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Abstract

Background: The classification of Breast Imaging Reporting and Data System 4A (BI-RADS 4A) lesions is mostly
based on the personal experience of doctors and lacks specific and clear classification standards. The development
of artificial intelligence (AI) provides a new method for BI-RADS categorisation. We analysed the ultrasonic
morphological and texture characteristics of BI-RADS 4A benign and malignant lesions using AI, and these
ultrasonic characteristics of BI-RADS 4A benign and malignant lesions were compared to examine the value of AI in
the differential diagnosis of BI-RADS 4A benign and malignant lesions.

Methods: A total of 206 lesions of BI-RADS 4A examined using ultrasonography were analysed retrospectively,
including 174 benign lesions and 32 malignant lesions. All of the lesions were contoured manually, and the
ultrasonic morphological and texture features of the lesions, such as circularity, height-to-width ratio, margin
spicules, margin coarseness, margin indistinctness, margin lobulation, energy, entropy, grey mean, internal
calcification and angle between the long axis of the lesion and skin, were calculated using grey level gradient co-
occurrence matrix analysis. Differences between benign and malignant lesions of BI-RADS 4A were analysed.

Results: Significant differences in margin lobulation, entropy, internal calcification and ALS were noted between
the benign group and malignant group (P = 0.013, 0.045, 0.045, and 0.002, respectively). The malignant group had
more margin lobulations and lower entropy compared with the benign group, and the benign group had more
internal calcifications and a greater angle between the long axis of the lesion and skin compared with the
malignant group. No significant differences in circularity, height-to-width ratio, margin spicules, margin coarseness,
margin indistinctness, energy, and grey mean were noted between benign and malignant lesions.
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Conclusions: Compared with the naked eye, AI can reveal more subtle differences between benign and malignant
BI-RADS 4A lesions. These results remind us carefully observation of the margin and the internal echo is of great
significance. With the help of morphological and texture information provided by AI, doctors can make a more
accurate judgment on such atypical benign and malignant lesions.
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Background
The Breast Imaging Reporting and Data System (BI-
RADS) facilitates communications among radiologists,
clinicians and patients via the use of standardised de-
scriptions of lesions and reports, which greatly promotes
the application of breast imaging in clinical practice. BI-
RADS 4A lesions exhibit a low suspicion for malignancy
of 2–10% and primarily include some atypical benign
and malignant lesions [1]. The 2013 BI-RADS does not
provide specific guidance for the sub-category of BI-
RADS 4 lesions. The classification of these lesions is
mostly based on the personal experience of doctors and
lacks specific and clear classification standards. The large
ultrasonic feature span of atypical benign and malignant
lesions creates the possibility of misclassification in the
BI-RADS 4A category.
The development of artificial intelligence (AI) provides

a new method for BI-RADS classification [2]. AI can cal-
culate the morphological and texture features of breast le-
sions in ultrasonic images and overcome the
shortcomings of human visual observation [3–5]. At
present, the application of AI in BI-RADS classification
mainly focuses on the feasibility and accuracy of different
AI procedures [6–10]. AI can achieve a classification level
similar to that of radiologists [6, 9]. Through the quantita-
tive study of BI-RADS classification features, some studies
have reported morphological and textural features that are
different between benign and malignant lesions. The
shape, margin, internal echo and posterior echo of tumour
can be used as the differential diagnosis points of benign
and malignant lesions [6, 8, 11]. Some other studies focus
on the differences in morphological and textural features
among different BI-RADS categories or specific diseases,
for example, triple-negative breast cancer and fibroaden-
oma [6, 12–14]. Studies investigating the application of AI
between BI-RADS 4A benign and malignant lesions are
limited. The present study analysed the ultrasonic mor-
phological and texture characteristics of BI-RADS 4A be-
nign and malignant lesions using AI and aimed at
examining the value of AI in the differential diagnosis of
BI-RADS 4A benign and malignant lesions.

