Skip to main content
. 2020 Sep 30;8:e10086. doi: 10.7717/peerj.10086

Table 4 . Performance metrics of SVM classifier trained individually with each deep feature extracted from the pre-trained CNNs.

Accuracy (std) AUC (std) Sensitivity (std) Specificity (std) Precision (std) F1 score (std) Time (s) (std)
AlexNet 90.9% (0.002) 0.95 (0) 0.922 (0.005) 0.896 (0.003) 0.891 (0.005) 0.907 (0.003) 20.991 (3.066)
GoogleNet 89.2% (0.004) 0.95 (0) 0.914 (0.029) 0.86 (0.009) 0.849 (0.006) 0.881 (0.016) 3.867 (0.274)
ResNet-18 92.5% (0.005) 0.97 (0) 0.933 (0.005) 0.918 (0.07) 0.916 (0.007) 0.925 (0.006) 1.947 (0.25)
ShuffleNet 91.1% (0.002) 0.98 (0.001) 0.919 (0.003) 0.904 (0.004) 0.902 (0.005) 0.911 (0.003) 2.54 (0.168)

Note:

Bold values indicate the highest results.