 1, v, ωE) = p ≥ j(yj yj − 1, v, π),

for k < j and 2 ≤ j < J, where the subscript ≥ j indicates conditioning on S ≥ j. The latter 

involves averaging ps(·) with respect to the missingness prior on s.

When the missingness is not at random, a partial identifying restriction (Linero and Daniels, 

2018) is the missing non-future dependence (NFD) assumption (Kenward et al., 2003). NFD 
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states that the probability of dropout at time j depends only on yj + 1. Similarly, when 

conditional on V, auxiliary variable NFD (A-NFD) assumes

p(S = j yJ, v, ω) = p(S = j yj + 1, v, ω) .

Within the pattern-mixture framework, NFD is equivalent to the non-future missing value 

(NFMV) restriction (Kenward et al., 2003). Under A-NFD, we have

pk(yj yj − 1, v, ωE) = p ≥ j − 1(yj yj − 1, v, π), (8)

for k < j–1 and 2 < j ≤ J. NFMV leaves one conditional distribution per incomplete pattern 

unidentified:ps(ys + 1 | ys, v). To identify ps(ys + 1 | ys, v), we assume a location shift τs + 1
(Daniels and Hogan, 2000),

Y s + 1 Y s, S = s, V , ω =d Y s + 1 + τs + 1 Y s, S ≥ s + 1, V , ω , (9)

where =d  denotes equality in distribution, and τs + 1 measures the deviation of the 

unidentified distribution ps(ys + 1 | ys, v) from ACMV. In particular, ACMV holds when 

τs + 1 = 0; τs + 1 is a sensitivity parameter (Daniels and Hogan, 2008). To help calibrate the 

magnitude of τs + 1, we set

τs + 1 Y s = ys, V = v = τ ⋅ Δs + 1(ys, v), (10)

where Δs + 1(ys, v) is the standard deviation of (Y s + 1 | ys, s, v) under ACMV, and τ represents 

the number of standard deviations that ps(Y s + 1 | ys, v) is deviated from ACMV. Similar 

strategies to calibrate sensitivity parameters based on the observed data can be found in 

Daniels and Hogan (2008) and Kim et al. (2017). Importantly, note that, based on this 

calibration, for a fixed τ we would have a smaller Δ using auxiliary covariates and thus a 

smaller deviation from ACMV, in comparison to unconditional on V.

4 Posterior Inference and Computation

4.1 Posterior Sampling for Observed Data Model Parameters

We use a Markov chain Monte Carlo (MCMC) algorithm to draw samples from the posterior 

wO
(l) ∼iid p(wO | yisi, si, vi i = 1

N ), l = 1, …, L. Note that we use distinct parameters π, φ, η for 

p(ys | s, v, π), p(s |v, φ) and p(v |η), and the parameter are also a prior independent,

p(π, φ, η) = p(π)p(φ)p(η). Therefore, the posterior distribution of wO can be factored as

p wO yisi, si, vi i = 1
N = p π {yisi, si, vi i = 1

N p φ {si, vi i = 1
N p η vi i = 1

N , (11)

and posterior simulation can be conducted independently for π, φ and η. Gibbs transition 

probabilities are used to update π (details in Appendix A.2), the R packages bartMachine 

(Kapelner and Bleich, 2016) and BayesTree (Chipman and McCulloch, 2016) are used to 
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update φ, and η is updated by directly sampling from its posterior 

η | vi i = 1
N ∼ Dir(1 + δη, …, 1 + δη).

4.2 Computation of Expectation of Functionals of Full-data Responses

Our interest lies in the expectation of functionals of y, given by

E[t(y)] = y t(y)p(y)dy =
y
t(y)

s v
ps(ys ys, v)ps(ys v)p(s v)p(v)dv dy . (12)

Once we have obtained posterior samples wO
(l), l = 1, …,L , the expression (12) can be 

computed by Monte Carlo integration. Since the desired functionals are functionals of y, 

computing (12) involves sampling pseudo-data based on the posterior samples. We note that 

this is an application of G-computation (Robins, 1986; Scharfstein et al., 2014; Linero and 

Daniels, 2015) within the Bayesian paradigm (see Appendix Algorithm A.1).

