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a b s t r a c t 

Computer Tomography (CT) imaging of the chest is a valid diagnosis tool to detect COVID-19 promptly 

and to control the spread of the disease. In this work we propose a light Convolutional Neural Network 

(CNN) design, based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT im- 

ages with respect to other community-acquired pneumonia and/or healthy CT images. The architecture 

allows to an accuracy of 85.03% with an improvement of about 3.2% in the first dataset arrangement and 

of about 2.1% in the second dataset arrangement. The obtained gain, though of low entity, can be really 

important in medical diagnosis and, in particular, for Covid-19 scenario. Also the average classification 

time on a high-end workstation, 1.25 s, is very competitive with respect to that of more complex CNN 

designs, 13.41 s, witch require pre-processing. The proposed CNN can be executed on medium-end laptop 

without GPU acceleration in 7.81 s: this is impossible for methods requiring GPU acceleration. The per- 

formance of the method can be further improved with efficient pre-processing strategies for witch GPU 

acceleration is not necessary. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Coronavirus (COVID19) is a world-wide disease that has been

eclared as a pandemic by the World Health Organization on 11th

arch 2020. To date, Covid-19 disease counts more than 10 mil-

ions of confirmed cases, of which: more than 500 thousands of

eaths around the world (mortality rate of 5.3%); more than 5 mil-

ions of recovered people. A quick diagnosis is fundamental to con-

rol the spread of the disease and increases the effectiveness of

edical treatment and, consequently, the chances of survival with-

ut the necessity of intensive and sub-intensive care. This is a cru-

ial point because hospitals have limited availability of equipment

or intensive care. Viral nucleic acid detection using real-time poly-

erase chain reaction (RT-PCR) is the accepted standard diagnostic

ethod. However, many countries are unable to provide the suffi-

ient RT-PCR due to the fact that the disease is very contagious.

o, only people with evident symptoms are tested. Moreover, it

akes several hours to furnish a result. Therefore, faster and reli-

ble screening techniques that could be further confirmed by the

CR test (or replace it) are required. 

Computer tomography (CT) imaging is a valid alternative to de-

ect COVID-19 [2] with a higher sensitivity [5] (up to 98% com-
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ared with 71% of RT-PCR). CT is likely to become increasingly im-

ortant for the diagnosis and management of COVID-19 pneumo-

ia, considering the continuous increments in global cases. Early

esearch shows a pathological pathway that might be amenable to

arly CT detection, particularly if the patient is scanned 2 or more

ays after developing symptoms [2] . Nevertheless, the main bottle-

eck that radiologists experience in analysing radiography images

s the visual scanning of small details. Moreover, a large number

f CT images have to be evaluated in a very short time thus in-

reasing the probability of misclassifications. This justifies the use

f intelligent approaches that can automatically classify CT images

f the chest. 

Deep Learning methods have been extensively used in medi-

al imaging. In particular, convolutional neural networks (CNNs)

ave been used both for classification and segmentation problems,

lso of CT images [16] . However, CT images of the lungs referred

o COVID-19 and not COVID-19 can be easily misclassified espe-

ially when damages due to pneumonia referred due to different

auses are present at the same time. In fact, the main chest CT

ndings are pure ground glass opacities (GGO) [6] but also other

esions can be present like consolidations with or without vascular

nlargement, interlobular septal thickening, and air bronchogram

11] . As an example, two CT scans of COVID-19 and not COVID-19

re reported in Fig. 1 a and b, respectively. Until now, there are lim-

ted datasets for COVID-19 and those available contain a limited

umber of CT images. For this reason, during the training phase

https://doi.org/10.1016/j.patrec.2020.10.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.10.001&domain=pdf
mailto:matteo.polsinelli@graduate.univaq.it
https://doi.org/10.1016/j.patrec.2020.10.001
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Fig. 1. (a) CT scan of lungs of a patient affected by COVID-19 where some evident 

GGO are indicated with red arrows (only for illustrative purpose); (b) CT scan of 

lungs of a patient affected by a not COVID-19 lung disease (diffuse opacity in the 

outer parts of the lungs). Images extracted from dataset [17] . 

Table 1 

Top 12 Countries with most confirmed cases of COVID-19 (update to 06/07/2020). 

Country Confirmed cases Confirmed deaths 

USA 2,496,628 125,318 

Brazil 1,313,667 57,070 

Russia 641,156 9,166 

India 548,318 16,475 

United Kingdom 311,155 43,550 

Peru 275,989 9,135 

Chile 271,982 5,509 

Spain 248,770 28,343 

Italy 240,310 34,738 

Iran 222,669 10,508 

Mexico 212,802 26,381 

Pakistan 206,512 4,167 
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Table 2 

Dataset arrangement 1. 

