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Abstract

Decisions in complex environments rely on flexibly utilizing prior experience. This depends on the 

medial frontal cortex (MFC) and the medial temporal lobe, but it remains unknown how these 

structures implement selective memory retrieval. We recorded single neurons in MFC, amygdala, 

and hippocampus while human subjects switched between making recognition memory- and 

categorization-based decisions. MFC rapidly implemented changing task demands by utilizing 

different subspaces of neural activity and by representing the currently relevant task goal. Choices 

requiring memory retrieval selectively engaged phase-locking of MFC neurons to amygdala/

hippocampus field potentials, thereby enabling the routing of memories. These findings reveal a 

mechanism for flexibly and selectively engaging memory retrieval and show that memory-based 

choices are preferentially represented in frontal cortex when required.

One sentence summary

Information stored in recognition memory is selectively used by human frontal cortex to make 

memory-based choices when required by a decision.
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Behavior in complex environments requires decisions that flexibly combine stimulus 

representations with context, goals, and memory. Two key aspects of cognitive flexibility are 

to selectively utilize relevant information depending on task demands, and to retrieve 

information from memory when needed (1). We begin to understand the neural mechanisms 

that underlie flexible decisions in the case of perceptual decision-making (2–4), with 

evidence for both early gating, mediated by top-down attention (5), and late selection of 

relevant features in prefrontal cortex (3). In contrast, little is known about the mechanisms of 

decisions that also depend on associated category knowledge and memory. In particular, it 

remains unknown how memory retrieval is selectively engaged when decision-relevant 

information needs to be actively searched for in memory (6–8).

The MFC is critical for complex behavior, and registers cognitive conflict, errors, and choice 

outcomes (9–11). It supports flexible decision-making in two ways: i) by representing task 

sets (12–14) and context (15), and ii) by selectively engaging memory retrieval through 

functional interactions with other brain areas (16–18), in particular the hippocampus (19–21) 

and amygdala (22, 23). A mechanism that facilitates such inter-areal interactions is phase-

locking of MFC activity to oscillations in the hippocampus or amygdala. This mechanism 

has been extensively investigated in rodents during spatial behavior (24–26) and fear 

conditioning (27, 28), but its broader function remains poorly understood (29), particularly 

in humans. Similarly, human neuroimaging studies indicate that the MFC are involved in 

memory search (8, 18, 30–34) and that patterns and level of activity and connectivity 

assessed by fMRI vary as a function of retrieval intentionality (35–38). It remains unknown 

what features of decisions and context are represented in human MFC, whether memory 

retrieval selectively engages synchrony between MFC and hippocampus/amygdala, and 

whether synchrony can be engaged dynamically when required. This lack of knowledge 

stands in stark contrast to the patent behavioral ability of humans to flexibly recruit memory 

processes in everyday life (39, 40), and to our detailed knowledge of memory 

representations in the human hippocampus and amygdala, where cells represent aspects of 

declarative memories such as the familiarity and the identity of a stimulus (41–43). To 

address these open questions, we utilized simultaneous recordings of single neurons and 

local field potentials in the human MFC, hippocampus, and amygdala.

Results

Task and behavior

We recorded from 1430 single neurons across four brain areas (Fig. 1C–D; see Table S1; 33 

sessions in 13 subjects): n=203, 460, 329, and 438 neurons from anterior hippocampus (HF), 

amygdala (AMY), dorsal anterior cingulate cortex (dACC) and pre-supplementary motor 

area (pre-SMA), respectively. For brevity, we refer to HF and AMY together as HA (n=663 

cells), and to dACC and pre-SMA together as MFC (n=767 cells).

Subjects viewed a sequence of 320 images, grouped into 8 blocks of 40 images each, in each 

session (Fig. 1A–B). Subjects were instructed at the beginning of each block which decision 

to make and which response modality to use to communicate their decision. Subjects made a 

“yes” or “no” decision for each trial to either indicate whether an image belonged to a given 

visual category (“Categorization Task”) or whether an image had been seen before in the 
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task or not (“Memory task”). No feedback was provided (see Methods for details on the 

task). Each image shown belonged to one of four visual categories: human faces, monkey 

faces, fruits, or cars. In each block, half of the images shown were repeated and half were 

novel (except in the first block, in which all images were novel).

