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Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is associated with adult T cell leukemia/lymphoma and HTLV-1-associated
myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is an inflammatory disease of the spinal cord and clinically
characterized by progressive spastic paraparesis, urinary incontinence, and mild sensory disturbance. The interaction between the
host immune response and HTLV-1-infected cells regulates the development of HAM/TSP. HTLV-1 preferentially infects CD4+

T cells and is maintained by proliferation of the infected T cells. HTLV-1-infected cells rarely express viral antigens in vivo;
however, they easily express the antigens after short-term culture. Therefore, such virus-expressing cells may lead to activation
and expansion of antigen-specific T cell responses. Infected T cells with HTLV-1 and HTLV-1-specific CD8+ cytotoxic T
lymphocytes invade the central nervous system and produce various proinflammatory cytokines and chemokines, leading to
neuronal damage and degeneration. Therefore, cellular immune responses to HTLV-1 have been considered to play important
roles in disease development of HAM/TSP. Recent studies have clarified the viral strategy for persistence in the host through
genetic and epigenetic changes by HTLV-1 and host immune responses including T cell function and differentiation. Newly
developed animal models could provide the opportunity to uncover the precise pathogenesis and development of clinically
effective treatment. Several molecular target drugs are undergoing clinical trials with promising efficacy. In this review, we
summarize recent advances in the immunopathogenesis of HAM/TSP and discuss the perspectives of the research on this disease.

Keywords HTLV-1 . HAM/TSP . Neurological disorders . Immunology . Pathogenesis

Introduction

Human T-lymphotropic virus type 1 (HTLV-1) is the human
retrovirus firstly discovered in 1980 (Poiesz et al. 1980). The
main highly endemic areas are the Southwestern part of Japan,
the Caribbean, South America, Central and Southern Africa,
Middle East, and Central Australia. It is estimated that at least
five to ten million people are infected with HTLV-1, but the
current number of HTLV-1 carries might be much higher due
to a lack of systematic epidemiological studies in most

endemic regions (Gessain and Cassar 2012). For example, it
recently reported that more than 40% of central Australian
Indigenous adults in some remote communities are HTLV-
1c infected (Einsiedel et al. 2016). While the majority of in-
fected individuals remain lifelong asymptomatic carriers
(ACs), approximately 2–5% develop adult T cell leukemia/
lymphoma (ATLL) (Uchiyama et al. 1977) and another 0.25–
3.8% develop HTLV-1-associated myelopathy/tropical spas-
tic paraparesis (HAM/TSP) (Gessain et al. 1985; Osame et al.
1986). HTLV-1 has also been associated with other inflam-
matory diseases including uveitis, myositis, infective derma-
titis, and interstitial pneumonitis (Gessain andMahieux 2012).
HAM/TSP is clinically characterized by chronic progressive
spastic paraparesis, urinary incontinence, and mild sensory
disturbance. HTLV-1 preferentially infects CD4+CD25+ T
cells in vivo and induces functional changes in the infected
cells. HTLV-1-infected cells rarely express viral antigens
in vivo; however, they easily express antigens after short-
term culture. Therefore, such virus-expressing cells may lead
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to activation and expansion of antigen-specific T cell re-
sponses. The virus-host immunologic interaction plays a piv-
otal role in the pathogenesis of HAM/TSP. HTLV-1-infected
T cells and CD8+ cytotoxic T lymphocytes (CTL) against
HTLV-1 invade the central nervous system (CNS) and release
proinflammatory cytokines and chemokines, resulting in the
tissue damage. These immune responses are considered to
underlie the pathogenesis of HAMTSP. Both HTLV-1 viral
regulatory proteins, Tax and HTLV-1 basic leucine zipper
factor (HBZ), play critical roles in immune dysregulation in
HAM/TSP (Enose-Akahata et al. 2017). Tax induces the ex-
pression of many host cellular genes and consequently con-
tributes to cell activation and proliferation. HBZ induces in-
flammation in the host through altering the Foxp3 expression
in Treg cells (Satou et al. 2011; Yamamoto-Taguchi et al.
2013). Although HAM/TSP is not directly life-threatening,
the disease severely impacts patients’ quality of life (Olindo
et al. 2006; Coler-Reilly et al. 2016), and treatment remains
highly unsatisfactory. Humanized mice models were devel-
oped and could be potential novel tools for understanding
HTLV-1 neuropathogenesis and testing of novel therapies
for HAM/TSP. Several trials for new drugs have been per-
formed and show promising results. Here, we summarize the
immunopathology of HAM/TSP, specifically focused on cell-
mediated immunity in this disease and discuss ongoing devel-
opments and perspectives of HAM/TSP research.

