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C ardiovascular diseases represent the most common non-
communicable cause of death worldwide.1 Although 
cardiovascular disease largely affects older individuals,2 

the population-level burden is evident as early as 35 years of 
age.3 Most adolescents in developed countries live with 1 or more 
risk factors for cardiovascular disease, and rates of cardiovascu-
lar disease continue to increase in individuals younger than 
40 years of age.3 Lifestyle factors in childhood contribute to 
early-onset cardiovascular disease; however, a growing body of 
evidence suggests that the natural history of these problems 
begins in utero.4–6

Poor fetal nutrition is an established but relatively under-
recognized risk factor for cardiovascular disease.7,8 Large 

prospective cohort studies9 and some natural experiments10,11 
have shown that maternal undernutrition is associated with 
higher rates of premature cardiovascular disease. More recently, 
the early-life origins of cardiovascular disease have been linked to 
maternal overnutrition and hyperglycemia in pregnancy.12 In 
smaller birth cohorts, exposure to maternal diabetes in utero has 
been associated with cardiometabolic risk factor clustering in off-
spring in both childhood and adolescence.13,14 To date, however, 
these observations have not been replicated in population-based 
samples with prolonged offspring follow-up and a focus on harder 
end points related to cardiovascular disease.

Maternal diabetes is one of the most common metabolic per-
turbations to which fetuses may be exposed.15,16 Fetal exposure 
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ABSTRACT
BACKGROUND: It is unclear whether intra-
uterine exposure to maternal diabetes is 
associated with risk factors for cardiovas-
cular disease and related end points in 
adulthood. We examined this potential 
association in a population-based birth 
cohort followed up to age 35 years.

METHODS: We performed a cohort study 
of offspring born between 1979 and 2005 
(n = 293 546) and followed until March 
2015 in Manitoba, Canada, using 
registry-based administrative data. The 
primary exposures were intrauterine 
exposure to gestational diabetes and 
type 2 diabetes mellitus. The primary 

outcome was a composite measure of 
incident cardiovascular disease events, 
and the secondary outcome was a com-
posite of risk factors for cardiovascular 
disease in offspring followed up to age 
35 years.

RESULTS: The cohort provided 3 628 576 
person-years of data (mean age at latest 
follow-up 20.5 [standard deviation 6.4] 
years, 49.3% female); 2765 (0.9%) of the 
offspring experienced a cardiovascular 
disease end point, and 12  673 (4.3%) 
experienced a cardiovascular disease risk 
factor. After propensity score matching, 
the hazard for cardiovascular disease end 

points was elevated in offspring exposed 
to gestational diabetes (adjusted hazard 
ratio [HR] 1.42, 95% confidence interval 
[CI] 1.12–1.79) but not type 2 diabetes 
(adjusted HR 1.40, 95% CI 0.98–2.01). A 
similar association was observed for car-
diovascular disease risk factors (gesta-
tional diabetes: adjusted HR 1.92, 95% CI 
1.75–2.11; type 2 diabetes: adjusted HR 
3.40, 95% CI 3.00–3.85).

INTERPRETATION: Intrauterine exposure 
to maternal diabetes was associated 
with higher morbidity and risk related to 
cardiovascular disease among offspring 
up to 35 years of age.
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to maternal gestational diabetes and type 2 diabetes mellitus6 is 
associated with adverse cardiometabolic health in childhood, 
including insulin resistance, overweight, dyslipidemia, type 2 dia-
betes and potentially elevated blood pressure.17 For example, in 
a recent administrative cohort study, members of our team 
found that in  utero exposure to diabetes during pregnancy was 
associated with a dose-dependent increased risk for type 2 dia-
betes in adolescence.18 Cohort studies from Europe have shown 
similar associations between in utero exposure to maternal dia-
betes and features of cardiometabolic disease in adolescence.19 
It remains unclear, however, whether fetal exposure to maternal 
diabetes is associated with higher cardiovascular disease–
related morbidity in young adulthood.

We hypothesized that intrauterine exposure to gestational 
diabetes or type 2 diabetes would be associated with higher 
cardiovascular disease morbidity relative to no intrauterine 
exposure to diabetes. Additionally, we hypothesized that cardio-
vascular disease risk would be greater following intrauterine 
exposure to type 2 diabetes than intrauterine exposure to gesta-
tional diabetes.