Subjects indicated choices either using saccades (leftward or rightward) or button press with 

central fixation (Fig. 1E–F; mean ± s.d., 94 ± 15% of all gaze positions fell within the image 

shown). Reaction times (RT) were significantly longer in the memory compared to the 

categorization task (Fig. 1G, mean RT of 1.48s ± 1.1 vs. 1.19s ± 1.2 respectively, p<1e-20, 

2-sample KS test, mean ± s.d. across all trials in a given task). Subjects performed with an 

average accuracy of 97 ± 6% vs. 71 ± 6% in the categorization and memory task, 

respectively (mean ± s.d. across n = 33 sessions). This difference in accuracy remained after 

we matched for RT between the two tasks (96 ± 6% vs. 72 ± 8% with matched RT of 1.23s

±0.60 vs. 1.24s±0.60 for the categorization and memory task, respectively. Even without RT 

matching, the initial response in terms of arousal was not different between tasks as assessed 

by pupillometry, see Fig. S1J–L). In the memory task, accuracy increased as a function of 

how many times an image had been shown (Fig. 1H, βappearances = 0.56, p <1e-20, mixed 

effects logistic regression; also see Fig. S1C–D for effect of target vs. non-target on memory 

performance). Subjects had shorter RTs on “yes” (seen before) decisions than on “no” (novel 

stimulus) decisions in the memory task (Fig. S1A, see legend for statistics), as expected 

from an MTL-dependent recognition memory task (41). In the categorization task, RT was 

not significantly different between the two responses (Fig. S1A), showing the absence of 

oddball effects.

Effects of task type and response modality in the medial frontal cortex

Instructions about the type of task and response modality were shown at the beginning of 

each block (Fig. 1A, B). Cells showed significant modulation of their firing rate during the 

baseline period as a function of task type (Fig. 2A–B shows an example in pre-SMA). At the 

single-neuron level, significantly more cells were modulated by task-type in the MFC 

compared to HA: 25% of MFC cells (165/767, 82 in dACC, 83 in pre-SMA; see Fig. S2B) 

vs. 12% of HA cells (79/663, 21 in HF, 58 in AMY), χ2-test of proportions, p = 1.5e-6. 

Similarly, at the population level, population decoding accuracy was significantly higher in 

MFC compared to HA (Fig. 2C; 90% vs. 70%, respectively, p<1e-3, Δtrue = 20% vs. 

empirical null distribution, see Methods), a conclusion that held regardless of number of 

neurons used (Fig. S2H). Cells also modulated their activity as a function of response 

modality during the baseline period (Fig. S2E shows an example). Similar to task type 

encoding, significantly more cells encoded response modality in MFC and this signal could 

be decoded with higher accuracy in MFC compared to HA (14% vs 10% of cells; 84/593 vs. 

59/586 in MFC and HA respectively; 33 in ACC, 51 in pre-SMA, 27 in HF, 32 in AMY; χ2-

test of proportions, p = 0.03; population decoding performance 72% vs. 64%, Fig. 2D; 

p<0.05, Δtrue = 8% vs. empirical null distribution; this conclusion held regardless of number 

of neurons used Fig. S2I.

After a task switch, contextual signals emerged rapidly within 1–2 trials in the new context 

in MFC (Fig. 2H). This was not a result of ongoing post-stimulus processing because task 
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could still be decoded even if only considering the subset of task cells in the MFC which did 

not differentiate between the tasks around response time (see Fig. S2G). Task switching 

costs were also reflected in the subjects’ longer reaction times shortly after a change in task 

or effector type (Fig. S2A). Task type representations during the baseline period were 

stronger on trials where the subject subsequently produced a fast response versus those 

where the response time was slow (Fig. 2I), indicating behavioral relevance. Lastly, we 

tested whether the two types of contextual signals were sufficiently robust to avoid 

interference with one another, using a cross-condition generalization decoding analysis (44) 

(Fig. 2E). We first trained a decoder to discriminate task type on trials where the subject was 

instructed to reply with a button press, and then tested the performance of this decoder on 

trials where the subject was instructed to use saccades (and vice-versa). The two neural 

representations generalized in the MFC but not in the HA (Fig. 2F–G). For this reason, we 

focused on the MFC when conducting above analysis.

Cross-condition generalization of memory and image category

We next asked whether the neural representations of image category and familiarity are 

sensitive to task demands. We assessed two consequences of task demands: generalization 

across tasks and strength of representations within each task. At the single-unit level, we 

examined visually-selective (VS) cells (42), whose responses are thought to reflect input 

from high level visual cortex, and memory-selective (MS) cells (41), whose response signals 

stimulus familiarity (Fig. 3A–B shows examples). Of the HA cells, 40% were visually 

selective (264/663, 35 in HF and 229 in AMY) and 11% were memory selective (73/663, 10 

in HF, 63 in AMY; 24/73 and 49/73 were old>new and new>old selective, respectively; see 

Methods for selection model). In the MFC, 13% (103/767) of the cells were visually 

selective and 11% (84/767) were memory selective. We first performed single-neuron 

analysis of the selected HA cells. Both visual and memory selectivity was present in both the 

memory and categorization blocks (Fig. S3D, E and S3H–I). MS cell responses reflected a 

memory process: they strengthened over blocks as memories became stronger (Fig. S3G) 

and differed between forgotten old (FN) and correctly identified new (TN) stimuli for both 

new>old (n=49) and old>new (n=24) preferring MS cells (Fig. S10F). Furthermore, these 

memory signals were behaviorally relevant: new/old decoding was significantly weaker in 

incorrect than correct trials (Fig. S10G).