HTLV-1 virus

HTLV-1 belongs to the Deltaretrovirus genus of the
Orthoretrovirinae subfamily of retroviruses. Most HTLV-1-
infected T cells contain a single integrated provirus (Cook
et al. 2012). The HTLV-1 proviral genome is 9 kb in length
and contains structural genes, gag, pol, and env flanked by a
long terminal repeat at both the 5′ and 3′ ends. The HTLV-1
genome also has a pX region including six open reading
frames: five on the plus-strand and one on the minus-strand.
Of these six genes, tax, rex, and HBZ play a key role in the
infectivity and proliferation of HTLV-1. Other regulatory
genes p8, p12, p13, and p30 are expressed at very low levels
and these proteins are considered to have minor roles in rep-
lication and persistence of HTLV-1 in vivo (Bangham 2018).
HTLV-1 can be transmitted through intravenous drug use,
sexual contact, and breastfeeding from mother to child.
Familial clusters of HAM/TSP were reported (Nozuma et al.
2014; Alvarez et al. 2016), but genetic analysis of host ge-
nomes was not able to detect any disease-associated genes due
to a small number of cases (Nozuma et al. 2017). HTLV-1 has
remarkably low genetic variability both within and between
hosts, although minor variations exist between geographical
isolates (Komurian et al. 1991). Most studies of HTLV-1 ge-
notype have reported no correlation between nucleotide

substitutions and the risk of HAM/TSP (Mahieux et al.
1995), and the recent analysis of complete HTLV-1 sequence
could not detect any HAM/TSP-specific mutations (Pessoa
et al. 2014; Nozuma et al. 2017). However, the transcontinen-
tal HTLV-1 subtype is associated with an increased risk of
HAM/TSP compared with the Japanese subtype in the
Japanese population (Furukawa et al. 2000; Saito 2019).
HAM/TSP patients with transcontinental subtype showed
lower levels of HBZ mRNA expression (Yasuma et al.
2016a) and higher levels of CXCL10, which has been pro-
posed to be a prognostic biomarker for HAM/TSP (Naito et al.
2018). A recent study showed that CTCF, a master regulator
of chromatin structure and expression, bound to HTLV-1 and
formed loops between proviral and host genomes to regulate
the expression of proviral and host genes (Satou et al. 2016).
Epigenetic modifications may regulate the pattern of proviral
transcription and mediate inflammation in HAM/TSP pa-
tients, and further studies are necessary to clarify the role of
these mechanisms in the pathogenesis of HAM/TSP.

Molecular pathogenesis of Tax

The tax gene encodes a 353-amino acid, 40-kDa protein, Tax,
that has a central role in HTLV-1 biology (Bangham 2018).
HTLV-1 Tax is a transcriptional transactivator of virus repli-
cation and induces the expression of a variety of cellular genes
by activation of the NF-κB and CREB/ATF pathways
(Matsuoka and Jeang 2011). De novo infection requires ex-
pression of Tax since transcription of the sense-strand of the
provirus which is responsible for the generation of the viral
genome and viral proteins. Tax has been extensively studied
because it induces the expression of many host cellular genes
and consequently contributes to dysfunction in immune cells
of HAM/TSP patients. Ex vivo, Tax protein is spontaneously
expressed in peripheral blood mononuclear cells (PBMCs)
after culture without any exogenous stimulation (Hanon
et al. 2000a) and the level of tax mRNA was significantly
higher in HAM/TSP patients than in ACs (Yamano et al.
2002). Tax boosts expression of T box transcription factor
(T-bet), which promotes IFN-γ production (Araya et al.
2014). A number of the common γ chain family of cytokines
and their receptors, such as IL-2/IL-2R, IL-9, IL-15/IL-15R,
and IL-21/IL-21R have been demonstrated to be
transactivated by Tax (Enose-Akahata et al. 2017).

Tax is an immunodominant antigen recognized by HTLV-
1-specific cytotoxic CD8+ T cells (Jacobson et al. 1990). The
number of Tax-specific CTL is greatly elevated and these
CTL produce proinflammatory cytokines (Kubota et al.
1998) and show degranulation activity in HAM/TSP patients
that is comparable with that in ACs (Abdelbary et al. 2011).
Though Tax protein is usually undetected in vivo, recent anal-
ysis shows that it is expressed in intermittent but intense bursts
at the single-cell level by the observation of HTLV-1-infected
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cell lines (Billman et al. 2017; Mahgoub et al. 2018).
Therefore, Tax-specific immune responses are chronically ac-
tivated and might be pathogenic, rather than protective, due to
high cytotoxicity and the production of inflammatory cyto-
kines leading to neural damage.