In detail, at step 1, we draw V* = vi with probability p(V = vi | η(l)) = ηi
(l). At step 2, we draw 

S* by sequentially sampling from R ∼ Bernoulli[p(S∗ = j |S∗ ≥ j, v)]. If R = 1, take S* = j; 

otherwise proceed with p(S∗ = j + 1|S∗ ≥ j + 1, v), j = 2, …, J. At step 3, we first draw 

y1* ∼ N a0(v*, s*), σ1s*
2  and then sequentially draw yj* ∼ N a(yj − 1* , v*, j, s*) + yj − 2

* T ϕjs*, σJs*
2 , 

j = 2, …, s* as in (2), where a0(v*, s*) and a(yj − 1* , v*, j, s*) are generated by GP prediction 

rule (Rasmussen and Williams, 2006). At step 4, we sequentially draw yj* for j = s* + 1, …, J

as in (7) from the unidentified distributions, now identified using identifying restrictions. 

When the ACMV restriction is specified, step 4 involves generating the random 

p ≥ j(yj | yj − 1, v), which is defined as

p ≥ j(yj | yj − 1, v) =
k = j

J
αkj(yj − 1, v)pk(yj | yj − 1, v), (13)

and

αkj(yj − 1, v) = p(S = k|yj − 1, S ≥ j, v)

=
p(yj − 1 |S = k, v)p(S = k|S ≥ j, v)

k = j
J p(yj − 1 |S = k, v)p(S = k|S ≥ j, v)

.

The distribution in (13) is a mixture distribution over patterns. We sample from (13) by first 

drawing K = k with probability αkj, k = j, …, J, then drawing a sample from pk(yj | yj − 1, v). 
When the NFMV restriction is specified, step 4 also involves generating the random 

p ≥ j − 1(yj | yj − 1, v), where

p ≥ j − 1(yj yj − 1, v) = αj − 1, j − 1(yj − 1, v)pj − 1(yj yj − 1, v) +
[1 − αj − 1, j − 1(yj − 1, v)]p ≥ j(yj yj − 1, v) .
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Sampling from p ≥ j − 1(yj | yj − 1, v) is done by first samplings Y j* ∼ p ≥ j(yj | yj − 1, v) as in 

(13). Then draw R ∼ Bernoulli[αj − 1, j − 1]. If R = 1, apply the location shift (9), otherwise, 

retain Y j*. See Appendix A.4 for more details of steps 3 and 4.

5 Simulation Studies

We conduct several simulation studies similar to the data example to assess the operating 

characteristic of our proposed model (denoted as GP hereafter). We simulate responses for J 
= 6 time points and fit our model to estimate the change from baseline treatment effect, i.e. 

E[YJ –Y1]. We set the prior and hyper-prior parameters at standard noninformative choices. 

See Appendix A.5 for exact values. For comparison, we consider four alternatives:

(1, LM) a linear pattern-mixture model that consists of a linear regression model for 

ps(yj | yj − 1, v), a sequential logit model for p(s | v), and a Bayesian bootstrap model for p(v), 

as in Equations (16), (15) and (6), respectively;

(2, LM–) a linear pattern-mixture model without V that consists of a linear regression model 

for ps(yj | yj − 1) and a Bayesian bootstrap model for p(s);

(3, DPM) a working model for the full data, constructed as a Dirichlet process mixture of 

selection models, p*(y, s, v |ω) = p(y |v, θ1)p(s |y, v, θ2)p(v |θ3)F(dθ) with F following a 

Dirichlet process. As suggested in Linero (2017), we use a linear regression model for p(y | 

v, θ1) and a sequential logit model for p(s | y, v, θ2). For p(v | θ3), similar to Shahbaba and 

Neal (2009), we assume independent normal distributions for continuous V’s, Bernoulli 

distributions for binary V ‘s and multinomial distributions for categorical V’s; and

(4, DPM–) a working model for the full data without V , p*(y, s |ω) = p(y |θ1)p(s |y, θ2)F(dθ), 
which was proposed by Linero and Daniels (2015) and Linero (2017).