We next took a population-level approach (over all single units, without selection) to answer 

the question whether coding for visual and memory information generalizes across tasks. We 

used decoding performance on individual trials and single-neuron analysis (Fig. S4D–E) to 

assess whether the neural encoding of visual category and/or familiarity of a stimulus 

depended on task demands. In both HA and MFC, image category could be decoded (Fig. 

3C, 98% and 49% in HA and MFC respectively; chance level = 25%). Category decoding 

performance was significantly higher in the HA than MFC (Δtrue = 49% vs. empirical null 

distribution, p<1e-3). In the HA, the ability to decode category was not significantly 

different between the two tasks (Fig. 3C, 96% vs. 99% in categorization and memory 

respectively; Δtrue = 3%, p =0.25) and could be decoded above chance in both the HF and 

AMY (Fig. S4A–B). Note that at the single-neuron level, HA neurons encoded significantly 

more information about category in the memory task (Fig. S4D), an effect that decoders 
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were not sensitive to due to saturation. In the MFC, decoding accuracy for image category 

was significantly higher in the memory task (Fig. 3C, 60% vs. 36%, Δtrue = 24% vs. 

empirical null distribution, p<0.001). Memory was decodable in both the HA and MFC (Fig. 

3D, 69% vs. 76% respectively), with no significant difference in decoding accuracy between 

the two tasks in HA (Fig. 3D, 67% vs. 71%, in categorization and memory trials 

respectively, Δtrue = 4%, p =0.3) and significantly better decoding ability in MFC in the 

memory task (Fig. 3D, 86% vs. 61%; Δtrue = 25% vs. empirical null, p = 0.001). Single-

neuron analysis confirmed the impression from decoding that the strength of memory signals 

in the HA were not modulated by task demands whereas they were in MFC (Fig. S4E). In 

either task, at the population level, memory decoding was only possible in the amygdala 

(Fig. S4B). The population-level decoding of memory in the HA was principally a reflection 

of the signal carried by the MS cells (Fig. S10E), and was not due to repetition suppression 

of VS cells (Fig. S10B–C) because it was not possible to decode familiarity from VS cells 

alone (Fig. S10D).

To gain insight into the geometry of the population-level representations, we assessed 

whether the decoders trained to report familiarity and the category of the stimuli in one task 

would generalize to the other task (Fig. 3F schematizes our approach). Cross-task 

generalizability would indicate that familiarity and visual category are represented in an 

abstract format (44). First, cross-task generalization performance was greater in the HA than 

MFC for both image category (Fig. 3G,I; 98% vs. 41%, averaged across the two cross-

condition decoding performances; Δtrue = 57% vs. empirical null, p<1e-3) and familiarity 

(Fig. 3H,I; 67% vs. 55%, Δtrue = 12% vs. empirical null, p<0.05). Second, to help 

understand the geometry of these neural representations, we projected the average HA and 

MFC population activity for all possible pairings of familiarity, image category, and task (8 

different conditions) into a 3D state-space using multi-dimensional scaling. For illustration 

purposes, we show this for the two image categories (fruits, faces) for which memory 

performance was the best. In the HA (Fig. 3E, left), the relative positions of a “new face” 

with respect to an “old face” was preserved across tasks (shown as different colored planes). 

The relatively parallel location of the subspace of neural activity occupied by the two tasks 

permits across-task generalization for both image category and familiarity. In contrast, in the 

MFC (Fig. 3E, right), the relative positions of the four conditions were not preserved. This is 

consistent with weaker cross-task generalization performance we observed in MFC relative 

to HA (Fig. 3G–H), resulting in reduced generalization indices in MFC compared to HA 

(Fig. 3J; note this metric takes into account different levels within-task decoding accuracy, 

which is an upper bound for the achievable generalization performance; see supplementary 

text for details).

Representation of choice

We next investigated how the subject’s choice (yes or no) is represented. Decoding accuracy 

for choices was highest in the MFC (Fig. 4A shows examples), with average population 

decoding performance of 89%, compared to 68% in the HA (Fig. 4B; Δtrue = 19% vs. 

empirical null, p<1e-3; 61% in AMY and 57% in HF when trained separately; Fig. S7G 

shows this result as a function of number of neurons used). Further single-neuron (Fig. 