Methods
All of the patients were from Peking University People’s
Hospital, Southeast University Zhongda Hospital, the

First Affiliated Hospital of Guangxi University of Chin-
ese Medicine and Zhengzhou University First Affiliated
Hospital. The ethics committees of the four hospitals ap-
proved this study. Written informed consents were ob-
tained from all participants. All the doctors participated
in the ultrasonic examinations. All lesions diagnosed as
BI-RADS 4A before surgery from January 2019 to De-
cember 2019 were collected and analysed retrospectively.
According to the ACR BI-RADS® Atlas Fifth Edition,
two doctors (SHN and XW) with more than 10 years’
experience in breast ultrasound diagnosis who were
blind to the pathological results evaluated the suspicion
for malignancy of all the lesions separately, and lesions
with low suspicion for malignancy (2–10%) were classi-
fied as BI-RADS 4A.
The inclusion criteria were as follows: (1) lesions were

classified as BI-RADS 4A by the two doctors finally; (2)
the lesions were clear in grey-scale images without
measurement labels and the sample window of colour
Doppler; (3) lesions should be displayed within a high-
frequency probe, and those less than 5 cm were included
according to the width of high-frequency probes; (4) all
lesions were surgically resected and pathologically diag-
nosed. The following exclusion criteria were employed:
(1) lesions were displayed in colour Doppler ultrasound
images; (2) measurement labels were present in grey
scale images; (3) the transverse diameter of lesions
exceeded the width of probes.
Among them, 194 lesions were both classified as BI-

RADS 4A by the two doctors. Twelve cases with incon-
sistent classification were determined as BI-RADS 4A
after discussion by the two doctors. Finally, 206 lesions
were enrolled in our study.
The ultrasound instruments used in this study in-

cluded Aixplorer (Supersonic Imagine, Aix-en-Provence,
France), Aplio 500 (Toshiba Medical Systems, Otawara,
Tochigi, Japan), and Logic E9 (GE Healthcare, Milwau-
kee, WI, USA) instruments.
The AI software used in this research was the breast

ultrasound intelligent diagnosis system developed by the
Harbin Institute of Technology. All lesions were manu-
ally contoured, and the region of interest (ROI) was cal-
culated using grey gradient co-occurrence matrix
analysis to obtain the morphological and texture
features.
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The morphological features included circularity,
height-to-width ratio, margin spicules, margin coarse-
ness, margin indistinctness, margin lobulation, internal
calcification and angle between the long axis of the le-
sion and skin (ALS). The principles of these features
were as follows:

(1) Circularity

Circularity (Cir) described the similarity between tu-
mours and circle, and it was calculated according to the
following formula (1):

Cir ¼ C2

S
ð1Þ

C was the number of pixels in the tumour boundary,
which was equivalent to the perimeter of the tumour,
and S was the number of pixels contained in the tumour
area, which could be regarded as the area of the tumour.

2 Height-to-width ratio

The height-to-width ratio (HWR) calculated the cir-
cumscribed rectangle of the tumour boundary first to
obtain the height and width of the circumscribed rect-
angle and then calculated the ratio of the two using the
formula (2):

HWR ¼ H
W

ð2Þ

3 Margin spicules

The coordinates of the margin pixels (xi, yi) were set
to coordinates in polar coordinates (ri, θi) according to
centroid coordinates (x0, y0). Then, the coordinates were
rearranged clockwise (or anticlockwise). Then, Fourier
transformation was performed, and the frequency
spectrum data were obtained. The number of margin
spicules (MS) was calculated according to the following
formula (3):

MS ¼

Xπ
4

ω¼0

R ωð Þ
Xπ
ω¼π

4

R ωð Þ
ð3Þ

4 Margin coarseness

Margin coarseness (MC) reflectd the degree of coarse-
ness of tumour margin, which was given by Eq. (4):

MC ¼ 1
N

XN
i¼1

j di − diþ1 j ð4Þ

Here, di reflected the distance (in pixel units) of the ith
pixel on the boundary to the centroid coordinates of the
tumour, and di was arranged and calculated according to
the clockwise (or anticlockwise) order of the corre-
sponding pixels on the boundary.