We use noninformative priors for the two parametric models (1) and (2), and use the default 

prior choices in Linero and Daniels (2015) and Linero (2017) for the Dirichlet process 

mixture models (3) and (4). For each simulation scenario below, we generate 500 datasets 

with N = 200 subjects per dataset. See Appendix Section A.7 for further details on 

computing times.

5.1 Performance Under MAR

We first evaluate the performance of our model under the ACMV restriction (MAR). Since 

this restriction completely identifies the extrapolation distribution, this simulation study 

validates the appropriateness of our observed data model specification. We consider the 

following three simulation scenarios.

Scenario 1.—We test the performance of our approach when the data are generated from a 

simple linear pattern-mixture model to assess loss of efficiency from using an unnecessary 

complex modeling approach. For each subject, we first simulate Q = 4 auxiliary covariates 

from a multivariate normal distribution
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V ∼iid N(0,Σvv) . (14)

We then generate dropout time using a sequential logit model

logit   P(S = s S ≥ s, V ) = ζs + V Tξs . (15)

Next, we generate Y s from

Y j Y j − 1, S = s, V ∼ N μjs(Y j − 1, V ), σjs2 , for   j = 1, …, s

where μjs(Y j − 1, V ) =
V Tβ0s + b1s ifj = 1

Y j − 1ψjs + V Tβs + bjs + Y j − 2
T ϕjs ifj ≥ 2

(16)

Finally, the distribution of Ys is specified under the ACMV restriction (for calculating the 

simulation truth of the mean estimate).

The parameters in (14), (15) and (16) are chosen by fitting the model to the test drug arm of 

the schizophrenia clinical trial (after standardizing the responses and the auxiliary covariates 

with mean 0 and standard deviation 1). See Appendix A.5 for details.

Scenario 2.—We consider a scenario where the covariates and the responses have more 

complicated structures in order to test the performance of our model when linearity does not 

hold. For simplicity, for each subject, we simulate Q = 3 auxiliary covariates from 

V ∼iid N(0,Σvv). The responses and drop out times are generated in the same way as in 

scenario 1, but we include interactions and nonlinearities by replacing V in Equations (15) 

and (16) (case j = 1) with V̇ = (V 1, V 2, V 3, V 1 × V 2, V 1 × V 3, V 2 × V 3, V 1
2, V 2

2, V 3
2) and replacing 

V in Equation (16) (case j ≥ 2) with 

V̈ = (V 1, V 2, V 3, V 1 × V 2, V 1 × V 3, V 2 × V 3, V 1
2, V 2

2, V 3
2, V 1 × Y j − 1, V 2 × Y j − 1, V 3 × Y j − 1,

Y j − 1 )
. The 

regression coefficients ξs, β0s and βs change accordingly. See Appendix A.5 for further 

details.

Scenario 3.—We consider a scenario with a very different structure from our model 

formulation. In particular, we consider a lag-1 selection model with a mixture model for the 

joint distribution of Y and V. We generate

K ∼ Categorical(π),
Ω(K) ∼ W−1 (v − J − Q − 1)Ω0

(K), v ,
Y
V |K ∼ N μ(K), Ω(K) ,

logit   P(S = s |S ≥ s, Y , V ) = ζs + ψsY s + V Tξs

(17)

where W−1 (v − J − Q − 1)Ω0, v  is an inverse-Wishart distribution with precision parameter 

ν and mean Ω0. See Linero and Daniels (2015) for further details on this type of model. 

Formulating a joint distribution as in (17) allows us to impose complicated relationships 
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between Y and V (Müller et al., 1996). We consider Q = 3 auxiliary covariates and 5 mixture 

components. We assume µ(K) and Ω0
(K) correspond to a linear model of (Y | V) and have the 

form

μ(K) = μy(K)

0
, Ω0

(K) =
Σyy(K) Σyv

(K)

Σvy
(K) Σvv

.

In particular, we generate μ(K) and Ω0
(K) according to Linero and Daniels (2015) by fitting 

the mixture model to the active control arm of the schizophrenia clinical trial. See Appendix 

A.5 for further details.