Molecular pathogenesis and localization of HBZ

HBZ was first discovered in 2002 as a novel viral protein that
contains an N-terminal transcription activation domain and a
leucine zipper motif in its C-terminus (Gaudray et al. 2002).
As HBZ closely cooperates with Tax, HBZ has opposing
functions to Tax and modifies transcription of various host
genes (Matsuoka and Jeang 2011). HBZ is persistently
expressed in infected cells, maintains viral latency (Philip
et al. 2014), and promotes proliferation of ATLL cells
(Satou et al. 2006; Arnold et al. 2008), whereas Tax expres-
sion is frequently silenced. HBZ interacts with CREB/ATF
pathway, suppresses Tax-mediated transactivation, and selec-
tively inhibits the classical NF-κB pathway (Matsuoka and
Jeang 2011). HBZ interacts with the tumor suppressor Rb,
and promotes proliferation of infected cells and counteracts
apoptosis through HBZ-induced expression of survivin
(Kawatsuki et al. 2016). In HBZ-Tg mice, HBZ increases
the number of CD4+Foxp3+ Treg cells and then converts them
to Foxp3− T cells with producing IFN-γ, which results in
inflammation and tumors (Satou et al. 2011; Yamamoto-
Taguchi et al. 2013). HBZ has been recently recognized to
play a critical role in inflammation and pathogenesis of
HAM/TSP. The level of HBZ mRNA detected in HAM/TSP
patients is significantly lower than in ATLL patients but
higher than in ACs. Furthermore, HBZ mRNA expression
was associated with HTLV-1 proviral load and increased dis-
ease severity in HAM/TSP patients (Saito et al. 2009).
Antibody response against HBZ was observed in HTLV-1-
infected subjects and related to decreased CD4+ T cell activa-
tion in HAM/TSP patients (Enose-Akahata et al. 2013). HBZ
is also an immunogenic protein recognized by HBZ-specific
CTL clones; however, HBZ is regarded as a weaker immuno-
gen for CTL than Tax. HBZ-specific CTL clones could not
lyse ATLL cells (Suemori et al. 2009) and killed significantly
fewer infected cells than were killed by Tax-specific CTL
clones (Rowan et al. 2014). The weaker immunogenicity of
HBZ could, therefore, allow HTLV-1-infected cells to escape
from the host immune response.

HBZ contains nuclear localization signals in its central/
bZIP domain and nuclear export signals in its N-terminus
(Hivin et al. 2005). HBZ is found in the nucleus in leukemic
cells and the function of nuclear HBZ has been thoroughly
investigated and reported to interact with important transcrip-
tion factors including CBP/p300, Smad3, p65, c-Jun, and
forkhead family proteins especially in ATLL (Tanaka and
Matsuoka 2018). However, HBZ protein has been recently

reported to be localized in the cytoplasm of T cells depending
on the expression of THEMIS (Kinosada et al. 2017). HBZ
interferes with the complex formation of THEMIS with Grb2
and SHP-2, which results in inhibition of the suppressive
functions of coinhibitory receptors TIGIT and PD-1, and sub-
sequently might enhance activation of T cells. In HAM/TSP
patients, HBZ is reported to localize exclusively in the cyto-
plasm of infected cells and the number of HBZ-positive cells
is higher in HAM/TSP patients compared with ACs (Baratella
et al. 2017; Forlani et al. 2019). Cytoplasmic HBZ was almost
exclusively found in the CD4+ T cell without coexpression of
CD25 and the coexpression of HBZ and Tax was rarely found
in the same cell. Distinct subcellular compartments of HBZ
might therefore be associated with different pathogenetic
mechanisms observed in ATLL and HAM/TSP.