S11A–B) and population (Fig. 4E, S11C) analysis confirmed the impression that the choice 
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signal was significantly stronger in the MFC regardless of selection threshold and 

quantification method. We therefore first analyzed choice information in the MFC (see 

further below for results in HA). Choice decoding in MFC was strongest shortly after 

stimulus onset well before the response was made (Fig. S7A). To disassociate representation 

of choice (yes vs. no) from the representation of ground truth (old vs. new) during the 

memory recognition task, we fit a choice decoder to a set of trials that were half-correct and 

half-incorrect. The activity of MFC cells predicted choice, but not the ground truth at levels 

significantly different from chance (Fig. 4C; choice decoding is above the 95th percentile of 

the null distribution while new/old decoding is not; see Fig. S7D for this analysis shown 

over time). Choice could be decoded from MFC separately from both correct and incorrect 

trials (Fig. S5I). As a control for potential confounds due to RT differences between tasks 

(see Fig. S1A), we acquired data from a separate control task in which we eliminated RT 

differences behaviorally by adding a waiting period (6 sessions in 5 subjects; n=180 and 162 

neurons in HA and MFC, respectively; see Methods and Fig. S6). Like in the original task, 

MFC cells represented the subject’s choice (Fig. S6C–G), thereby confirming that this 

separation is not due to RT differences.

We used multi-dimensional scaling to visualize the population activity for the eight 

combinations of choices, task types, and response modality (Fig. 4D, see Methods). The 

resulting geometrical configuration indicates that choice decoding generalizes across 

response modality (Fig. 4D, top) but not across task types (Fig. 4D, bottom). We therefore 

computed the cross-task generalization performance of a decoder trained on choices during 

one task and tested on the other. We performed this analysis across time (Fig. 4E; see Fig. 

S7B for this analysis shown separately for preSMA and dACC), as well as in a single post-

stimulus time bin (Fig. 4F). To avoid confounds due to response time differences, we 

performed the fixed window analysis (Fig. 4F) only for the control task, where the timing 

between tasks was identical (Fig. S6B). While the choice signal did not generalize across 

task types (Fig. 4F), it did generalize across response modality within the same task type 

(Fig. 4G). Quantifying this observation with the generalization index confirmed this 

impression (Fig. 4H). Lastly, we examined choice signals in the HA. While choice signals 

were comparatively weak in HA (Fig. S7E and 4B; see Fig. 4B for statistics), they 

nevertheless exhibited a pattern of generalization similar to that in the MFC (Fig. S7E–F).

To test the possibility that any task might yield a unique choice axis that does not generalize 

to any other task, we considered the four subtasks that make up the categorization trials in a 

given session (the target category can be any one of the four possible image categories). We 

tested whether the choice signal generalizes across these subtasks by training and testing 

across blocks requiring different categorizations. Choice decoding generalized across all 

sub-tasks in the categorization task, but not the memory task (Fig. 4I). Next we compared 

the dynamics of the population activity between the eight conditions arising from the 

combination of choice, effector type, and task in a state-space model recovered using 

Gaussian Process Factor Analysis (GPFA (45), see Methods). Comparing the pairwise 

similarity between the trajectories in state space (Fig. 4J, left) in the first 500ms after the 

stimulus onset revealed that the patterns of dynamics in state space cluster first by task type 

(Fig. 4J, right; also see Supplementary Video 1).
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We next examined whether the population-level analysis relied on different sets of neurons 

to decode choice in each of the two tasks. We determined how individual cells are recruited 

by a linear decoder (44, 46). For each cell, we quantified its importance (46) for both the 

memory and categorization choice decoder (Fig. 4K). We then plotted the degree of 

specialization for each cell based on its importance in each task (see Methods). Cells that 

report choice independently of task should lie on the diagonal (i.e. an angle of π/4). Instead, 

the distribution of angles was significantly bimodal across all cells (Fig. 4K, inset plot, 

p<1e-5, Hartigan dip test), with modes centered away from the diagonal. Despite this 

bimodality, we could still use the cells that are the most useful in one task, to train a new 

decoder that can predict choice well above chance (although significantly weaker) in the 

other task (Fig. S7C). Note that this is not an example of cross-task generalization, since we 

are fitting a new decoder.