The simulation results are summarized in Table 1. For scenario 1, the true data generating 

model is the linear regression model with V, i.e. the LM model. The five models have 

similar performance in terms of MSE. The 95% credible interval of the GP model has a 

frequentist coverage rate less than 95% due to the prior information, i.e., the Gaussian 

process priors and the AR/CAR priors, being quite strong and the sample size (N = 200) 

being relatively small. Therefore, the Bayesian credible interval is unlikely to have the 

expected frequentist coverage. The LM– and DPM– models (which ignore V) do not 

perform worse than the LM and DPM models. The reason is probably that the (linear) 

effects of different V’s on t(Y) cancel out in the integration (12). For scenario 2, the true data 

generating model does not match any of the five models used for inference. The GP model 

significantly outperforms the other models in all aspects. The result suggests that when the 

model is misspecified, the GP model has much more robust performance. We note that the 

DPM and DPM–models, although being nonparametric, perform worse than the GP model. 

The reason is that the GP model is designed specifically to incorporate auxiliary covariates. 

It better exploits the structure of the data, which allows it to more readily capture non-linear 

and non-additive effects and handle sparse patterns, in particular with small sample sizes. 

We also note that when Y and S do not have a linear relationship with V, ignoring V results 

in more significant bias than including V (even mistakenly). For scenario 3, the true data 

generating model is a mixture of linear regression models, similar to the specification of the 

DPM model. The five models again have similar performance. For a pattern-mixture model, 

the marginal distribution of the responses Y is a mixture distribution over patterns, which 

explains the good performance of the GP, LM and LM–models. For all the three scenarios, 

the GP model always gives narrower credible intervals and has lower bias, in particular 

versus the models without auxiliary covariates.

In summary, the semiparametric approach (GP) loses little when a simple parametric 

alternative holds, and it significantly outperforms the other approaches when the model used 

for inference is misspecified. The simulation results suggest that the semiparametric 

approach accommodates complex mean models and is more favorable compared with the 

parametric approaches and even simple nonparametric alternatives.
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5.2 Performance Under MNAR

To assess the sensitivity of our model to untestable assumptions for the extrapolation 

distribution, we fit our model to simulated data under an NFD restriction (8). We consider 

simulation scenarios 2 and 3 as in Section 5.1, where the simulation truth is still generated 

under MAR. We complete our model with a location shift (Equations (9) and (10)). Recall 

that the sensitivity parameter τ measures the deviation of our model from MAR, and the 

simulation truth corresponds to τ = 0. The sensitivity parameter τ is given four different 

priors:

Unif(−0.75, 0.25), Unif(−0.5, 0.5), Unif(−0.25, 0.75), Unif(0,1). All the four priors contain 

the simulation truth. Compared to fixing the value of τ, using a uniform prior conveys 

uncertainty about the identifying restriction. For example, using a point mass prior τ = 0
implies MAR with no uncertainty, while using a prior such that E[τ] = 0 and Var[τ] > 0
implies MAR with uncertainty.

The simulation results for scenarios 2 and 3 are summarized in Table 2 and Appendix Table 

A.3, respectively. When the sensitivity parameter τ is centered at the correct value 0, the GP 

model significantly outperforms the alternatives under scenario 2 and performs as well as the 

alternatives under scenario 3. Comparing with the simulation results under MAR (Table 1), 

the use of a uniform prior for τ induces more uncertainty on inference resulting in the wider 

credible intervals. We also note that, when τ is not centered at 0, the models using V still 

perform better than the model not using V. This is due to the calibration of the location shift 

(Equations (9) and (10)). For the same τ we would have a smaller deviation from ACMV 

using V compared to not using V. This property makes the missingness “closer” to MAR 

and reduces the extent of sensitivity analysis with the inclusion of V.

6 Application to the Schizophrenia Clinical Trial

We implement inference under the proposed model for data from the schizophrenia clinical 

trial described in Section 1.3. The dataset was first used in Linero and Daniels (2015). Recall 

the quantity of interest is the change from baseline treatment effect, rx = E[Y i6 − Y i1 |Xi = x], 
where x = T, A or P correspond to treatments under test drug, active control or placebo, 

respectively. We are particularly interested in the treatment effect improvements over 

placebo, i.e. rT – rP and rA – rP. Also, recall that we have Q = 7 auxiliary covariates 

including age, onset (of schizophrenia) age, height, weight, country, sex and education level. 