HTLV-1-infected T cells

HTLV-1 preferentially infects CD4+ T cells in vivo and in-
duces functional changes in the infected cells (Enose-Akahata
et al. 2017; Yamano and Coler-Reilly 2017). An elevated
HTLV-1 proviral load (PVL) is the main risk factor for devel-
oping HAM/TSP in HTLV-1-infected subjects and is strongly
associated with disease pathogenesis (Nagai et al. 1998; Nagai
et al. 2001). The receptors for HTLV-1 have been reported to
involve HTLV-1 entry and include glucose transporter 1,
neuropilin-1, and heparan sulfate proteoglycans (Jones et al.
2011). Since the HTLV-1 receptors are detected in almost all
vertebrate cells, this virus can infect different types of cells
in vitro (Hoshino 2012). However, HTLV-1-infected cells are
associated with expression of several characteristic surface
molecules including CD4, CD25, CCR4, and CADM1.
HTLV-1 is predominantly transmitted by cell-to-cell contact
via the virological synapse and creates new HTLV-1-infected
T cell clones in each host (Bangham 2018). It is thought that
HTLV-1 infects mature lymphocytes, macrophages, and den-
dritic cells in the periphery and is associated with chronic
infection of this virus. Recent studies demonstrate that
HTLV-1 infects hematopoietic stem cells (HSCs), and infect-
ed stem cells differentiate into diverse cell lineages (Furuta
et al. 2017). However, only memory CD4+ T cells become
major viral reservoirs and express distinct surface markers,
where viral factors, such as HBZ and Tax, are thought to
control infected cells during HSCs differentiation.

Regulatory T cells and phenotype

HTLV-1 infection of CD4+ T cells is associated with expres-
sion of several proteins that are characteristic of Treg cells, in
particular CD25, FoxP3, and CCR4. Treg cells contribute to
the maintenance of immunologic self-tolerance and play an
important role in chronic viral infections. In HAM/TSP pa-
tients, CD4+CD25+ T cells contain higher amounts of HTLV-
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1 PVL and show higher levels of HTLV-1 taxmRNA expres-
sion than in CD4+CD25− cells and produce various cytokines
including INF-γ (Yamano et al. 2004). HTLV-1-infected
CD4+CD25+ T cells are not functionally suppressive but rath-
er are shown to stimulate and expand HTLV-1 Tax-specific
CD8+ T cells (Yamano et al. 2004). Foxp3, a key transcription
factor for Treg cells, is expressed in approximately 60% of
ATLL cases and its function is regulated by HBZ. HBZ en-
hances TGF-β signaling and promotes FoxP3 expression, and
impairs the suppressive function of Treg cells in HBZ-Tg
mice (Satou et al. 2011; Zhao et al. 2011). In addition, HBZ
increases the number of Treg cells and converts them to
Foxp3− T cells producing IFN-γ (Yamamoto-Taguchi et al.
2013). In HAM/TSP patients, the levels of the FoxP3 expres-
sion is decreased in CD4+CD25+ T cells compared with ACs
and healthy controls (Yamano et al. 2005; Oh et al. 2006).
Furthermore, in vitro transduction of Tax reduced the FoxP3
mRNA expression and inhibited the suppressive function of
the CD4+CD25+ T cells isolated from healthy donors
(Yamano et al. 2005).

HTLV-1 preferentially infects cells expressing CCR4 and
CD4 molecules (Hieshima et al. 2008). It is well recognized
that CCR4 is specifically expressed in ATLL cells, but CCR4+

cells appear to suppressive the function of Treg cells
(Bangham and Toulza 2011). HBZ-induced GATA3 expres-
sion in CD4+ T cells and subsequently enhanced transcription-
al activity from the CCR4 promoter (Sugata et al. 2016).
Upregulated CCR4 expression is associated with enhanced
T cell migration and proliferation. In HAM/TSP patients, the
frequency of IFN-γ-producing CD4+CD25+CCR4+ T cells is
increased and correlated with disease activity and severity
(Yamano et al. 2009). CD4+CCR4+ T cells which express
the Th1 marker CXCR3 and produce T-bet and IFN-γ are
present in the CNS (Araya et al. 2014). When stimulated by
IFN-γ, astrocytes produce CXCL10 (one of the CXCR3 li-
gands), which recruits more CXCR3+ T cells, including in-
fected cells, to the CNS (Ando et al. 2013). These cells also
produce proinflammatory cytokines such as IFN-γ, which
stimulates astrocytes, further creating an inflammatory posi-
tive feedback loop with subsequent tissue damage in the CNS
(Yamano and Coler-Reilly 2017). Anti-CCR4monoclonal an-
tibody effectively reduced the proviral load and proinflamma-
tory cytokines in PBMCs from patients with HAM/TSP
(Araya et al. 2014; Yamauchi et al. 2015). Clinical trials of
anti-CCR4 monoclonal antibody have been performed and
showed promising results (Sato et al. 2018).