Methods

Study design and data sources
We designed an observational population-based birth cohort 
using administrative data held in the Manitoba Population 
Research Data Repository. Scrambled personal health identifica-
tion numbers were deidentified by a third party (Manitoba 
Health, Seniors and Active Living). The scrambled identifiers 
allowed linkage of data from multiple databases and years of 
follow-up. The deidentified personal health identification num-
bers used for linkage are 9-digit numeric identifiers assigned by 
Manitoba Health, Seniors and Active Living to every person regis-
tered for health insurance in Manitoba.20 

Individual data for demographic characteristics, exposures and 
outcomes were linked across the following data sets, described in 
detail elsewhere:21 hospital discharge abstracts (1979–2015), out
patient visits (as physician claims; 1979–2015), Canadian Census 
data (1986–2016), Diabetes Education Resource for Children and 
Adolescents (clinical pediatric diabetes) database (1986–2015) and 
Drug Program Information Network File (1995–2015). Through this 
process, we created a unique data set that included about 99% of 
all children born in the province between Apr. 1, 1979, and Mar. 31, 
2005, and followed until Mar. 31, 2015.22 These methods have been 
described previously.18,21 Details of each database are provided in 
Appendix 1, Table A1-1 (available at www.cmaj.ca/lookup/
doi/10.1503/cmaj.190797/tab-related-content). For disease diagno-
ses, we used codes from the International Classification of Diseases, 
9th Revision, Clinical Modification and the International Statistical 
Classification of Diseases and Related Health Problems, 10th Revi-
sion, Canadian version (for details, see Appendix 1, Additional meth-
ods and Table A1-2).

Study population
After capturing all live births during the study period, we 
excluded offspring with ineligible diagnoses (congenital anomaly 

of the cardiovascular system, endocardial fibroelastosis, congen-
ital or familial cardiomyopathy; see Appendix 1, Table A1-2), 
death during the hospital stay following birth or invalid personal 
health identification number. We excluded both mothers and off-
spring with a diagnosis of diabetes other than type 2, which we 
defined as a diagnosis of diabetes before 7  years of age, a pre-
scription for insulin pump supplies, a diagnosis of cystic fibrosis 
or a diagnosis of any other type of diabetes (see Appendix 1, 
Tables A1-2 and A1-3).6,23 We excluded offspring with a diagnosis 
of cystic fibrosis because youth with this condition are at 
increased risk of non–type 2–related diabetes.24 We excluded all 
of these conditions to limit the risk of confounding and to 
improve the precision of the exposure.25

Exposures
We categorized intrauterine exposure to diabetes as maternal 
gestational diabetes or pre-existing type 2 diabetes using estab-
lished definitions.6,26 We defined gestational diabetes in mothers 
as a diagnosis of diabetes between 21 weeks’ gestational age and 
6 weeks postpartum,26,27 in the absence of a diabetes diagnosis in 
the previous year. We considered offspring exposed to diabetes 
at less than 21  weeks’ gestational age to have been exposed to 
pre-existing type 2 diabetes.18

Outcomes of interest
The primary outcome of interest was a composite measure of the 
first incident cardiovascular disease end point occurring in off-
spring, without a viral, familial or alcoholic origin (see Appendix 
1, Table A1-1 for details), between 10 years of age and the last 
available follow-up date. We selected the age of 10 years because 
our team used this cut-off in the past to distinguish between 
inherited or autoimmune cardiovascular disease–related risk fac-
tors and chronic, acquired cardiovascular disease–related risk 
factors (e.g., diabetes and hypertension).18,28 The composite out-
come included diagnoses of cardiac arrest, myocardial infarc-
tion, ischemic heart disease and cerebral infarction. The second-
ary outcome was a composite measure of the first incident 
cardiovascular disease risk factor among offspring, including 
hypertension, dyslipidemia and type 2 diabetes (definitions in 
Appendix 1, Table A1-2). For offspring with multiple outcomes 
during the follow-up period, only the first (incident) diagnosis 
was considered. Because data concerning offspring outcomes 
were available only through 2015, and the birth cohort was initi-
ated in 1979, the longest period of follow-up among offspring 
was 35 years. 