Details of computing specifications and times, as well as convergence diagnostics, are 

summarized in Appendix Section A.7.

6.1 Comparison to Alternatives and Assessment of Model Fit

We first compare the fit among the proposed model and alternatives. We consider the linear 

pattern-mixture models and Dirichlet process mixture of selection models with and without 

auxiliary covariates, as we have used in the simulation studies. We use the log-pseudo 

marginal likelihood (LPML) as the model selection criteria, where 

LPML = ∑i = 1
N log(CPOi) /N, CPOi is the conditional predictive ordinate (Geisser and 
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Eddy, 1979) for observation i and CPOi = p Y iSi, Si, V i | Y i′Si′, Si′, V i′ i′ = 1, i′ ≠ i
N . LPML can 

be straightforwardly estimated using posterior samples {ωo(l), l = 1, …,L} (Gelfand and Dey, 

1994), without the need to refit the model N times. A model with higher LPML is more 

favorable compared to models with lower LPMLs. We fit the five models to the data and 

calculate the LPML by taking the summation of the LPML under each treatment arm. The 

results are summarized in Table 3. The proposed semiparametric model (GP) has the largest 

LPML over the alternatives. In particular, the LPML improvement over the linear pattern-

mixture model without covariates (LM–) for the GP model is much higher than the LM and 

DPM– models. This is not surprising in light of the earlier simulation results. We also 

compare inferences on treatment effect improvements over placebo under the MAR 

assumption using the five models, as well as a complete case analysis (CCA) based on the 

empirical distribution of the subjects who have complete outcomes. The results are 

summarized in Table 3. We point out the two plus points shifts between the GP model and 

the other models for the test drug vs. placebo comparison and for the active drug vs. 

placebo. The DPM model has the lowest LPML and the widest credible intervals. The 

poorer performance of the DPM model is probably due to the small sample size of each 

treatment arm (e.g. 45 subjects for the active control arm) and the relatively large number of 

covariates (Q = 7). Inference under the DPM model has large variability with small sample 

sizes, and the covariates can dominate the partition structure (Wade, 2013). Further 

interpretation of the results of the GP model can be found in Section 6.2. The complete case 

analysis (which implicitly assumes missing completely at random) is inefficient and is 

generally very unrealistic for longitudinal data.

Next, we assess the “absolute” goodness of fit of the proposed model. We estimate the 

cumulative dropout rates and observed-data means at each time point and under each 

treatment using the proposed model by

p(S ≤ j x) = p(S ≤ j v, x)p(v x)dv, and

E(Y j S ≥ j, x) = E(Y j S ≥ j, v, x)p(v S ≥ j, x)dv .

We then compare those estimates with results obtained from the empirical distribution of the 

observed data (that implicitly averages over the empirical distribution of the auxiliary 

covariates). Despite some small differences, there is no evidence for lack of fit. The 

comparison is shown in Figure 1.

6.2 Inference

A large portion of subjects dropout for reasons that suggest the missing data are MNAR (see 

Section 1.3). To identify the extrapolation distribution, we make the NFD assumption (8). 

Recall that the NFD assumption leaves one conditional distribution per incomplete pattern 

unidentified:ps(ys + 1 | ys, v, x). To better identify ps(ys + 1 | ys, v, x), rather than simply 

assuming a location shift (9), we make use of information regarding the type of dropout. Let 

Zi = 1 or 0 denote subject i drops out for informative or noninformative reasons, 
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respectively. We model Z conditional on observed data responses, pattern, auxiliary 

covariates and treatment with BART,

P(Z = 1 Y s, S = s, V , X = x) = FN(fsx(Y s, V )) .

Recall FN is the standard normal cdf, and fsx(Y s, V ) is the sum of tree models from BART.