Cytotoxic t lymphocytes

The cytotoxic CD8+ T cells are important for the elimina-
tion of virus-infected cells. The quality of the host’s CTL
response to HTLV-1-infected cells play the dominant role
in determining the set-point proviral load and the steady-

state abundance of HTLV-1 replication (Bangham 2009).
One of the most prominent features of the cellular im-
mune response in HAM/TSP patients is that the number
of HTLV-1-specific CTL is greatly elevated in PBMCs
compared with ACs (Jacobson et al. 1990; Kubota et al.
2003). It is unknown why HAM/TSP patients show high
proviral load in spite of their large number of CTL and
whether or not the cytotoxic activity of HTLV-1-specific
CTL is different between HAM/TSP patients and ACs.
Recently, a functional CD8+ cell assay reveals no signif-
icant differences in CD8+ cell anti-viral efficacy between
HAM/TSP patients and ACs (Asquith et al. 2005) and
another functional study shows no differences in cytokine
production and degranulation activity of Tax-specific
CTL between the two groups (Abdelbary et al. 2011).
More detailed studies are needed to investigate whether
the total efficiency, but not the frequency, of HTLV-1
Tax-specific CTLs in vivo differs between HAM/TSP pa-
tients and ACs and how they contributes to the pathogen-
esis of HAM/TSP.

Tax-specific CTL

It has been shown that the most immunodominant HTLV-1
antigen recognized by HTLV-1-specific CTL is the Tax
protein. The epitopes of Tax11–19 and Tax301–309 bind
strongly to HLA-A*0201 and HLA-A*2402 respectively
(Jacobson et al. 1990; Harashima et al. 2004). These
virus-specific CTL produce proinflammatory cytokines
and show degranulation activity (Kubota et al. 1998;
Yamano et al. 2002; Abdelbary et al. 2011). Importantly,
the CTL frequency is also much higher in CSF than in
PBMCs and is proportional to the HTLV-1 PVL (Greten
et al. 1998; Nagai et al. 2001). Tax-specific CTL are also
detected in spinal cord parenchyma (Matsuura et al. 2015).
Strong Tax-specific CTL response has been considered to
control the viral replication and play a key role in the de-
velopment of HAM/TSP. While Tax expression is gener-
ally decreased in infected cells in vivo (Hanon et al.
2000b), CTL response to Tax is chronically activated, sug-
gesting frequent exposure to newly-synthesized Tax pro-
tein in vivo (Rende et al. 2011). A single cell analysis–
clarified Tax protein was expressed in intermittent but in-
tense bursts in HTLV-1-infected cells (Billman et al. 2017;
Mahgoub et al. 2018). Recently, exosomes containing Tax
was identified in virus-free CSF of patients with HAM/
TSP and that in vitro, cells stimulated with Tax-
containing exosomes became targets of HTLV-1 Tax-spe-
cific CTL (Anderson et al. 2018). These mechanisms may
allow activated CTL to respond to persistently HTLV-1-
infected cells, which may be associated with inflammatory
tissue destruction.
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HBZ-specific CTL

HTLV-1 Tax-specific CTL responses have been studied ex-
tensively; however, little is known about the frequency or
function of HBZ-specific CTL in HAM/TPS patients. HBZ
is also an immunogenic protein recognized by HBZ-specific
CTL clones and HBZ-specific CTL have been identified in
ATLL or HAM/TSP patients and ACs (Suemori et al. 2009;
Macnamara et al. 2010). HTLV-1-infected individuals with
HLA class I alleles strongly binding the HBZ protein were
shown to be related to a lower proviral load and a reduced risk
of HAM/TSP (Macnamara et al. 2010; Hilburn et al. 2011).
However, compared with Tax-specific CTL, HBZ-specific
CTL are at a lower frequency in the peripheral blood and kills
fewer HTLV-1-infected cells in vitro (Macnamara et al. 2010;
Rowan et al. 2014). HBZ is continuously expressed in HTLV-
1-infected cells in vivo and HBZ induces the proliferation of
these infected cells, thus indicating that HBZ might be a can-
didate antigen for cellular immunotherapy for HAM/TSP. It is
necessary to identify HBZ epitopes or enhance anti-HBZ im-
mune responses that can induce a stronger CTL response in
HAM/TSP patients.