We ascertained outcomes from hospital abstracts, phys
ician claims, the clinical pediatric diabetes database and 
medication prescriptions, as previously described.23 More 
specifically, any offspring with a prescription for a medica-
tion in a drug class listed in Appendix 1, Table A1-3, was 
classified by the algorithm as having a risk factor. We 
adapted this approach from a validated algorithm used to 
capture cardiovascular disease outcomes in adults within 
the data repository (kappa between 0.22 and 0.65, sensi-
tivity 54%–82% and specificity 82%–97%, depending on 
the outcome).29 
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Potential confounders
We classified sex-adjusted birth weight as either appropriate, 
small for gestational age or large for gestational age.30 Birth 
weight less that the 10th or greater than the 90th percentile for 
gestational age and sex were used to classify small and large 
for gestational age, respectively.31 We used the lambda-mu-
sigma method to calculate z scores from birth weight derived 
from population-based references according to the Fenton 
method.30 We defined preterm birth as live birth at less than 
37  weeks’ gestation.32 We defined residence using postal code 
at birth; residence outside the 2 major cities in Manitoba was 
classified as rural. We defined socioeconomic status at birth 
using the Socioeconomic Factor Index, version 2 (SEFI-2).33,34 A 
score of 0 represents the provincial average, and 95% of scores 
fall within 2 points above or below the mean, with positive 
values indicating higher deprivation (i.e., lower socioeconomic 
status) and negative values indicating lower deprivation. We 
also adjusted for year of birth, sex and maternal age at delivery, 
as derived from hospital abstracts.

Statistical analysis
We used descriptive statistics to summarize the characteristics of 
the cohort. We used analysis of variance and χ2 tests to test for 
differences in baseline characteristics between groups. We used 
Cox proportional hazards regression models to generate 
adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) 
for the composite outcomes in offspring, treating mortality as a 
competing risk. We used the Fine-Gray method to account for the 
competing risk of mortality.35 We tested the proportional hazards 
assumption by examining the correlation between Schoenfeld 
residuals and terms for time, log of time and time squared and 
then visually checking proportionality by plotting stratified log-
negative-log curves; no significant violations were detected. We 
censored individuals who died or outmigrated either before 
reaching 10 years of age or, among those aged 10 or older, before 
experiencing an outcome. We included an interaction term for 
exposure to maternal diabetes and offspring sex in the models, 
because the cardiovascular disease literature indicates possible 
differences between males and females.36 To control for possible 
clustering associated with hospital of birth, we added hospital of 
birth as a categorical variable to the models described above. To 
account for possible clustering effects within families, we con-
ducted a marginal Cox model that used a covariance matrix esti-
mate to account for dependence of intracluster effects within 
families, and included propensity score matching and a categor
ical variable for hospital of birth. This analysis would account for 
possible clustering of outcomes within hospitals and families. 

We ran 2 logistic regression models to predict exposure to 
maternal diabetes, comparing children exposed to gestational 
diabetes in  utero with children not exposed to any diabetes 
in utero, and also comparing children exposed to type 2 diabe-
tes in utero with children not exposed to any diabetes in utero. 
The covariables were birth weight, sex, preterm birth (<  37 wk 
gestation), large for gestational age, small for gestational age, 
year of birth, mother’s age at birth, SEFI-2, and urban or rural 
residence of the mother at the time of birth. From these 

regression models, we generated predicted probabilities of 
exposure to diabetes and used them to match children exposed 
to either gestational diabetes or type 2 diabetes with unex-
posed controls on the basis of propensity scores (at a ratio of 
1:10), with a limit of the control propensity score being within 
0.01 of the diabetes case propensity score. We calculated stan-
dardized differences before and after matching. We employed 
Cox proportional hazards regression models to estimate the 
time to the cardiovascular disease composite measure and the 
cardiovascular disease risk composite measure, controlling for 
diabetes exposure for the matched groups. 

Statistical significance was set at 0.05 for 2-sided tests. We 
performed all analyses with SAS 9.4 software (SAS Institute Inc.) 
and produced the cumulative incidence curves with R software.

We imputed data for all missing gestational ages and birth 
weights by applying the Markov chain Monte Carlo imputation 
method with a single chain. The variables used in the imputa-
tion models were birth year, mother’s age, sex, Apgar score at 
5 minutes, region of residence and SEFI-2. We performed sensi-
tivity analyses, using different approaches to account for 2 pos-
sible sources of clustering: within families and within hospitals. 
To account for clustering within families, we repeated the 
analyses described above with a randomly selected sample 
consisting of 80% of the mother–infant pairs, but restricted to 
1  child per mother, to determine whether the point estimates 
changed when data were restricted to a single offspring. To 
account for hospital-level clustering, we repeated the analyses 
described above with adjustment for the hospital where off-
spring were delivered. We added hospital of birth to the pro-
pensity score–matched models as a categorical variable. To 
test for possible sex-specific differences in the associations that 
we observed, we repeated all propensity score–matched analy-
ses, accounting for competing risks, with the addition of an 
interaction term to test for an interaction between offspring sex 
and exposure to maternal diabetes. 