The indicator Z is used to help identify ps(ys + 1 | ys, v, x). We assume

Y s + 1 Y s, S = s, V , X, ω =d

P(Z = 1 Y s, S = s, V , X) ⋅ Y s + 1 + τs + 1 Y s, S ≥ s + 1, V , X, ω +
P(Z = 0 Y s, S = s, V , X) ⋅ Y s + 1 Y s, S ≥ s + 1, V , X, ω ,

(18)

which is a mixture of an ACMV assumption and a location shift. We refer to Equation (18) 

as a MAR/MNAR mixture assumption. The idea is that, if a subject drops out for a reason 

associated with MAR, we impute the next missing value under ACMV; otherwise, we 

impute the next missing value by applying a location shift. The sensitivity parameter τs + 1 is 

interpretable to subject-matter experts, thus prior on τs + 1 can be created. Suppose two 

hypothetical subjects A and B have the same auxiliary covariates and histories up to time s, 

and suppose subject B drops out for an informative reason at time s while subject A remains 

on study. Then, the response of subject B at time (s + 1) is stochastically identical to the 

response of subject A at time (s + 1) after applying the location shift τs + 1. As the prior for 

τs + 1, we assume τs + 1 ≥ 0 as we expect subject B would have a higher PANSS score at time 

(s + 1) than subject A. The magnitude of τs + 1 is calibrated as in Equation (10),

τs + 1 Y s = ys, V = v, X = x = τx ⋅ Δs + 1, x(ys, v) . (19)

We assume a uniform prior on τx, τx ∼ Unif(0, 1), as it is thought unlikely that the deviation 

from ACMV would exceed a standard deviation (Linero and Daniels, 2015).

Figure 2 summarizes change from baseline treatment effect improvements of the test drug 

and active drug over placebo. We implement inference under both the MAR and the mixture 

of MAR/MNAR (Equations (18) and (19)) assumptions. For the test drug arm, the treatment 

effect improvement rT – rP has posterior mean 0.60 and 95% credible interval (−5.07,7.01) 

under MAR, and posterior mean 0.91 and 95% credible interval (−5.29,7.81) under MAR/

MNAR mixture. There is no evidence that the test drug has better performance than placebo. 

The MAR/MNAR mixture assumption slightly increases the posterior mean of rT – rP as the 

test drug arm has a slightly higher informative dropout rate than the placebo arm (Appendix 

Table A.1). For the active drug arm, the treatment effect improvement rA – rP has posterior 

mean –6.08 and 95% credible interval (−13.90,1.72) under MAR, and posterior mean –6.45 

and 95% credible interval (−14.34,1.75) under MAR/MNAR mixture. There appears to be 

some evidence that the active drug has better effect than placebo. The MAR/MNAR mixture 

assumption slightly decreases the posterior mean of rA – rP as the active drug arm has a 

slightly lower informative dropout rate than the placebo arm (Appendix Table A.1). Also, in 
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both scenarios, the MAR/MNAR mixture assumption induces more uncertainty on the 

inferences (wider credible intervals), as we have discussed in Section 5.2.

The same dataset was previously analyzed in Linero and Daniels (2015), which concluded 

that there is little evidence that the test drug is superior to the placebo and some evidence of 

an effect of the active control. Our analysis is consistent with the previous analyses. See 

Appendix Table A.4 for a detailed comparison.

6.3 Sensitivity Analysis

To assess the sensitivity of inferences on treatment effect improvements (rT – rP and rA – rP ) 

to the informative priors on the sensitivity parameters (τT , τA and τP), we consider a set of 

point-mass priors for each τx along the [0,1] grid. The detailed figure showing how 

inferences on rT – rP and rA – rP change for different choices of τT , τA and τP  is in Appendix 

Figure A.2. The sensitivity analysis corroborates our conclusion that there is no evidence 

that the test drug has better performance than placebo. For all the choices of τT  and τP , the 

posterior probability of rT – rP < 0 does not reach the 0.95 posterior probability cutoff. On 

the other hand, the sensitivity analysis shows that there is some evidence that the active drug 

is superior than placebo. For all the combinations of τA and τP , the posterior probability of 

rA – rP < 0 is greater than 0.79. For most favorable values of τA and τP , the posterior 

probability of rA – rP < 0 is greater than 0.95, although it only occurs when τA is 

substantially smaller than τP . In summary, for all the choices of τx, we do not reach 

substantially different results, which improves our confidence on the previous conclusions.