Exhaustion and inhibitory receptor in HAM/TSP

Chronic viral infection has been reported to induce expression
of inhibitory molecules that generate negative signals to
downregulate the ensuing T cell responses. Recent translation
of knowledge about inhibitory receptors such as CTLA-4 and
PD-1 into cancer treatments highlights the opportunities to
manipulate these pathways to treat human disease (Callahan
et al. 2016). PD-1 is expressed on ATLL cells and CD8+ T
cells in ATLL patients (Kozako et al. 2009; Yasuma et al.
2016b). Genomic analysis of ATLL demonstrated PD-L1 am-
plifications (Kataoka et al. 2018) and phase2 trial of PD-1
inhibitor therapy has been performed in patients with aggres-
sive ATLL (Ishitsuka et al. 2018). In HAM/TSP patients,
alternative expressions of various inhibitory receptors, such
as PD-1, CD244, and Tim-3, have been demonstrated on
CD8+ T cells (Enose-Akahata et al. 2009; Abdelbary et al.
2011; Kozako et al. 2011; Manuel et al. 2013). Some reports
showed PD-1 expression is upregulated in both infected T
cells and CTL (Yasuma et al. 2016b; Enose-Akahata et al.
2019) and these PD-1+ cells in CD8+ T cells showed CTL
dysfunction in HAM/TSP patients (Manuel et al. 2013). T cell
immunoglobulin and ITIM domain (TIGIT), which is another
inhibitory molecule and expressed on activated T cells and
Treg cells, are also highly expressed with PD-1 in HAM/
TSP patients (Yasuma et al. 2016b). Combined blockade of
PD-1 and TIGIT enhanced anti-Tax T cell response in PBMCs
of HAM/TSP patients. Expression of multiple distinct inhibi-
tory receptors is associated with greater T ell exhaustion and
rapid disease progression and co-targeting multiple inhibitory

receptors show synergy and substantially more robust reversal
of T cell exhaustion and control of viral load in chronic viral
infection (Attanasio and Wherry 2016). A combination of
checkpoint-blocking antibodies may be a potential therapeutic
treatment for HAM/TSP patients and may reduce HTLV-1-
infected cells by recovering the function of CTL.

T cell receptor repertoire analysis

T cell–mediated antigen recognition depends on the interac-
tion of the T cell receptor (TCR) with the antigen-major his-
tocompatibility complex (MHC) molecule. The diversity of
TCR repertoires is central components of adaptive immune
system function and can be altered in the context of infections,
malignancies or immunological disorders. Analyzing TCR
repertoires may help to gain a better understanding of
immune-mediated responses in neuroinflammatory diseases.
In HAM/TSP patients, a previous report on the TCR analysis
showed a direct demonstration of clonal expansions within
both CD4+ and CD8+ cells in HTLV-1 infections (Eiraku
et al. 1998) and shared amino acid motif in the CDR3β in
Tax-specific CTL in HLA-A*0201 HAM/TSP patients
(Bourcier et al. 2001; Saito et al. 2001). With technological
development based on high-throughput sequencing and bio-
informatics methods, large-scale profiling of TCR repertoires
have been conducted to characterize the structure of antigen-
related TCRs, cancer-infiltrating T cells, and TCRs related to
autoimmunity (Rosati et al. 2017). A recent analysis showed
HAM/TSP patients had a higher clonal T cell expansion in
PBMCs as well as purified CD4+ and CD8+ cells compared
with multiple sclerosis (Alves Sousa et al. 2019). In addition,
longitudinal analysis of TCR repertoires demonstrated a cor-
relation of the TCR clonal expansion with HTLV-1 proviral
load. ATLL patients also showed monoclonal TCRs com-
pared with ACs, and clonality data observed based on TCR
repertoires were completely consistent with clonality analysis
based on provirus integration sites (Rowan et al. 2016;
Farmanbar et al. 2019). Recently, Tax301–309-specific CTL
in HLA-A*2402 ATLL patients and ACs shared highly re-
stricted TCR repertoires by the single-cell analysis (Ishikawa
et al. 2017). It is useful to identify expanded TCR clones of
antigen-specific T cells and/or T cells found in the inflamma-
tory lesions and clarify the function of these pathogenic T
cells. We should target more antigen-specific T cells or com-
pare TCR signatures between periphery and CNS to explore
pathology-related TCR signature in HAM/TSP patients.

Immunopathogenesis of HAM/TSP

The characteristic pathology of HAM/TSP consists of a
chronic inflammation with diffuse degeneration throughout
the central nervous system (Izumo et al. 2000). The spinal
cord exhibits a loss of myelin and axons symmetrically in
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the lateral and posterior column with the inflammation of gray
and white matter, which is dominant at the thoracic level
(Iwasaki 1990; Yoshioka et al. 1993). These lesions are in-
volved with perivascular and parenchymal lymphocytic infil-
tration with reactive astrocytosis and fibrillary gliosis
(Umehara et al. 1993). Both CD4+ and CD8+ cells are evenly
distributed in active inflammatory lesions, while the predom-
inance of CD8+ cells and high levels of IFN-γ are detected in
the chronic stage (Umehara et al. 1993; Aye et al. 2000).
HTLV-1 mRNA and DNA are detected only in infiltrating
CD4+ T cells in the spinal cord, but not in neural cells using
in situ PCR technique (Moritoyo et al. 1996; Matsuoka et al.
1998). HTLV-1 has not been shown to actively infect neurons,
oligodendrocytes, or microglia in vivo. These data strongly
indicate that some of the infiltrating CD4+ T cells are infected
with HTLV- 1, but the neural cells are not.