Task-dependent spike-field coherence between MFC cells and HA LFP

It is thought that the selective routing of decision-related information between the HA and 

MFC is coordinated by inter-areal spike-field coherence (24). We therefore asked whether 

MFC neurons phase-lock to ongoing oscillations in the LFP in the HA and, if so, whether 

the strength of such interactions is modulated by task demands. We performed this analysis 

for the 13 subjects and 33 sessions for which we simultaneously recorded from both areas 

(Fig. 5A). In the following, we only utilized neural activity from the 1s baseline period that 

precedes stimulus-onset to avoid confounds related to stimulus-onset evoked activity. 

Individual cells in the MFC showed strong task modulation of MFC to HA spike-field 

coherence (Fig. 5B shows a single-cell example in the dACC). At the population level, MFC 

cells showed significantly stronger theta-band coherence with HA oscillations during the 

memory compared to the categorization task (Fig. 5C, 8822 cell electrode pairs; p = 1.3e-7, 

paired t-test, measured at 5.5Hz; see Fig. S9B–C for additional controls). This was the case 

for both MFC-hippocampus, and MFC-amygdala interactions (Fig. 5D, n = 3939, p = 

8.8e-4; n = 4884, p = 4.3e-5 respectively, paired t-test). This effect was due to changes in 

phase preference as there was no significant difference in HA LFP power between the tasks 

(Fig. 5E, p = 0.08, paired t-test of signal power at 5.5Hz, estimate across all 8822 cell-

electrode pairs). Out of the 767 MFC cells, a significant subset of ~100 cells were phase-

locked to the theta-band HA LFP (Fig. S9A), with the largest proportion preferring 3–8Hz.

To determine if there is a relationship between the tuning of cells in MFC and their inter-

area coherence with HA, we selected for choice cells independently in the categorization and 

memory task (see Methods for selection model; note selection controls for RT differences). 

This revealed that 101/767 and 82/767 cells were significantly modulated by choice during 

the memory and categorization task, respectively (p<0.001 vs. chance for both; see Fig. 4A 

Cell 2 and 1 for an example, respectively). Single-neuron decoding showed that it was not 

possible to decode the subject’s choice in the categorization task from choice cells selected 

in the memory task and vice-versa (Fig. S5A–D). Single-neuron analysis revealed that cells 

preferring either “no” or “yes” choices were presently in approximately equal proportions in 

both tasks (Fig. S5B). The removal of the selected choice cells from a population decoding 

analysis with access to all recorded neurons significantly diminished decoding performance 

(Fig. S5F, G). Importantly, each of the selected cells had a high importance index, as 
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determined from population decoding (Fig. 5F). Considering only the MFC choice cells 

revealed that this subset of cells was similarly increasing their phase-locking during the 

memory task (Fig. 5G, top), with the strongest effect again in the theta range (fpeak = 5 Hz, p 

= 1e-6, paired t-test). Both categorization and memory choice cells showed this pattern of 

modulation (Fig. 5G, bottom). The memory choice cells exhibited an increase in gamma 

band coherence (Fig. 5G, fpeak = 38.5Hz; p = 2e-6, paired t-test). The extent of phase-

locking of choice cells following stimulus onset (0.2–1.2s) during the memory task was 

significantly stronger for correctly retrieved compared to forgotten old trials, indicating 

behavioral relevance for memory retrieval (Fig. 5H). Lastly, to exclude the possibility that 

this inter-area effect was due to task-dependent changes within the HA, we examined the 

phase-locking properties of HA cells to their own locally recorded LFP (LFP and spiking 

activity is recorded on separate electrodes, see Methods). The spiking activity of 331/663 

HA cells was significantly related to the theta-frequency band LFP (Fig. 5I, shown for f = 

5.5 Hz). The strength of this local spike-field coherence was, however, not significantly 

different between the two tasks (Fig. 5J; p = 0.61, paired t-test, n = 2321 cell-electrode 

pairs).

Discussion

We investigated the nature of flexible decision-making in the human brain by probing how 

the strength and/or geometry (44) of neural representations of stimulus memory, stimulus 

category, and choice is modified when subjects switch between a memory and a 

categorization task. We found evidence for both kinds of neural representation changes due 

to changing task demands for a subset of the studied variables. In the MFC, both the strength 

and geometry of representation of stimulus memory changed as a function of task demands. 

In contrast, in the HA, both the strength and geometry of the representation of stimulus 

memory were insensitive to task demands (Fig. 3D, H). Our finding of memory signals in 

the amygdala supports the hypothesis (47, 48) that the amygdala contributes to recognition 

memory by signaling stimulus familiarity. Representation strength of stimulus category in 

both the HA and MFC were stronger in the memory task, but the geometry of this 

representation was in addition also modulated by the task in the MFC (Fig. 3G, right). 

