Table 5 . Performance metrics of the SVM classifiers constructed with the four feature sets formed from different combinations of the selected number of principal components.
Accuracy (std) | AUC (std) | Sensitivity (std) | Specificity (std) | Precision (std) | F1 score (std) | Time (s) (std) | |
---|---|---|---|---|---|---|---|
Feature set (1) (250 features) | 93.4% (0.002) | 0.98 (0.001) | 0.945 (0.006) | 0.922 (0.003) | 0.919 (0.004) | 0.933 (0.003) | 2.071 (0.269) |
Feature set (2) (300 features) | 94% (0.002) | 0.98 (0.001) | 0.949 (0.001) | 0.932 (0.001) | 0.93 (0.001) | 0.94 (0.001) | 2.105 (0.001) |
Feature set (3) (350 features) | 92.6% (0.003) | 0.972 (0.005) | 0.935 (0.006) | 0.916 (0.005) | 0.913 (0.005) | 0.924 (0.004) | 2.002 (0.194) |
Feature set (4) (300 features) | 93% (0.003) | 0.98 (0.001) | 0.935 (0.005) | 0.926 (0.005) | 0.925 (0.006) | 0.93 (0.001) | 2.088 (0.293) |
Note:
Bold values indicate the highest results.