COVID-19 Not COVID-19 Data Augm. Total 

Train 191 191 × 4 1528 

Validation 60 58 No 118 

Test-1 98 95 No 193 

Test-2 100 95 No 195 

Table 3 

Dataset arrangement 2. 

COVID-19 Not COVID-19 Data Augm. Total 

Train 251 191 × 4 1768 

Validation 80 58 No 138 

Test-1 108 95 No 203 
it is necessary to avoid/reduce overfitting (that means the CNN is

not learning the discriminant features of COVID-19 CT scans but

only memorizing it). Another critical point is that CNN inference

requires a lot of computational power. In fact, usually CNNs are

executed on particularly expensive GPUs equipped with specific

hardware acceleration systems. Anyway, expensive GPUs are still

the exception rather than the norm in common computing clusters

that usually are CPU based [13] . Even more, this type of machines

could not be available in hospitals, especially in emergency situa-

tions and/or in developing Countries. At the moment, of the Top 12

Countries with more confirmed cases [12] ( Table 1 ), 7 are develop-

ing Countries though COVID-19 emergency also is strongly stress-

ing Health Systems of advanced Countries. In this work, we present

an automatic method for recognizing COVID-19 and not COVID-19

CT images of lungs. It’s accuracy comparable with complex CNNs

supported by massive pre-processing strategies while maintaining

a light architecture and high efficiency that makes it executable in

low/middle range computers. 

We started from the model of the SqueezeNet CNN to dis-

criminate between COVID-19 and community-acquired pneumonia

and/or healthy CT images. In fact, SqueezeNet is capable to reach

the same accuracy of modern CNNs but with fewer parameters [7] .

Moreover, in a recent benchmark [1] , SqueezeNet has achieved the

best accuracy density (accuracy divided by number of parameters)

and the best inference time. 

The hyperparameters have been optimized with Bayesian

method on two datasets [17,8] . In addition, Class Activation Map-

ping (CAM) [18] has been used to understand which parts of the

image are relevant for the CNN to classify it and to check that no

overfitting occurs. 

The paper is structured as follow: in the next section (Ma-

terials and Methods) the datasets organization, the used pro-

cessing equipment and the proposed methodology are presented;

Section 3 contains Results and Discussion, including a comparison

with recent works on the same argument; finally Section 4 con-

cludes the paper and proposes future improvements. 
. Materials and methods 

.1. Datasets organization 

The datasets used are the Zhao et al. dataset [17] and the Italian

ataset [8] . Both datasets used in this study comply with Helsinki

eclaration and guidelines and we also operated in respect to the

elsinki declaration and guidelines. The Zhao et al. dataset is com-

osed by 360 CT scans of COVID-19 subjects and 397 CT scans of

ther kinds of illnesses and/or healthy subjects. The Italian dataset

s composed of 100 CT scans of COVID-19. These datasets are con-

inuously updating and their images is raising at the same time.

n this work we used two different arrangements of the datasets,

ne in which data from both datasets are used separately and the

ther containing data mixed by both datasets. The first arrange-

ent contains two different test datasets (Test-1 and Test-2). In

act, the Zhao dataset is used alone and divided in train, valida-

ion and Test-1. The Italian dataset is integrated into a second test

ataset, Test-2 ( Table 2 ), while the Zhao dataset is always used in

rain, validation and Test-2 (in Test-2, the not COVID-19 images of

he Zhao dataset are the same of Test-1). The first arrangement is

sed to check if, even with a small training dataset, it is possible

o train a CNN capable to work well also on a completely differ-

nt and new dataset (the Italian one). In the second arrangement,

oth datasets are mixed as indicated in Table 3 . In this arrange-

ent the number of images from the italian dataset used to train,

alidate and Test-1 are 60, 20 and 20, respectively. The second ar-

angement represents a more realistic case in which both datasets

re mixed to increase as possible the training dataset (at the ex-

enses of a Test-2 which, in this case, is absent). In both arrange-

ents, the training dataset has been augmented with the follow-

ng transformations: a rotation (with a random angle between 0

nd 90 degrees), a scale (with a random value between 1.1 and

.3) and addition of gaussian noise to the original image. 