HTLV-1-specific CTL infiltrate the CNS and play a role in
HAM/TSP pathogenesis (Kubota 2017). Activated HTLV-1-
specific CTL is markedly increased in the periphery of pa-
tients with HAM/TSP. Additionally, abundant CD8+ T cells
infiltrate the spinal cord and express the TIA-1 molecule,
which is a CTL marker (Umehara et al. 1994). A recent study
visualized HTLV-1 Tax-specific CTL infiltrating the CNS
using an MHC/Tax tetramer (Matsuura et al. 2015). The fre-
quency of HTLV-1 Tax-specific CTL is more than 20% in
CD8+ T cells infiltrating the CNS. In addition, HTLV-1 pro-
teins are not detected in the CNS-resident cells, but they were
identified in more than 60% of the infiltrating CD4+ T cells.
Although neurons were generally preserved, approximately
40% of CD4+ T cells and some oligodendrocytes underwent
apoptosis. Apoptotic oligodendrocytes were frequently in
contact with CD8+ T cells, resulting in demyelination. These
findings indicate that the immune responses between HTLV-
1-specific CTL and HTLV-1-infected CD4+ T cells could
cause apoptosis in surrounding neural cells (bystander dam-
age; Fig. 1). It will be necessary to elucidate the underlying
mechanisms for how and why uninfected neural cells become
apoptotic.

Animal model

Animal models have been widely used to study HTLV-1 viral
transmission, disease pathogenesis, and treatment (Niewiesk
2016). However, there is no accurate animal model of HAM/
TSP, which has hindered the understanding of precise patho-
genic mechanisms and development of effective treatments in
the disease. Studies with rabbit, rat, and simian models have
successfully led to the understanding of routes of transmission
of the HTLV-1 virus, anti-viral immune responses, and the
means of preventing its transmission (Lairmore et al. 2005).
Wistar-King-Aptekman-Hokudai (WKAH) rats emerged as a
model of HAM/TSP. HTLV-1-infected WKAH rats develop
spastic paraparesis with degenerative thoracic spinal cord and

peripheral nerve lesions after inoculation (Ishiguro et al. 1992;
Kushida et al. 1993). However, lesions in humans showed a
marked T cell infiltration of affected regions, while lesions in
the rats did not. In addition, the HTLV-1 provirus has been
identified in microglia/macrophages associated with lesions in
rats, in contrast with humans (Kasai et al. 1999). Therefore,
the pathogenesis of the rat model is considered to be different
from that of human HAM/TSP. Mouse models have tradition-
ally been cost-effective and easy to develop and maintain.
Hence, mice have been manipulated to establish HTLV-1 in-
fection through the generation of transgenic and humanized
mice models. One such model is the Tax-transgenic mouse,
which restricts Tax expression to developing thymocytes,
demonstrating characteristic ATLL-like phenotypes
(Hasegawa et al. 2006). Another common feature of Tax-Tg
mice is the development of chronic arthritis at 2–3 months
(Panfil et al. 2013) and a small portion (8/297) of Tax-Tg mice
developed HAM/TSP-like disease with symmetrical
paraparesis of the hind limbs though it was caused by the
invasion of histiocytic sarcoma cells into the lumbar spinal
cord (Ohsugi et al. 2013). Another model, the HBZ-
transgenic mouse, expressed HBZ under the control of a
CD4 promoter leads to inflammation in skin and lung as well
as T cell lymphoma (Satou et al. 2011). However, currently,
there is no report that HBZ-Tg mice develop inflammatory
neurologic diseases and it remains unknown how tissue spec-
ificity of HTLV-1 associated inflammatory diseases are deter-
mined. A recent development is the use of humanized mice
which, upon transfer of CD34+ human umbilical cord stem
cells, generate human lymphocytes (Niewiesk 2016).
Inoculation of immunodeficient mice with ATLL cells or
HTLV-1 transformed cell lines provide an opportunity to in-
vestigate disease development and evaluate treatment for
ATLL. Recently, humanized mice model using Balb/c-
Rag1−/−γc−/− and bone marrow-liver-thymic mouse showed
establishment of peripheral infection that led to lymphocytic
infiltration with concomitant Tax expression and resulting
myelin disruption within the CNS of infected mice (Ginwala
et al. 2017). In addition, upregulation in the expression of
several immune checkpoint mediators such as PD-1, TIGIT,
and Tim-3 was observed on CD8+ T cells in various organs
including the CNS of infected hu-mice. This humanized
mouse model could be a suitable model to evaluate the
imunopathogenesis and develop a novel treatment for HAM/
TSP.