Ethics approval
This study was approved by the Health Research Ethics Board at 
the University of Manitoba (HREB HS19742), in accordance with 
the Declaration of Helsinki and the provincial Health Information 
Privacy Committee (HIPC 2016/2017–06).

Results

A total of 359 919 births from 200 754 mothers (with valid insur-
ance) were identified during the study period. After exclusion of 
those who did not meet the inclusion criteria, 293 546 offspring 
from 189 939 mothers were included in the birth cohort and pro-
vided person-years of follow-up (Figure 1). Most (282 119 or 
96.1%) of these offspring were not exposed to maternal diabetes 
in  utero, whereas 8210 (2.8%) were exposed to gestational dia
betes and 3217 (1.1%) to pre-existing type 2 diabetes (Table 1). 
The mean age of offspring at latest follow-up was 20.5 (standard 
deviation [SD] 6.4) years (range 10–35 yr). 

Intrauterine exposure to both gestational diabetes and type 2 
diabetes became more common over the study period (p < 0.001; 
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Table 1). Offspring exposed to diabetes in utero were more likely 
to be born to older mothers, to be born large for gestational age, 
to be born preterm, and to reside in a rural area or in a house-
hold with greater socioeconomic deprivation (Table 1).

During the follow-up period, 15 438 (5.3%) of the cohort 
experienced either an event or a risk factor related to 
cardiovascular disease. The primary outcome, the first incident 
cardiovascular disease end point, was observed in 2765 (0.9%) of 
the cohort, and the secondary outcome, the first incident 
cardiovascular disease risk factor, was observed in 12 673 (4.3%)
of the cohort. The 3 most frequent diagnoses among the 
offspring were hypertension (n = 8713), type 2 diabetes (n = 3568) 
and ischemic heart disease (n = 715). 

The crude incidence of the primary outcome increased across 
exposure strata (not exposed, 0.76 per 1000/yr; exposed to gesta-
tional diabetes, 0.90 per 1000/yr; exposed to type 2 diabetes, 1.04 
per 1000/yr; Table 2). Most offspring experienced a cardiovascu-
lar disease risk factor without experiencing any related end 
points, and few reached a cardiovascular disease end point 
before diagnosis of a relevant risk factor. Crude rates of individ-
ual outcomes and risk factors are presented in Appendix 1, 
Tables A1-4 and A1-5, respectively. The mean age at occurrence 

of the first cardiovascular disease risk factor was significantly 
lower in offspring exposed to diabetes in  utero (not exposed, 
21.2 [SD 5.9] yr; exposed to gestational diabetes, 19.5 [SD 5.8] yr; 
exposed to type 2 diabetes, 17.3 [SD 5.2] yr; p < 0.001; Table 2).

Adjusted Cox proportional hazards regression models showed 
that exposure to diabetes in  utero was associated with higher 
risk of the primary composite outcome (gestational diabetes v. 
not exposed: adjusted HR 1.27, 95% CI 1.02–1.59; type 2 diabetes 
v. not exposed: adjusted HR 1.48, 95% CI 1.05–2.07) (Figure 2A). 
Similar associations were seen for the secondary outcome 
(gestational diabetes v. not exposed: adjusted HR 1.85, 95% CI 
1.69–2.02; type 2 diabetes v. not exposed: adjusted HR 3.38, 95% 
CI 3.02–3.77) ( Figure 2B). 

Propensity scores were calculated from the main confound-
ing variables for the 2 main exposures, and distributions are pre-
sented in Appendix 1, Figure A1-1. Using propensity scores for 
the 8210 offspring exposed to gestational diabetes, 8208 
(100.0%) had at least 1 match and 7111 (86.6%) had 10 matches 
in the unexposed group. Similarly, 3212 (99.8%) of the 3217 off-
spring exposed to type 2 diabetes had at least 1 match and 2781 
(86.4%) had 10 matches in the unexposed group. The standard-
ized differences between the matched groups were all below 
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Figure 1: Study flow diagram showing derivation of the cohort of offspring used to examine the association between intrauterine exposure to diabetes 
and risk of cardiovascular disease. *Reasons for exclusion are not mutually exclusive.
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0.10 (Appendix 1, Figure A1-2), which indicates balance between 
the cases and controls. When hazards were calculated on the 
matched samples and adjusted for competing risks, the effect 
sizes and precision of the estimates remained similar for the 
association between exposure to maternal diabetes in utero and 
incident cardiovascular disease risk factors (Figure 3). The only 

association that was no longer statistically significant after pro-
pensity score matching was between exposure to maternal 
type  2 diabetes and cardiovascular disease–related outcomes 
(HR 1.40, 95% CI 0.98–2.01).