.2. Computational resources 

For the numerical of the proposed CNNs we used two hardware

ystems: 1) a high level computer with CPU Intel Core i7-67100,

AM 32 GB and GPU Nvidia GeForce GTX 1080 8 GB dedicated

emory; 2) a low level laptot with CPU Intel Core i5 processor,

AM 8 GB and no dedicated GPU. The first is used for hyperpa-

ameters optimization and to train, validate and test the CNNs; the

econd is used just for test in order to demonstrate the computa-

ional efficiency of the proposed solution. 

In both cases we used the development environment Matlab

020a. Matlab integrates powerful toolboxes for the design of neu-

al networks. Moreover, with Matlab it is possible to export the

NNs in an open source format called ‘ONNX’ useful to share the
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Fig. 2. The classic Fire Module of the SqueezeNet (a). Proposed modification to the 

Fire Module of the SqueezeNet performed to improve convergence and to reduce 

overfitting (b). 
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NNs with research community. When the high level computer

s used, the GPU acceleration is enabled in Matlab environment,

ased on the technology Nvida Cuda Core provided by the GPU

hat allows parallel computing. In this way we speed up the pro-

otyping of the CNNs. When final tests are performed on the low

evel hardware, no GPU acceleration is used. 

.3. CNN design 

The SqueezeNet is capable of achieving the same level of ac-

uracy of others, more complex, CNN designs which have a huge

umber of layers and parameters [7] . For example, SqueezeNet can

chieve the same accuracy of Alex-Net [9] on the ImageNet dataset

4] with 50X fewer parameters and a model size of less than 0.5MB

7] . The SqueezeNet is composed of blocks called ”Fire Module”. As

hown in Fig. 2 a, each block is composed of a squeeze convolution

ayer (which has 1 × 1 filters) feeding an expanding section of two

onvolution layers with 1 × 1 and 3 × 3 filters, respectively. Each

onvolution layer is followed by a ReLU layer. The ReLU layers out-

ut of the expanding section are concatenated with a Concatena-

ion layer. To improve the training convergence and to reduce over-

tting we added a Batch Normalization layer between the squeeze

onvolution layer and the ReLU layer ( Fig. 2 b). Each Batch Normal-

zation layer adds 30% of computation overhead and for this rea-

on we chose to add them only before the expanding section in

rder to make it more effective while, at the same time, limiting

heir number. Moreover, we replaced all the ReLU layers with ELU

ayers because, from literature [3] , ELUs networks without Batch

ormalization significantly outperform ReLU networks with Batch

ormalization. 

The SqueezeNet has 8 Fire Modules in cascade configuration.

nyway, two more complex architectures exist: one with simple

nd another with complex bypass. The simple bypass configura-

ion consists in 4 skip connections added between Fire Module 2

nd Fire Module 3, Fire Module 4 and Fire Module 5, Fire Mod-

le 6 and Fire Module 7 and, finally, between Fire Module 8 and

ire Module 9. The complex bypass added 4 more skip connec-

ions (between the same Fire Modules) with a convolutional layer

f filter size 1 × 1. From the original paper [7] the better accu-
acy is achieved by the simpler bypass configuration. For this rea-

on, in this work we test both SqueezeNet without any bypass (to

ave the most efficient model) and with simple bypass (to have

he most accurate model), while complex bypass configuration is

ot considered. 

Besides, we propose also a further modify CNN ( Fig. 3 ) based on

he SqueezeNet without any bypass. Moreover, we added a Trans-

ose Convolutional Layer to the last Custom Fire Module that ex-

ands the feature maps 4 times along width and height dimen-

ions. These feature maps are concatenated in depth with the fea-

ure maps from the second Custom Fire Module through a skip

onnection. Weighted sum is performed between them with a

onvolution Layer with 128 filters of size 1 × 1. Finally all the fea-

ure map are concatenated in depth and averaged with a Global

verage Pool Layer. This design allows to combine spatial informa-

ion (early layers) and features information (last layers) to improve

he accuracy. 

.4. Hyperparameters tuning 

Since we are using a light CNN to classify, the optimization of

he training phase is crucial to achieve good results with a limited

umber of parameters. The training phase of a CNN is highly cor-

elated with settings hyperparameters. Hyperparameters are dif-

erent from model weights. The former are calculated before the

raining phase, whereas the latter are optimised during the train-

ng phase. Setting of hyperparameters is not trivial and different

trategies can be adopted. A first way is to select hyperparame-

ers manually though it would be preferable to avoid it because

he number of different configurations is huge. For the same rea-

on, approaches like grid search do not use past evaluations: a lot

f time has to be spent for evaluating bad hyperparameters con-

gurations. Instead, Bayesian approaches, by using past evaluation

esults to build a surrogate probabilistic model mapping hyperpa-

ameters to a probability of a score on the objective function, seem

o work better. 