Overall, these results show that the geometry of the representations (as assessed by across-

task generalization) of stimulus familiarity and memory were significantly less sensitive to 

task demands in the HA compared to the MFC (Fig. 3G–H).

At the population level in the MFC, choices in both the memory and categorization task 

were decodable with high reliability, but these decoders did not generalize across the two 

tasks. Choice decoding generalized across sub-tasks of the categorization task and changes 

of response modality within both tasks, indicating that changes in representations were due 

to switching between a task requiring memory retrieval and one that does not. Note that 

while the choice signal was significantly weaker in the HA, this same pattern of 

generalization also held for the HA, suggesting the possibility that the task-demand 

dependent choice representation we found in MFC is widely distributed in the brain. A 

group of task demand-dependent cells in the MFC were choice cells, which signal 

behavioral decisions preferentially for either memory- or categorization decisions 

irrespective of response modality and regardless of the ground truth of the decision. Thus, 
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from the point of view of downstream areas, neurons formed two separate decision axes: one 

for memory-based decisions and one for categorization-based decisions. These two decision 

axes were instantiated selectively so that they were only present when the current task 

required them.

These findings contrast with prior work on task switching between different tasks that 

required purely perceptual decisions, which found a single decision axis in monkey pre-

frontal cortex, with task-irrelevant attributes also represented (49). We found that memory-

based choices add a second decision axis, which is present only when decisions engage 

memory retrieval processes. While task-sensitive representations of choice have been shown 

in recordings from nonhuman primates during perceptual decision-making (2, 49, 50) and 

human neuroimaging (51), our data reveal choice representations that specifically signal 

recognition memory-based choices at the single-cell level. It has long been appreciated that 

the frontal lobes are critical for initiating and controlling memory retrieval (30, 52–54). 

Neuroimaging reveals that patterns of activity within some frontal and parietal areas are 

modulated by memory retrieval demands (34, 35, 37, 38, 55), whereas memory-related 

activity patterns in the MTL are comparatively insensitive to retrieval demands (34). These 

finding have led to the proposal that the memory retrieval network consists of specialized 

processes separate from those utilized for other kinds of decisions (6, 56, 57). The memory-

choice axis we describe is a potential cellular substrate for this critical aspect of human 

cognitive flexibility. Future work is needed to investigate whether similar principles also 

apply to hippocampus dependent associate or source memory (58–60) based decisions, 

which we did not assess here (we probed recognition memory).

A second group of cells we characterized in MFC signal the currently relevant goal (task 

type and response modality) throughout the task. These cells switched their activity pattern 

when instructions indicated a change in task demands. While these switches were rapid, they 

were not instantaneous, likely reflecting the cost of switching between memory retrieval and 

categorization modes (61–63). We hypothesize that these cells facilitate holding in working 

memory (64, 65) the active task set and configure brain networks in preparation for 

appropriate execution of the instructed task (12, 34, 66, 67). Task switching costs are a much 

investigated aspect of cognitive flexibility (39, 61–63), but it remains little understood how 

they arise, and why some task switches are more difficult than others. The MFC cells we 

describe here offer an avenue to directly investigate these questions.

Finally, we uncovered a possible mechanism by which memory-based information can be 

routed dynamically between MFC and hippocampus/amygdala when a task requires memory 

retrieval. Changing long-range synchronization of neural activity is thought to be a way by 

which functional connectivity between brain areas can be changed flexibly (68–71). Here, 

we reveal a specific instance of this phenomenon at the cellular level in humans in the form 

of changes in the strength of cortico-hippocampal and cortico-amygdala functional 

connectivity. Hippocampal-mPFC functional connectivity in rodents supports spatial 

working memory (24) and is prominent during both navigation and rest (72–74). Similarly, 

amygdala-mPFC function connectivity supports flexibly switching between aversive and 

neutral behaviors depending on learned cues (75). But it remains unknown whether these 

pathways serve a role in long-term memory retrieval in humans and, if so, whether it can be 

Minxha et al. Page 9

Science. Author manuscript; available in PMC 2020 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



engaged selectively. Similarly, in humans, MTL-PFC connectivity changes as measured by 

fMRI have been related to control demands over memory retrieval (36, 76), but it remains 

unclear how these indirect metrics relate to long-range synchronization as measured in 

rodents. Here, we show that MFC-hippocampus/amygdala connectivity is selectively 

enhanced during the memory task, indicating that patterns of inter-areal connectivity change 

in preparation of initiating memory retrieval (77, 78). The extent of synchrony after stimulus 

onset is stronger when a memory is successfully retrieved compared to when it is forgotten. 