Exposure to type 2 diabetes in utero was associated with a 
higher risk for pooled primary and secondary outcomes 

Table 1: Characteristics of the cohort of offspring (born 1979–2005), according to exposure to maternal diabetes in utero

Characteristic

Exposure group; no. (%) of offspring* Comparison; standardized difference

Not exposed
n = 282 119

Exposed to GDM
n = 8210

Exposed to T2D
n = 3217

Maternal GDM v. 
no exposure

Maternal T2D v. 
no exposure

Age of mother at birth, yr, 
mean ± SD

27.0 ± 5.5 28.5 ± 6.1 29.5 ± 5.6 0.25 0.45

Birth weight, g, mean ± SD 3463.7 ± 557.0 3616.1 ± 615.7 3515.6 ± 670.4 0.26 0.08

Large for gestational age 22 806 (8.1) 1973 (24.0) 928 (28.8) 0.45 0.56

Small for gestational age 24 201 (8.6) 375 (4.6) 160 (5.0) 0.16 0.14

Preterm birth† 16 014 (5.7) 715 (8.7) 606 (18.8) 0.12 0.41

Female sex 139 223 (49.3) 3894 (47.4) 1559 (48.5) 0.04 0.02

Urban residence‡ 158 527 (56.2) 4213 (51.3) 1402 (43.6) 0.10 0.25

Birth year§

    1979–1984 43 641 (15.5) 489 (6.0) 157 (4.9) 0.31 0.36

    1985–1989 63 655 (22.6) 1808 (22.0) 643 (20.0) 0.01 0.06

    1990–1994 64 122 (22.7) 2095 (25.5) 742 (23.1) 0.07 0.008

    1995–1999 57 547 (20.4) 1713 (20.9) 774 (24.1) 0.01 0.09

    2000–2005 53 154 (18.8) 2105 (25.6) 901 (28.0) 0.16 0.22

SEFI-2 score, mean ± SD 0.11 ± 1.11 0.56 ± 1.23 0.74 ± 1.23 0.38 0.53

Note: GDM = gestational diabetes mellitus; SD = standard deviation; SEFI-2 = Socioeconomic Factor Index, version 2, a measure of socioeconomic deprivation, where a positive value 
indicates higher deprivation (i.e., lower socioeconomic status) and negative values indicate lower deprivation; T2D = type 2 diabetes.
*Except where indicated otherwise.
†Preterm birth defined as birth at less than 37 weeks’ gestational age.
‡Urban residence applies to the mother at time of the birth and was defined as residence in Winnipeg or Brandon.
§The data repository, which was established in the early 1980s, did not capture all deliveries in the early years of the cohort. 

Table 2: Crude rates of cardiovascular disease end points and risk factors among offspring exposed to maternal diabetes in 
utero and those not exposed to maternal diabetes