In this work we used Bayesian optimization for the following

yperparameters: 

1. Initial Learning Rate : the rate used for updating weights dur-

ing the training time; 

2. Momentum : this parameter influences the weights update tak-

ing into consideration the update value of the previous itera-

tion; 

3. L2-Regularization : a regularization term for the weights to the

loss function in order to reduce over-fitting. 

. Results and discussion 

.1. Experiments organization and hyperparameters optimization 

For each dataset arrangement we organized 4 experiments in

hich we tested different CNN models, transfer learning and the

ffectiveness of data augmentation. For each experiment, 30 differ-

nt attempts (with Bayesian method) have been made with differ-

nt set of hyperparameters (Initial Learning Rate, Momentum, L2-

egularization). For each attempt, the CNN model has been trained

or 20 epochs and evaluated by the accuracy results calculated on

he validation dataset. The experiments, all performed on the au-

umented dataset were: 

1. SqueezeNet without bypass and transfer learning; 

2. SqueezeNet with simple bypass but without transfer learning; 

3. SqueezeNet with simple bypass and transfer learning; 

4. the proposed CNN. 

Regarding the arrangement 1, the results of the experiments are

eported in Table 4 . For a better visualization of the results, we re-
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Fig. 3. The proposed custom CNN. Spatial information contained in the feature maps from the second Custom Fire Module are weighted with the feature maps of the last 

Custom Fire Module. 

Table 4 

Results on the dataset arrangement 1. 

Exp. Obs. Acc. Est. Acc. Learn. Rate Mom. L2-Reg. 

1 88.30% 82.26% 0.074516 0.58486 1.6387e-07 

2 85.76% 82.42% 0.011358 0.97926 3.684e-08 

3 85.76% 80.58% 0.00070093 0.96348 1.0172e-12 

4 89.85 % 87.27 % 0.007132 0.87589 0.9532e-06 

Table 5 

Results on the dataset arrangement 2. 

Exp. Obs. Acc. Est. Acc. Learn. Rate Mom. L2-Reg. 

1 86,84% 82.11% 0.00010091 0.70963 2.2153e-11 

2 85.36% 81.53% 0.086175 0.59589 7.5468e-09 

3 84.44% 80.22% 0.0016053 0.86453 1.0048e-10 

4 87.56 % 85.87 % 0.089642 0.84559 0.5895e-07 
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Table 6 

10-fold cross-validation on dataset arrangement 1. 

Acc. Sens. Spec. Prec. F1-Score 

86.48 91.17 82.50 81.57 86.11 

86.48 88.23 85.00 83.33 85.71 

82.43 79.41 85.00 81.81 80.59 

84.93 91.17 79.48 79.48 84.93 

86.48 91.17 82.50 81.57 86.11 

87.83 94.16 82.50 82.05 87.67 

78.37 79.41 77.50 75.00 77.14 

86.48 88.23 85.00 83.33 85.71 

85.13 94.11 77.50 78.04 85.33 

81.08 85.29 77.50 76.31 80.55 
port just the the best accuracy calculated with respect to all the at-

tempts, the accuracy estimated by the objective function at the end

of all attempts and the values of the hyperparameters. The best ac-

curacy value is achieved with the experiment #4. Both observed

and estimated accuracy are the highest between all the experi-

ments. Regarding the original paper of the SqueezeNet [7] , there is

not a relevant difference between the model without bypass and

with bypass. It is also interesting to note that use transfer learn-

ing (experiment #3) from the original weights of the SqueezeNet

does not have a relevant effect. Regarding the dataset arrangement

2, the results of the experiments are shown in Table 5 . The exper-

iment #4 is still the best one, though experiment #1 is closer in

terms of observed accuracy. By comparing the hyperparameters of

the experiment #4 of Tables 4 and 5 , a relevant difference in learn-

ing rate and L2-Regularization is evident. Regarding the dataset ar-

rangement 1, Table 4 shows that to a decrease of the learning rate

corresponds an increment of momentum and vice-versa; the same

occurs between the learning rate and L2-Regularization; momen-

tum and L2-regularization have the same behaviour. Regarding the

dataset arrangement 2, Table 5 shows that learning rate, L2- Regu-
arization and momentum have concordant trend. This hypothesis