5 Margin indistinctness

The coarse boundary of tumour in the original grey-
scale ultrasound image was calculated using a rough seg-
mented ROI image, and tissue surrounding the tumour
was regarded as the boundary area. The pixel gradient in
horizontal and vertical directions of the boundary area
was calculated using the Sobel operator, and the margin
indistinctness (MI) was calculated according to the fol-
lowing formula (5):

MI ¼
Xn
i¼1

Xm
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx i; jð Þ2 þ dy i; jð Þ2

q
ð5Þ

M and n represented the size of the image, and dx and
dy represented the gradient in the horizontal and vertical
directions of the pixel at the tumour boundary,
respectively.

6 Margin lobulation

The coordinates of the margin pixels (xi, yi) were con-
verted to coordinates in polar coordinates (ri, θi) accord-
ing to centroid coordinates (x0, y0). Here, θi was
converted to the polar coordinate sequence (r1, θ1), (r2,
θ2), (r3, θ3), (ri, θi), (rn, θn) according to the clockwise (or
anticlockwise) order. The median filter of frame size 21
was used to reduce the influence of image noise, and the
sequence was fitted with a polynomial of degree 20. The
sum of the maximum and minimum points was obtained
as the value of margin lobulation (ML) listed in the for-
mula (6).

ð6Þ

7 Internal calcification

First, the irrelevant region outside the tumour was set
as zero pixels according to the coarse segmentation re-
sults, and the interior region of the tumour was
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binarized according to the mean grey value and the
maximum value. Then, the binary image was processed
by morphology expansion and corrosion to remove the
interference pixels; finally, the number of connected re-
gions of the white spots in the binary image was the
number of internal calcifications in the image.

8 ALS

ALS θ described the angle between the tumour area
and the horizontal direction. The ellipse fitting algo-
rithm was used to fit the tumour boundary of ROI
image, and the fitted ellipse centre, long axis, short axis,
the positive angles of long axis and X axis were obtained.
The following transformation was performed according
to the formula (7):

θ; 0≤θ≤
π
2

π − θ;
π
2
≤θ≤π

θ − π;π≤θ≤
3π
2

2π − θ;
3π
2

≤θ≤2π

8>>>>>>><
>>>>>>>:

ð7Þ

Texture features included energy, entropy and grey
mean. The number of pixels with a grey level of i and
gradient of j in the gradient image simultaneously was
the value of H(i, j). Here, H(i, j) was normalised to obtain
P(i, j), and P(i, j) was used to calculate these texture fea-
tures. The calculations of energy, entropy and grey mean
were according to the formulas (8, 9 and 10),
respectively:

(1) Energy (E)

E ¼
XLs
i¼1

XLg
j¼1

P i; jð Þ2 ð8Þ

2 Entropy (Ent)

Ent ¼ −
XLs
i¼1

XLg
j¼1

P i; jð Þ� log
XLg
j¼1

P i; jð Þ
 !

ð9Þ

3 Grey mean (GM)

GM ¼
XLs
i¼1

i�
XLg
j¼1

P i; jð Þ ð10Þ

Statistical analysis
The SPSS version 17.0 software package for Windows
(IBM Corporation, Armonk, NY, USA) was used for data
analyses. Descriptive statistics and frequencies were pro-
vided for circularity, height-to-width ratio, margin spic-
ules, margin coarseness, margin indistinctness, margin
lobulation, energy, entropy, grey mean, internal calcifica-
tion and ALS, which were all nomal distribution. Means
± standard deviation were used to describe these fea-
tures. Two independent samples t-test was used to com-
pare two means in the sample. P < 0.05 indicated a
statistically significant difference.