End point or risk factor

Not exposed  
to diabetes
n = 282 119

Exposed to  
gestational diabetes

n = 8210

Exposed to  
type 2 diabetes mellitus

n = 3217

Any outcome/no. of PYs 14 464/3 505 787 610/90 059 364/32 730

Incidence per 1000/yr 4.18 6.77 11.12

CVD events

    Cases of CVD end point/no. PYs 2650/3 508 792 81/90 098 34/32 744

    Incidence per 1000/yr 0.76 0.90 1.04

    Age at first event, yr, mean ± SD 21.3 ± 5.6 19.7 ± 5.4 20.1 ± 5.0

CVD risk factors

    Cases of CVD risk factor/no. PYs 11 814 / 3 514 196 529/902 85 330/32 690

    Incidence per 1000/yr 3.36 5.86 10.09

    Age at first risk factor, yr, mean ± SD 21.2 ± 5.9 19.5 ± 5.8 17.3 ± 5.2

Note: CVD = cardiovascular disease, PY = person-year, SD = standard deviation.
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Figure 2: Adjusted cumulative incidence curves for the risk of cardiovascular disease, according to maternal diabetes exposure, in relation to offspring 
age, in years, with adjustment for the following factors: maternal age at offspring birth; Socioeconomic Factor Index, version 2; rural residence; birth 
weight; small for gestational age; large for gestational age; and preterm birth. The number of offspring at risk at each time point, beginning at 10 years 
of age (start of the “at-risk” period) is shown below each panel. A) Offspring reaching a cardiovascular disease end point only. B) Offspring reaching a 
cardiovascular disease risk factor only. In Figure 2B, numbers at 35 years of age were censored, because some were too small to be reported. Note: 
GDM = gestational diabetes mellitus, T2D = type 2 diabetes mellitus.
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compared with exposure to gestational diabetes. Pooling out-
comes showed a 1.65 (95% CI 1.52–1.79) and 2.74 (95% CI 
4.26–3.05) increased risk for a cardiovascular disease–related 
outcome following exposure to gestational diabetes and 
type 2 diabetes in utero, respectively (Appendix 1, Table A1-6). 
These associations remained significant after the outcome of 
type 2 diabetes among offspring was excluded from the analy-
ses. In sensitivity analyses, when risk factors were assessed 
individually, the hazard for hypertension and type 2 diabetes 
among offspring remained significantly higher for those 
exposed to gestational diabetes and type 2 diabetes in  utero 
(Appendix 1, Table A1-7).

When the data were restricted to a subsample of randomly 
selected offspring, restricted to 1 per mother (n = 155 720), and 
competing risks were accounted for, the strength of the associ-
ations and statistical significance remained similar to those of 
the primary analyses (Table 3). Similarly, when analyses were 
repeated and adjusted for hospital of birth, the strength of the 
associations remained similar (Table 3). Marginal Cox models 
accounting for intrafamily clustering, with adjustment for all 
covariables, hospital of birth and competing risks, showed 
nearly identical point estimates, and the associations pre-
sented above remained statistically significant (Table 3). When 
propensity score–matched analyses accounting for competing 
risks were repeated, with exclusion of cerebral infarction from 
the composite outcome, exposure to gestational diabetes was 

associated with cardiovascular disease events (HR 1.35, 95% CI 
1.02–179), but exposure to maternal type 2 diabetes was not 
(HR 1.09, 95% CI 0.68–1.74). When the interaction term for 
offspring sex and exposure to maternal diabetes was added 
to the models presented in Table 3, no significant interac-
tions were observed in any model. 

The results for male and female offspring separately are pre-
sented in Appendix 1, Table A1-8. When these models were 
repeated to assess the possibility of sex differences in these 
results, we did not observe a significant interaction between sex 
and exposure to maternal diabetes.

Interpretation

In this population-based administrative birth cohort study, fetal 
exposure to maternal gestational diabetes or type 2 diabetes, 
respectively, was associated with a 1.27-fold and 1.48-fold higher 
risk for cardiovascular disease morbidity and a 1.85-fold and 
3.38-fold higher risk for cardiovascular disease risk factors before 
35  years of age, compared with not being exposed to diabetes 
in  utero. Furthermore, the first cardiovascular disease–related 
outcome occurred 2 to 4 years earlier among offspring exposed 
to either gestational diabetes or type 2 diabetes in  utero. The 
higher cardiovascular disease morbidity among offspring 
exposed to diabetes in  utero appeared to be driven by early-
onset type 2 diabetes and hypertension. These observations 

HR (95% CI)
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HR (95% CI)Outcome 
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Fully adjusted
Propensity score–matched

Fully adjusted
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Figure 3: Cox proportional hazards for cardiovascular disease–related events and risk factors before and after propensity score matching. Note: 
GDM = gestational diabetes mellitus, HR = hazard ratio, T2D = type 2 diabetes mellitus. “Fully adjusted” means adjusted for the following factors: 
maternal age at offspring birth; Socioeconomic Factor Index, version 2; rural residence; birth weight; small for gestational age; large for gestational 
age; and preterm birth.
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support our hypothesis that cardiovascular disease morbidity in 
adolescence and early adulthood is related to exposure to mater-
nal diabetes in utero.