s confirmed in all the experiments. The different behaviour be-

ween hyperparameters in Tables 4 and 5 suggests that the CNN

rained/validated on the dataset arrangement 1 (that we call CNN-

) is different by the CNN trained/validated on dataset arrange-

ent 2 (that we call CNN-2), also confirmed by the evaluation

f CAM, presented and discussed in the next sub-section. The re-

ults shown in Table 4 and Table 5 confirm that the proposed

NNs (experiment #4) perform better then original SqueezeNet

onfigurations. In particular, CNN-1 design overcomes the original

 SqueezeNet models in terms of accuracy of 1.6%, 4.0% and 4.0%

3.2% on average), respectively and CNN-2 of 0.7%, 2.2%, and 3.1%

2.1% on average), respectively. Two considerations are necessary:

) the proposed architecture always overcomes the original ones;

) an accuracy gain, though of low entity, can be really important

n medical diagnosis. 

.2. Training, validation and test 

The calculated hyperparameters have been used to train (20

pochs, Learning Rate drop of 0.8 every 5 epochs) both CNN-1 and

NN-2 with a 10-fold cross-validation strategy on both datasets

results are reported in Tables 6 and 7 , respectively). 
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Table 7 

10-fold cross-validation on dataset arrangement 2. 

Acc. Sens. Spec. Prec. F1-Score 

82.35 91.11 72.50 78.84 84.53 

85.88 86.66 85.00 86.66 86.66 

81.17 86.66 75.00 79.59 82.97 

84.70 86.66 82.50 84.78 85.71 

90.58 88.88 92.50 93.02 90.90 

83.52 88.88 77.50 81.63 85.10 

83.52 84.44 82.50 84.44 84.44 

85.88 95.55 75.00 81.13 87.75 

82.14 84.44 79.48 82.60 83.51 

90.58 84.44 97.50 97.43 90.47 

Table 8 

CNN-1 and CNN-2 performance. 

CNN Acc. Sens. Spec. Prec. F1-Score 

CNN-1 84.56 88.23 81.44 80.24 83.98 

CNN-2 85.03 87.55 81.95 85.01 86.20 
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Fig. 5. CAMs of CNN-1 and CNN-2 on 3 not COVID-19 CT images. Strongest colors 

(red) implies greater activations. Colors in CAMs are normalized. 
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Each, CNN is evaluated with the following benchmark metrics:

ccuracy, Sensitivity, Specificity, Precision and F1-Score. 

The average 10-fold cross-validation metrics, summarized in

able 8 , confirm that CNN-1 and CNN-2 behave differently. 

Regarding the application of CNN-1 on Test-2, the results are

nsufficient. In fact, the accuracy reaches just 50.24% because the

NN is capable only to recognize well not COVID-19 images (preci-

ion is 80.00%) but has very low performance on COVID-19 images

sensitivity = 19.00%). As affirmed before, the analyses of Test-2 is

ery hard if we do not use a larger dataset of images. 

In order to deeply understand the behaviour of CNN-1 and

NN-2 we used CAM, that gives a visual explanations of the pre-

ictions of convolutional neural networks. This is useful to figure

ut what each CNN has learned and which part of the input of

he network is responsible for the classification. It can be useful to

dentify biases in the training set and to increase model accuracy.

ith CAM it is also possible to verify if a CNN is overfitting and,

n particular, if its predictions are based on relevant image features

r on the background. To this aim, we expect that the activations

aps are focused on the lungs and especially on those parts af-

ected by COVID-19 (lighter regions with respect to healthy, darker,

ones of the lungs). 

Fig. 4 shows 3 examples of CAMs for each CNNs and, to allow

omparisons, we refer them to the same 3 CT images (COVID-19

iagnosed both from radiologists and CNNs) extracted from the

raining dataset. 
ig. 4. CAMs of CNN-1 and CNN-2 on 3 COVID-19 CT images. Strongest colors (red) 

mplies greater activations. Colors in CAMs are normalized. 
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By a visual comparison, for CNN-1 ( Fig. 4 a–c), the activations

re not well localized inside the lungs, though in Fig. 4 b the acti-

ations are better focused on the lungs than in Fig. 4 a and c. 

