Skip to main content
. Author manuscript; available in PMC: 2021 Jan 1.
Published in final edited form as: J Comput Graph Stat. 2019 Jul 2;29(1):1–12. doi: 10.1080/10618600.2019.1617159

Table 1.

Summary of simulation results under MAR. Values shown are averages over repeat sampling, with numerical Monte Carlo standard errors in parentheses. GP, LM, LM–, DPM, DPM– represent the proposed semiparametric model, the linear regression model with covariates, the linear regression model without covariates, the Dirichlet process mixture model with covariates and the Dirichlet process mixture model without covariates, respectively. CI width and coverage are based on 95% credible intervals.

Model Bias CI width CI coverage MSE
Scenario 1
GP −0.013(0.004) 0.294(0.002) 0.909(0.012) 0.014(0.000)
LM −0.005(0.004) 0.379(0.001) 0.969(0.007) 0.017(0.000)
LM– 0.004(0.004) 0.385(0.002) 0.969(0.007) 0.018(0.001)
DPM −0.013(0.004) 0.355(0.002) 0.954(0.009) 0.018(0.001)
DPM– −0.009(0.004) 0.343(0.001) 0.947(0.009) 0.016(0.001)
Scenario 2
GP 0.037(0.010) 0.967(0.005) 0.943(0.010) 0.122(0.004)
LM 0.247(0.010) 1.021(0.004) 0.819(0.017) 0.189(0.006)
LM– 0.330(0.010) 1.094(0.005) 0.783(0.018) 0.243(0.007)
DPM 0.183(0.011) 1.188(0.006) 0.924(0.012) 0.192(0.005)
DPM– 0.302(0.011) 1.054(0.006) 0.781(0.019) 0.228(0.008)
Scenario 3
GP −0.005(0.007) 0.666(0.002) 0.958(0.009) 0.057(0.002)
LM 0.008(0.007) 0.705(0.002) 0.968(0.008) 0.061(0.002)
LM– 0.026(0.007) 0.707(0.002) 0.964(0.008) 0.061(0.002)
DPM −0.008(0.008) 0.778(0.002) 0.984(0.006) 0.070(0.002)
DPM– −0.001(0.007) 0.669(0.002) 0.953(0.010) 0.058(0.002)