Table 4 . Performance metrics of SVM classifier trained individually with each deep feature extracted from the pre-trained CNNs.
| Accuracy (std) | AUC (std) | Sensitivity (std) | Specificity (std) | Precision (std) | F1 score (std) | Time (s) (std) | |
|---|---|---|---|---|---|---|---|
| AlexNet | 90.9% (0.002) | 0.95 (0) | 0.922 (0.005) | 0.896 (0.003) | 0.891 (0.005) | 0.907 (0.003) | 20.991 (3.066) |
| GoogleNet | 89.2% (0.004) | 0.95 (0) | 0.914 (0.029) | 0.86 (0.009) | 0.849 (0.006) | 0.881 (0.016) | 3.867 (0.274) |
| ResNet-18 | 92.5% (0.005) | 0.97 (0) | 0.933 (0.005) | 0.918 (0.07) | 0.916 (0.007) | 0.925 (0.006) | 1.947 (0.25) |
| ShuffleNet | 91.1% (0.002) | 0.98 (0.001) | 0.919 (0.003) | 0.904 (0.004) | 0.902 (0.005) | 0.911 (0.003) | 2.54 (0.168) |
Note:
Bold values indicate the highest results.