7 Discussion

In this work, we have developed a semiparametric Bayesian approach to monotone missing 

data with non-ignorable missingness in the presence of auxiliary covariates. Under the 

extrapolation factorization, we flexibly model the observed data distribution and specify the 

extrapolation distribution using identifying restrictions. We have shown the inclusion of 

auxiliary covariates in the model could in general improve the accuracy of inferences and 

reduce the extent of sensitivity analysis. We have also shown more accurate inferences can 

be obtained by using the proposed semiparametric Bayesian approach compared to using 

more restrictive parametric approaches and simple Bayesian nonparametric approaches.

The computational complexity in our application is manageable since the schizophrenia 

clinical trial dataset contains only 204 subjects. With much larger data sets computation 

becomes challenging. However, posterior simulation can be conducted in parallel for fitting 

the models of the observed responses, patterns and auxiliary covariates (see Equation 11). 

For each individual component, see Banerjee et al. (2013); Hensman et al. (2013) and Datta 

et al. (2016) for a scalable Gaussian process implementation and Pratola et al. (2014) for a 

scalable BART implementation. G-computation is easily scalable because it requires 

drawing independent hypothetical datapoint using each posterior sample.

When the number of auxiliary variables grows, it might be desirable to perform variable 

selection. Variable selection can be done through exploratory analysis, e.g. fitting linear 
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regression or spline regression models. Alternatively, it can be done more formally for each 

component of Equation (1). See Savitsky et al. (2011) for variable selection for Gaussian 

process priors and Linero (2018) for variable selection for Bayesian additive regression 

trees.

A possible extension of our work is to consider continuous time dropout. The Gaussian 

process is naturally suitable for the continuous case. Another extension would be more 

flexible incorporation of auxiliary covariates beyond the mean. Extending our method to 

non-monotone missing data without imposing the partial ignorability assumption could be 

done with alternative identifying restrictions described in Linero and Daniels (2018) and 

possibly, a slightly modified semiparametric model. In the setting of binary outcomes, our 

method can be naturally extended by using a probit link. To identify the extrapolation 

distribution under NFD, we assume a location shift. Alternatively, we can consider 

exponential tilting (Rotnitzky et al., 1998; Birmingham et al., 2003).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Cumulative dropout rates (top) and means of the observed data (bottom) over time obtained 

from the model versus the ones obtained from the empirical distribution of the observed 

data. The solid line represents the empirical values, dots represent the posterior means, 

dashed error bars represent frequentist 95% confidence intervals, and solid error bars 

represent the model’s 95% credible intervals.
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Fig. 2. 
Change from baseline treatment effect improvements of the test drug (top) and active drug 

(bottom) over placebo over time. Smaller values indicate more improvement compared to 

placebo. The dividing line within the boxes represents the posterior mean, the bottom and 

top of the boxes are the first and third quartiles, and the ends of the whiskers show the 0.025 

and 0.975 quantiles.
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Table 1

Summary of simulation results under MAR. Values shown are averages over repeat sampling, with numerical 

Monte Carlo standard errors in parentheses. GP, LM, LM–, DPM, DPM– represent the proposed 

semiparametric model, the linear regression model with covariates, the linear regression model without 

covariates, the Dirichlet process mixture model with covariates and the Dirichlet process mixture model 

without covariates, respectively. CI width and coverage are based on 95% credible intervals.

Model Bias CI width CI coverage MSE

Scenario 1

GP −0.013(0.004) 0.294(0.002) 0.909(0.012) 0.014(0.000)

LM −0.005(0.004) 0.379(0.001) 0.969(0.007) 0.017(0.000)

LM– 0.004(0.004) 0.385(0.002) 0.969(0.007) 0.018(0.001)

DPM −0.013(0.004) 0.355(0.002) 0.954(0.009) 0.018(0.001)

DPM– −0.009(0.004) 0.343(0.001) 0.947(0.009) 0.016(0.001)

Scenario 2

GP 0.037(0.010) 0.967(0.005) 0.943(0.010) 0.122(0.004)

LM 0.247(0.010) 1.021(0.004) 0.819(0.017) 0.189(0.006)

LM– 0.330(0.010) 1.094(0.005) 0.783(0.018) 0.243(0.007)