Memory choice cells in MFC exhibited enhanced gamma-frequency band coordination of 

their spiking activity with the hippocampus and amygdala LFP, and this modulation was 

behaviorally relevant after stimulus onset. This reveals a specific cellular-level instance of a 

role for gamma oscillation-mediated coordination of activity between distant brain regions 

(24, 79) in human memory retrieval.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Task, electrode locations, and behavior.
(A) Task structure. A session consisted of eight blocks of 40 trials. The task switched with 

each block (blue=categorization, red=memory), and the response modality switched halfway 

within each block (saccade or button press; randomly assigned at the beginning of the 

block). The subject was instructed about the task at the beginning of each block (magenta 

arrow) and how to respond at the beginning and halfway point of each block (green arrow). 

(B) Example of screens shown to subject for two example trials. (C-D) Electrode locations. 

Each dot is the location of a microwire bundle in one subject. (E-F) Eye tracking data from 

one session from the button press (e) and eye movement (f) trials. (G) Reaction times as a 

function of task across all sessions (memory, μ ± sem, 1.27±0.02s; categorization, 0.90 ± 

0.02s; p =7.6e-228, 2-sample KS test). (H) Memory performance improves over the course 
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of the experiment (β = 0.56, p=8.42e-130, logistic mixed effects model). See also Fig. S1 for 

an extended summary of the behavior.
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Fig. 2. Representations of task type and response modality.
(A-B) Example pre-SMA neuron. (B) Average firing rate during the baseline period (−1 to 

0s relative to stimulus onset) for each block for the cell shown in (a). Shown is the average 

baseline firing rate across all blocks of the same type. (C-D) Population decoding of task 

type (c) and response modality (d). (E) Cross-condition decoding approach. The background 

color denotes the type of trials that were used to train a given decoder. (F) Cross-response 

modality decoding of task type from the baseline firing rate of all recorded cells. (G) Cross-

task decoding of response modality. (H) Decoding performance as a function of trial number 

relative to a task type switch (green arrows in Fig. 1a; transitions from categorization to 

memory and vice-versa were pooled). Error bars indicate standard deviation in all panels, 

with the exception of panel B where they indicate the standard error of the mean. (I) 

Baseline decoding of task-type for subsequent trials with short reaction times was more 

accurate than decoding on long reaction time trials. Shown separately for categorization and 

memory trials (p = 2e-11 and 7e-13 respectively, Wilcoxon rank sum test). Error bars denote 

standard error in decoding accuracy across trials (80 trials in each of the 4 groups). See Fig. 

S2 for additional analyses that break down context effects by specific anatomical regions.
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Fig. 3. Representations of image category and familiarity (new/old).
(A-B) Example cells that (A) represent image category and (B) that differentiate between 

new and old stimuli. (C) Decoding accuracy of image category from all recorded cells was 

significantly higher in the HA relative to the MFC (Δtrue = 49%, p<0.001). (D) Decoding of 

new vs. old (ground truth) was similarly accurate in HA and MFC (Δtrue = 7%, p = 0.13). 

For new vs. old decoding, trials with images of monkeys were excluded since the 

recognition performance for these images was at chance (Fig. S1B). (E) Population activity 

of all recorded HA (left) and MFC (right) cells, plotted in 3D using MDS. Individual points 

show the mean activity of the population for that specific condition. The highlighted plane 

contains all locations of state space occupied by a given task for the case of fruits vs. faces 

as the binary category distinction (for illustration only; all analysis uses all categories). The 

geometry of the representation allows for a decoder that is trained on one task to generalize 

to the other task (see Fig. S4C for example decoder hyperplanes). (F) Approach used for the 

cross-condition generalization analysis. Color indicates task (blue=categorization, 

red=memory). (Top) We trained a decoder to discriminate between new vs. old trials on 

categorization trials and then tested its performance on new vs. old stimuli encountered 

during the memory condition (and vice-versa). (Bottom) Similarly, a decoder that is trained 

to discriminate between image categories (in this example face vs. fruits, all results include 

Minxha et al. Page 18

Science. Author manuscript; available in PMC 2020 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all 6 possible pairs) on categorization trials, was tested on memory trials. (G) Cross-

condition generalization performance for image category. (H) Cross-condition 

generalization performance for new vs. old. (I) Difference in cross-task generalization 

decoding accuracy for familiarity and image category between HA and MFC. Difference is 

computed between the average cross-task performances in each area (i.e. average of memory 

→ categorization and categorization → memory). The null distribution for the average was 

estimated from the empirical null estimated by shuffling the labels used to train the 

decoders. For both variables, decoding from HA had significantly greater cross-task 

generalization performance than decoding from MFC (difference in both cases is positive 

and outside of the 95th percentile of the null distribution). (J) Generalization index (see 