Results
All of the 206 patients were female. All of the lesions
were isolated. A total of 174 cases were benign. The me-
dian patient age was 39 years (range: 26–57 years), and
the median lesion size was 1.6 cm (range: 0.6–4.2 cm).
Thirty two cases were malignant. The median patient
age was 43 years (range: 32–63 years), and the median le-
sion size was 1.3 cm (range: 0.8–2.5 cm). The patho-
logical types of benign lesions and malignant lesions
were presented in Table 1.
Data for the circularity, height-to-width ratio, margin

spicules, margin coarseness, margin indistinctness, mar-
gin lobulation, energy, entropy, mean of grey level, in-
ternal calcification and ALS were presented in Table 2.
Statistically significant differences in margin lobula-

tion, entropy, internal calcification and ALS were noted
between the benign and malignant groups. The malig-
nant group exhibited increased margin lobulation (Fig. 1)
and lower entropy compared with the benign group, and
the benign group had more internal calcifications and
increased ALS compared with the malignant group

Table 1 Pathological types of benign lesions and malignant
lesions

Pathological types n %

Benign lesions Adenosis 67 38.5

Benign phyllodes tumour 6 3.4

Fibroadenoma 68 39.1

Inflammation 8 4.6

Intraductal papilloma 20 11.5

Complex cyst 5 2.9

Malignant lesions Intraductal carcinoma in situ 12 37.5

Intraductal papillary carcinoma 2 6.3

Invasive ductal carcinoma 18 56.2
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(Fig. 2). No significant differences in circularity, height-
to-width ratio, margin spicules, margin coarseness, mar-
gin indistinctness, energy, and grey mean were noted be-
tween the benign and malignant groups.

Discussion
AI exhibits high accuracy in the diagnosis of breast le-
sions [15, 16]. AI significantly improves the diagnostic

accuracy of doctors and improves the consistency among
observers [7]. According to a study of BI-RADS 3 le-
sions, the computer-aided diagnosis system could cor-
rectly upgrade most malignant tumours misdiagnosed as
Category 3 by doctors [12]. For Category 4A, AI also ex-
hibited high diagnostic efficiency, and the classification
accuracy of BI-RADS 4A can be greater than 0.9 [10, 14,
17].
Morphological and texture features are the main fac-

tors for AI diagnosis. According to the literatures, the
use of morphological features and texture features is not
limited to the diagnosis of benign and malignant dis-
eases, and these features also help classify malignant
tumour subtypes [13, 15, 17–19]. Entropy reflects the
complexity and heterogeneous character of lesion tex-
ture. Larger entropy indicates more information con-
tained in an image and greater uniformity of the pixel
matrix of the image [20]. Compared to benign tumours,
the internal components of malignant tumours are more
complex. The different proportions of fibrous compo-
nents, haemorrhage, necrosis, and calcification, result in
a heterogeneous echo of malignant tumour. The increase
in scattering media causes variation in backscattering,
which reduces entropy. Therefore, compared with be-
nign tumours, the entropy of malignant tumours is often
reduced [20, 21]. Category 4A benign and malignant

Table 2 Morphological and texture characteristics of benign
and malignant groups

Benign group Malignant group P

Circularity 23.62 ± 6.85 27.53 ± 13.45 0.240

Height-to-width ratio 0.59 ± 0.27 0.69 ± 0.16 0.343

Margin spicules 14.60 ± 9.40 14.67 ± 11.01 0.960

Margin coarseness (pixel) 2.78 ± 2.52 3.43 ± 3.00 0.420

Margin indistinctness (E6) 2.19 ± 9.03 2.23 ± 7.36 0.610

Margin lobulation 7.68 ± 2.55 9.58 ± 3.40 0.013

Energy 0.03 ± 0.02 0.04 ± 0.03 0.271

Entropy 2.34 ± 0.13 2.23 ± 0.20 0.045

Grey mean 0.52 ± 0.17 0.49 ± 0.28 0.957

Internal calcification 3.78 ± 4.29 2.53 ± 2.05 0.045

ALS (degree) 13.58 ± 18.42 6.32 ± 5.65 0.002

Fig. 1 Intraductal carcinoma in situ classified as BI-RADS 4A. a
Ultrasound revealed a solid hypoechoic mass with lobulation. b
Image contoured manually