DPM 0.183(0.011) 1.188(0.006) 0.924(0.012) 0.192(0.005)

DPM– 0.302(0.011) 1.054(0.006) 0.781(0.019) 0.228(0.008)

Scenario 3

GP −0.005(0.007) 0.666(0.002) 0.958(0.009) 0.057(0.002)

LM 0.008(0.007) 0.705(0.002) 0.968(0.008) 0.061(0.002)

LM– 0.026(0.007) 0.707(0.002) 0.964(0.008) 0.061(0.002)

DPM −0.008(0.008) 0.778(0.002) 0.984(0.006) 0.070(0.002)

DPM– −0.001(0.007) 0.669(0.002) 0.953(0.010) 0.058(0.002)
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Table 2

Summary of simulation results for Scenario 2 under MNAR. Values shown are averages over repeat sampling, 

with numerical Monte Carlo standard errors in parentheses. CI width and coverage are based on 95% credible 

intervals. The values of E(τ), –0.25, 0, 0.25 and 0.5, correspond to prior specifications Unif(−0.75, 0.25), 

Unif(−0.5, 0.5), Unif(−0.25, 0.75) and Unif(0,1), respectively.

Model E(τ) Bias CI width CI coverage MSE

GP −0.25 −0.024(0.011) 1.032(0.005) 0.957(0.009) 0.133(0.004)

0 0.065(0.011) 1.050(0.005) 0.949(0.010) 0.140(0.004)

0.25 0.157(0.011) 1.069(0.005) 0.909(0.012) 0.165(0.005)

0.5 0.256(0.011) 1.091(0.005) 0.851(0.015) 0.210(0.007)

LM −0.25 0.156(0.011) 1.122(0.005) 0.918(0.012) 0.170(0.005)

0 0.271(0.011) 1.146(0.005) 0.866(0.015) 0.223(0.007)

0.25 0.389(0.011) 1.170(0.005) 0.755(0.019) 0.307(0.009)

0.5 0.513(0.011) 1.199(0.005) 0.626(0.021) 0.424(0.012)

LM– −0.25 0.222(0.010) 1.215(0.005) 0.909(0.012) 0.204(0.006)

0 0.352(0.010) 1.237(0.005) 0.842(0.016) 0.284(0.008)

0.25 0.487(0.010) 1.266(0.006) 0.710(0.020) 0.403(0.011)

0.5 0.626(0.011) 1.300(0.005) 0.528(0.022) 0.567(0.014)

DPM −0.25 0.077(0.011) 1.275(0.006) 0.979(0.006) 0.178(0.004)

0 0.185(0.011) 1.289(0.006) 0.954(0.009) 0.210(0.005)

0.25 0.298(0.011) 1.308(0.007) 0.884(0.014) 0.269(0.008)

0.5 0.415(0.012) 1.332(0.007) 0.795(0.018) 0.358(0.010)

DPM– −0.25 0.179(0.011) 1.167(0.006) 0.932(0.011) 0.184(0.005)

0 0.304(0.011) 1.197(0.006) 0.851(0.016) 0.252(0.008)

0.25 0.435(0.011) 1.234(0.006) 0.712(0.020) 0.357(0.011)

0.5 0.571(0.012) 1.278(0.006) 0.579(0.022) 0.504(0.014)
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Table 3

Comparison of LPML (the second column) and inference results (the third and fourth columns) under MAR 

(the first five rows) and CCA (the last row). For the inference results under MAR and CCA, values shown are 

posterior means, with 95% credible intervals in parentheses.

Model LPML rT – rP rA – rP

GP −31.93 0.60(−5.07, 7.01) −6.08(−13.90, 1.72)

LM −32.61 −1.26(−8.59, 5.74) −7.24(−15.00, 0.05)

LM– −32.71 −1.94(−9.00, 5.07) −8.13(−15.30, −1.00)

DPM −39.25 0.44(−10.14, 10.42) −7.66(−25.27, 9.67)

DPM– −32.58 −1.69(−8.03, 4.78) −5.44(−12.61, 2.27)

CCA – −3.23(−8.63, 2.18) −3.82(−10.18, 2.55)
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