Methods) for memory (left two data points) and image category (right two data points). For 

both image category and familiarity, generalization across task was higher in the HA 

population than the MFC population (see figure for statistics).
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Fig. 4. Task-specific representation of choice.
(A) Example MFC choice cells, split by choice (yes or no) and task. (B) Population choice 

decoding accuracy was significantly greater in MFC compared to HA (across all trials, Δtrue 

= 19% vs. empirical null, p<1e-3). (C) MFC cells represent choice and not the ground truth 

(i.e. new/old; memory trials only). (D) Population summary (neural state space) of choice-

related activity in MFC, plotted in 3D space derived using MDS. (Top) Variability due to 

response modality. The highlighted planes connect the points of state space occupied by 

activity when utilizing button presses (purple) or saccades (green). (Bottom) Variability due 

to task type. The highlighted plans connect the points of state space occupied by activity in 

the same task. (E) Choice-decoders trained in one task do not generalize to the other task 

(binsize 500ms, 16ms step size). (F) Same as (E) but for a fixed 1s time window starting at 

0.2s after stimulus onset. (G) Choice decoding generalizes across effectors (also see (D)). 

(H) Generalization index of choice decoding (see Methods for computation) to summarize 

(F-G). The representation of choices generalized across response modality but not task. (I) 
Generalization between different sub-tasks of the categorization task but not between task 

types. The colored bars indicate the 5th-95th percentile of the null distribution. (J) (Left) 

State-space trajectories for the four conditions arising from the combination of response 
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(yes, no) and task (categorization, memory). (Right) Trajectory similarity, computed in a 8D 

latent space (recovered using GPFA, see Methods) across the eight conditions arising from 

the combinations of choice, effector type, and task. (K) Decoder weight of each cell for 

decoding choice during the categorization-and memory task. The cells in the top 25-th 

percentile are shown in black. The inset shows the angle created by the vector [ωicat, ωimem] 

with respect to the x-axis of the cells marked in black.
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Fig. 5. Modulation of interareal spike-field coherence by task demands.
(A) Analysis approach. Inset shows that only data from the baseline was used (except in 

panel H). (B) Spike-field coherence for a cell in dACC relative to all channels in the 

ipsilateral hippocampus. (C) Phase-locking of MFC cells to HA LFP. (top) Average inter-

area pairwise phase consistency (PPC) of all cell-electrode pairs for each task. (bottom) 

Significance of difference between tasks; Peak difference was at f = 5.5Hz. Dashed line 

shows the threshold (P=0.05/56, Bonferroni corrected). (D) Difference in average inter-area 

PPC at f=5.5Hz between tasks conditions for all possible cell-electrode pairs (from left to 

right, n = 8822, p = 1.3e-7; n = 3938, p = 8.8e-4; n = 4884, p = 4.3e-5; paired t-test). (E) 
Average spike-triggered power was not significantly different between the two tasks (paired 

t-test, n = 8822 cell electrode pairs, p = 0.08). (F) Single-neuron analysis of choice cells. 

Importance index assigned by the decoder to each cell for decoding choices in either task. 

Selected choice cells are indicated in color. (G) MFC-HA spike-field coherence for choice 

cells. (top) Average PPC for all choice cells in MFC (209 cells, 2384 cell-electrode pairs) for 

the two tasks. (bottom) Significance of difference between tasks, shown separately for 

memory and categorization choice cells (n=1176 and n=906 cell-electrode pairs, 

respectively). Only memory choice cells show a significant difference in the gamma band (p 

= 2e-6, t-test). (H) Difference in spike-field coherence between true-positive (correct 

retrieval) vs. false negative (incorrect retrieval) trials measured in the [0.2 – 1.2s] window 

after the stimulus onset, shown separately for memory choice cells (left panel) and 
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categorization choice cells (right panel) in the theta (4–10Hz) and gamma-frequency (30–

80Hz) band. PPC was significantly stronger in correctly retrieved trials in the theta band for 

memory choice cells (Δmem = 0.003, p = 0.002; Δcat= - 0.001, p = 0.3; paired t-test) and in 

the gamma band for both types of choice cells (Δmem = 0.002, p = 0.005; Δcat=0.004, p = 

7.2e-8; paired t-test). (I) Spike times of HA cells are coherent with local theta-band (3–8 Hz) 

LFP. (J) Average local PPC in the HA did not differ significantly as a function of the task (f 

= 5.5Hz; p = 0.51, paired t-test, n = 2321 cell-electrode pairs). Error bars in panels (D, H) 

denote the 95% confidence interval (bootstrap, n = 10000 iterations). All other error bars are 

s.e.m. otherwise.
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