Fig. 2 Adenosis classified as BI-RADS 4A. a Ultrasound revealed a
solid irregular hypoechoic mass. b Image contoured manually
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lesions are atypical benign and malignant lesions. Our
study demonstrated that these atypical benign and ma-
lignant lesions were still consistent with previous studies
[20, 21]. These findings suggest that careful observation
of the internal echo of the lesions will help doctors im-
prove the accuracy of naked eye diagnosis of difficult dif-
ferentiations between benign and malignant tumours.
Category 4A benign and malignant lesions exhibited a

significant difference in the number of margin lobula-
tions. The biological behavior of the tumour determines
the ultrasonic characteristics. The growth of cancer cells
is not uniform and results in an irregular tumour
morphology, which is lobulated. On the other hand, the
ultrasonic characteristics of the lesions reflect the essen-
tial characteristics of the tumour, which is the basis for
differentiating between benign and malignant lesions.
Therefore, the characteristics of tumour margin are sig-
nificant in the differentiation of atypical benign and ma-
lignant lesions, which is consistent with the literature
[11].
Calcification can occur in both benign and malignant

breast lesions. Most of the calcifications are benign, but
a small portion is malignant [22]. Some benign tumours
may have mucinous degeneration or hyaline degener-
ation with dystrophic calcification, which is occasionally
difficult to distinguish from breast cancer calcification
[23]. More calcifications were found in benign lesions in
our research, which is consistent with early literatures
[22, 24]. These characteristics increase the pathological
uncertainty of benign lesions and make these lesions
more atypical.
Most of the benign lesions grow in parallel, but atyp-

ical benign and malignant lesions may also exhibit un-
conventional characteristics. In this study, the ALS of
benign lesions was larger than that of malignant lesions.
In a sense, category 4A benign lesions are more like ma-
lignant lesions based on some ultrasound features. Cat-
egory 4A malignant lesions exhibit fewer typical
malignant signs, and some of their ultrasound features
are more similar to those of benign lesions. These differ-
ences reflect the characteristics of category 4A lesions.
The boundaries of some characteristics between category
4A benign and malignant lesions are indistinct or even
inverted and deviate from the signs of typical benign and
malignant lesions [25]. Difficulty in the differential diag-
nosis of the two groups causes the classification of be-
nign lesions to be upgraded, whereas the classification of
malignant lesions is downgraded.
Our study had some limitations. First, the size of our

sample was relatively small. Future studies will include a
larger number of cases. Second, in the aspect of intrale-
sional calcification, we only studied the value of the
number of calcification in the differential diagnosis of
BI-RADS 4A benign and malignant lesions, but the

significance of the size and shape of calcification in the
differential diagnosis was not clear. Finally, this study
was based on manually contoured images for quantita-
tive analyses of ROI, which was different from other
studies that focused on lesions that are automatically
contoured by AI [26]. The present study did not evaluate
the automatic identification efficiency for BI-RADS 4A
lesions of our AI diagnosis system, and these aspects will
be studied in the future.

Conclusions
AI gives us a lot of inspiration. First of all, AI can find
out the difference between benign and malignant lesions
of BI-RADS 4A, which exceeds the recognition ability of
human eyes. Secondly, AI reminds us we should care-
fully observe whether the lesions are more lobulated and
whether the internal echo is more heterogeneous. Espe-
cially, the combination of the two features has higher
diagnostic value. However, it need a large quantity of
cases to determine the threshold of margin lobulation,
entropy and internal calcification to diagnose malignant
lesions of BI-RADS 4A, our cases are far from enough,
especially for the malignant lesions. In the future, we will
collect more lesions of BI-RADS 4A and summarize
their characteristics so as to obtain a more accurate dif-
ferential diagnosis threshold.
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