Regarding the CAMs of CNN-2 ( Fig. 4 d–f), there is an improve-

ent because the activations are more localized on the ill parts of

he lungs (this situation is perfectly represented in Fig. 4 f). Fig. 5

hows 3 examples of CAMs for each CNNs (as Fig. 4 ) but with 3 CT

mages of lungs not affected by COVID-19 and correctly classified

y both CNNs. CNN-1 focuses on small isolated zones ( Figs. 5 a–c):

ven if these zones are inside the lungs, it is unreasonable to ob-

ain a correct classification with so few information (and without

aving checked the remaining of the lungs). Instead, in CNN-2, the

ctivations take into consideration the whole region occupied by

ungs as demonstrated in Figs. 5 d–f. 

As a conclusion, it is evident that CNN-2 has a better be-

aviour with respect to CNN-1. Since CNN-1 and CNN-2 have the

ame model design but different training datatasets, we argue that

he training dataset is the responsible of their different behaviour.

n fact, the dataset arrangement-2 contains more training images

taken from the Italian dataset) and the CNN-2 seems to be gain

y it. Figs. 4 and 5 show that the CNN model, even with a lim-

ted number of parameters, is capable to learn the discriminant

eatures of this kind of images. Therefore, the increment of the

raining dataset should increase also the performance of the CNN. 

.3. Comparison with recent works 

We compare the results of the CNN-2 with [10,14,15] . Since

ethods and datasets (training and test) differ and a correct quan-

itative comparison is arduous, we can have an idea regarding the

espective results, summarized in Table 9 . 

The method [10] achieves better results than CNN-2. With re-

pect to [14] and [15] our method achieves better results, espe-

ially regarding sensitivity. 

The average time required by CNN-2 to classify a single CT im-

ge is 1.25 s on the previously defined high end workstation. As

omparison, the method in [10] requires 4.51 s on a similar high-

nd workstation (Intel Xeon Processor E5-1620, GPU RAM 16GB,

PU Nvidia Quadro M40 0 0 8GB) when just classification is consid-

red. However, when the time necessary for pre-processing is con-

idered, the method in [10] requires 13.41 s on the same worksta-

ion, thus resulting more 10 times slower than CNN-2. The compu-

ation time dramatically increases for [10] when considering pre-

rocessing: it includes lungs segmentation through a supplemen-

ary CNN (a U-Net), voxel intensity clipping/normalization and, fi-

ally, the application of maximum intensity projection. This also

akes the method in [10] unpractical for medium-end machines
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Table 9 

Comparison with previous works. 

Works Image Preproc Accuracy (%) Sensitivy (%) Specificity (%) Precision (%) F1-Score (%) #Parameters (Millions) Sens / #Param 

Wang et al. [14] No 73.1 67 76 61 63 23.9 2.8 

Xu et al. [15] Yes - 86.7 - 81.3 83.9 11.7 7.41 

Li et al. [10] Yes - 90 96 - - 25.6 3.52 

The proposed CNN No 85.03 87.55 81.95 85.01 86.20 1.26 69.48 
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without graphic GPU acceleration. On the contrary, the average

classification time for CNN-2 was 7.81 s on a middle class com-

puter. 

This represents, for the method proposed therein, the possibil-

ity to be used massively on medium-end computers: a dataset of

about 4300 images, roughly corresponding to 3300 patients [10] ,

could be classified in about 9.32 h. The improvement in efficiency

of the proposed method with respect to the previously compared

is demonstrated in Table 9 , where the sensitivity value (the only

parameter reported by all the compared methods) is rated with re-

spect the number of parameters used to reach it: the resulting ra-

tio confirms that the proposed method greatly overcomes the oth-

ers in efficiency. 

4. Conclusion 

In this study, we proposed a CNN design (starting from the

model of the SqueezeNet CNN) to discriminate between COVID-

19 and other CT images (composed both by community-acquired

pneumonia and healthy images). On both dataset arrangements,

the proposed CNN-2 outperforms the original SqueezeNet. In par-

ticular, CNN-2 achieved 85.03% of accuracy, 87.55% of sensitivity,

81.95% of specificity, 85.01% of precision and 86.20% of F1-Score. 

Moreover, CNN-2 is more efficient than other, more complex,

CNN designs. In fact, the average classification time is low both

on a high-end computer (1.25 s for a single CT image) and on a

medium-end laptot (7.81 s for a single CT image). This demon-

strates that the proposed CNN is capable to analyze thousands of

images per day even with limited hardware resources. 

The next step is to further increase the performance of CNN-2

through specific pre-processing strategies. In fact, performant CNN

designs [10,15] mostly use pre-processing with GPU acceleration. 

Our future ambitious goal is to obtain specific and efficient pre-

processing strategies for middle class computers without GPU ac-

celeration. 
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