The number of children exposed in utero to gestational dia-
betes and type 2 diabetes has increased over the past few 
decades.16,37 Population-based studies by our group and 
smaller cross-sectional studies of children 5 to 18 years old 
have shown a higher prevalence of type 2 diabetes, altered glu-
cose metabolism, higher blood pressure and arterial stiffness 
among offspring exposed to maternal gestational dia
betes6,38–43 relative to unexposed offspring. We have extended 
those findings by showing that cardiovascular disease morbid-
ity was increased and that the time to a first cardiovascular 
disease risk factor was reduced following fetal exposure to 
gestational diabetes, effects that were amplified following 
exposure to type 2 diabetes in  utero. While it is fairly well 
established that intrauterine exposure to diabetes is associ-
ated with a greater risk for type 2 diabetes in offspring, we 
report that it is also associated with incident hypertension and 
myocardial infarction in young adulthood, which further rein-
forces the concept that intrauterine exposure to an adverse 
metabolic milieu predisposes offspring to chronic diseases 
into adulthood.

Limitations
As with all studies using administrative databases, there was a 
risk of misclassification bias through the use of data not col-
lected specifically for research purposes. We tried to reduce this 
bias by triangulating exposures and outcomes across multiple 
databases3,6 with previously used algorithms. This approach cir-
cumvented the problem of modified criteria for gestational dia-
betes during the study period and misdiagnosis of type 2 dia
betes as gestational diabetes.6,26 

The precision of our outcomes of interest was limited 
because we relied on algorithms that have been validated in 
adults, but not in pediatric populations. To increase the preci-
sion of our estimates, we restricted outcomes to those 
acquired after 10  years of age, as we have done previously. 
These algorithms had modest precision, with relatively low 
kappa values, and therefore were at risk of misclassifying some 
individuals. Also, this precludes the possibility that the cause 
of the cardiovascular disease–related outcomes was an auto-
immune condition or was related to congenital factors. Nota-
bly, only the definition of pediatric diabetes has been vali-
dated in the registry that we used.23 

We had no access to clinical or lifestyle details (such as body 
mass index, blood chemistry, diet, physical activity patterns or 
smoking rates) that are known to affect the risk of cardiovascu-
lar disease and that could mediate or confound part of the 
observed relations. Additionally, various maternal factors, 
including diabetes control in pregnancy and Indigenous status, 
were not available for these analyses.

Conclusion
In this population-level birth cohort study, offspring exposed 
to gestational diabetes or type 2 diabetes in  utero had a two- 
to three-fold higher risk for and earlier onset of cardiovascular 
disease–related morbidity in the first 35 years of life. This risk 
was principally driven by higher rates of hypertension, type 2 
diabetes and ischemic heart disease among those exposed to 
diabetes in utero. Future studies should endeavour to replicate 
these findings in other settings and extend follow-up of similar 
cohorts into older age to assess whether the relative contribu-
tion of intrauterine diabetes exposure to cardiovascular 
disease–related morbidity remains stable over time. Screening 
children with in utero exposure to diabetes for cardiovascular 

Table 3: Sensitivity analyses testing for associations between maternal diabetes exposure and cardiovascular disease  
in offspring, with additional adjustment for confounding

Exposure; adjusted HR (95% CI)

End point or risk factor
Maternal gestational diabetes v. 

no diabetes exposure
Maternal type 2 diabetes v. 

no diabetes exposure

Single births, fully adjusted*

    CVD end points 1.38 (1.00–1.91) 1.68 (1.02–2.76)

    CVD risk factors 1.58 (1.37–1.83) 3.44 (2.89–4.11)

Propensity score–matched cohort, fully adjusted* + hospital of birth

    CVD end points 1.42 (1.20–1.79) 1.39 (0.97–1.98)

    CVD risk factors 1.90 (1.73–2.08) 3.28 (2.90–3.71)

Marginal Cox model,† fully adjusted* + hospital of birth

    CVD end points 1.42 (1.12–1.80) 1.39 (0.96–1.99)

    CVD risk factors 1.90 (1.72–2.09) 3.28 (2.87–3.75)

Note: CI = confidence interval, CVD = cardiovascular disease, HR = hazard ratio.
*“Fully adjusted” means adjusted for the following factors: maternal age at offspring birth; Socioeconomic Factor Index, version 2; rural residence; birth weight; small for gestational 
age; large for gestational age; and preterm birth. 
†Marginal Cox modelling accounts for intrafamily clustering. 
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disease risk factors might help to evaluate the future burden 
related to cardiovascular disease in the population.
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