Treatment

In HAM/TAP, most therapeutic trials have aimed to inhibit or
regulate the immune response, or to reduce the HTLV-1 pro-
viral load in an attempt to decrease the risk or alter the course
of the disease. Corticosteroids are most widely used to de-
crease the inflammation in the CNS, particularly in the early
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stage. Motor disability in some patients could be improved
with steroids (Nakagawa et al. 1996; Croda et al. 2008), but
improvement is typically not maintained and the drug is
discontinued due to various side effects. IFN-α is a medica-
tion in which efficacy was demonstrated in randomized
placebo-controlled trials (Izumo et al. 1996; Arimura et al.
2007); however, the therapeutic benefit is insufficient.
Reverse transcriptase inhibitors, which are used to treat
HIV-1 infection, were not effective against HTLV-1 in clini-
cal trials (Taylor et al. 2006; Macchi et al. 2011). Recently, a
h uman i z e d a n t i - CCR4 mono c l o n a l a n t i b o dy ,
mogamulizumab, effectively reduced both the PVL and in-
flammatory activity in cells obtained from patients with
HAM/TSP (Yamauchi et al. 2015). Phase 1/2a clinical trials
revealed the safety and short-term effectiveness of
mogamulizumab in patients with HAM/TSP (Sato et al.
2018). Hu-Mikβ1, which is a humanized monoclonal anti-
body against the β subunit shared by the IL-2 and IL-15 re-
ceptors (IL-2/IL-15Rβ; CD122), has been reported to inhibit
abnormal T cell proliferation and HTLV-1-specific cellular
immune responses by blocking IL-15 action in HAM/TSP
patients (Azimi et al. 1999; Enose-Akahata et al. 2008). The

treatment with Hu-Mikβ1 showed the inhibition of aberrant
CD8+ T cell function in HAM/TSP patients although no clin-
ical efficacy was observed (Enose-Akahata et al. 2019).
Raltegravir, which is an integrase inhibitor used for the treat-
ment of HIV-1, was reported to reduce cell-free and cell-to-
cell transmission of HTLV-1 in vitro (Seegulam and Ratner
2011). Since high PVL is known to be the main risk factor for
developingHAM/TSP in infected subjects, PVL reduction is a
reasonable therapeutic goal. The trial of raltegravir is currently
underway.

Conclusion

HTLV-1 preferentially infects CD4+ T cells and establish in-
fected T cell clones in the host, regulating the balance between
proviral latency and reactivation. Clonal expanded T cells
infected with HTLV-1 dysregulate T cell function and differ-
entiation and subsequently induce HTLV-1-specific T cell
responses. These cell-mediated immune responses and re-
leased proinflammatory cytokines could cause neural damage,
which is thought to play a central role in the development of

Fig. 1 Proposed model of the immunopathology in human T-
lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical
spastic paraparesis: bystander neural damage. HTLV-1-infected CD4+

T cells proliferate in the periphery and circulate in HTLV-1-infected
individuals. The infected cells invade the central nervous system across
the blood-brain barrier and express viral antigens. HTLV-1-specific cy-
totoxic T lymphocytes (CTL) are activated and expanded on stimulation
by the HTLV-1 antigens and accumulate in the spinal cord. The CTL

recognize viral antigens presented by human leukocyte antigen class I
molecules on the infiltrating HTLV-1-infected CD4+ T cells, leading to
the secretion of proinflammatory cytokines, such as interferon-γ and
tumor necrosis factor-α. HTLV-1-specific inflammation mediated by
the interaction of HTLV-1-infected CD4+ T cells with HTLV-1-specific
CTL causes apoptosis in adjacent neural cells (bystander damage) in the
CNS, resulting in tissue destruction and degeneration. BBB, blood-brain
barrier
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HAM/TSP. Recent advances in research provide a better un-
derstanding of mechanisms associated with HTLV-1-infected
cells and cellular immune responses in HAM/TSP. Further
research will be required to develop strategies to eliminate
HTLV-1-infected cells or enhance cellular immunity for the
development of effective treatments in patients with HAM/
TSP.
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