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Abstract
The immune system of plants is highly complex. It involves pattern-triggered immunity (PTI), which is signaled and mani-
fested through branched multi-step pathways. To counteract this, pathogen effectors target and inhibit individual PTI steps. 
This in turn can cause specific plant cytosolic nucleotide-binding leucine-rich repeat (NLR) receptors to activate effector-
triggered immunity (ETI). Plants and pathogens have many genes encoding NLRs and effectors, respectively. Yet, only a few 
segregate genetically as resistance (R) genes and avirulence (Avr) effector genes in wild-type populations. In an attempt to 
explain this contradiction, a model is proposed where far most of the NLRs, the effectors and the effector targets keep one 
another in a silent state. In this so-called “iceberg model”, a few NLR-effector combinations are genetically visible above the 
surface, while the vast majority is hidden below. Besides, addressing the existence of many NLRs and effectors, the model 
also helps to explain why individual downregulation of many effectors causes reduced virulence and why many lesion-mimic 
mutants are found. Finally, the iceberg model accommodates genuine plant susceptibility factors as potential effector targets.

Keywords  Plant immunity · Pathogen effectors · Nucleotide-binding leucine-rich repeat receptors · Lesion mimic mutants · 
Susceptibility

Abbreviations
AAA-ATPase	� ATPases Associated with diverse cellular 

Activities-ATPase
ABC	� ATP-binding cassette
ACC​	� 1-AminoCyclopropane-1-Carboxylic acid
ACD11	� Accelerated Cell Death11
ADR1	� Activated Disease Resistance
ALD1	� AGD2-Like Defense response protein1
AMSH3	� Associated Molecule with the SH3 

domain of STAM 3
Apaf1	� Apoptotic protease activating factor1
Avr	� Avirulence
BAK1	� Brassinosteroid insensitive1-Associated 

receptor Kinase1
CBP60g	� Calmodulin-Binding Protein 60G
CC	� Coiled Coil
CED4	� CEll Death abnormality4
CERK1	� Chitin Elicitor Receptor Kinase1
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CPR1	� Constitutive expresser of Pathogenesis-

Related genes1
CRCK3	� Calmodulin-binding Receptor-like cyto-

plasmic Kinase3
CTR1	� Constitutive Triple Response1
EDS1/5	� Enhanced Disease Susceptibility1/5
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EF-Tu	� Elongation factor-Tu
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EIN2	� Ethylene INsensitive2
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ESCRT​	� Endosomal Sorting Complexes Required 

for Transport
Et	� Ethylene
ETI	� Effector-Triggered Immunity
ETR1	� EThylene Response1
ETS	� Effector-Triggered Susceptibility
EXO70B1	� EXOcyst complex component70B1
FLS2	� Flagellin Sensing2
FMO1	� Flavin-dependent MonoOxygenase1
HopAI1/Z2	� Hrp-dependent Outer ProteinAI1/Z2
HR	� Hypersensitive Response
HSP90	� Heat Shock Protein 90 kDa
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JA-Ile	� Jasmonic Acid-Isoleucine
JAR	� Jasmonic Acid Resistant
JAZ	� Jasmonate Zim domain protein
LAZ5	� LAZarus5
LMM	� Lesion-Mimic Mutant
LRR	� Leucine-Rich Repeat
LSD1	� Lesions Simulating Disease1
LYK5	� LYsin motif receptor Kinase5
MAP	� Mitogen-Activated Protein
MATE	� Multidrug And Toxin compound Extru-

sion transpoter
MEKK1	� Mitogen-activated protein kinase Kinase 

Kinase1
MKK1/2	� Mitogen-activated protein Kinase 

Kinase1/2
MLO/2	� Mildew resistance Locus O/2
MPK4	� Mitogen-activated Protein Kinase4
MUSE3	� MUtant, snc1-Enhancing3
MVB	� MultiVesicular Body
NAD	� Nicotinamid Adenine Dinucleotide
NADPH	� Nicotinamid Adenine Dinucleotide 

Phosphate
NB-ARC​	� Nucleotide-Binding, Apaf1, Resistance, 

CED4
NHP	� N-Hydroxypipecolic Acid
NLR	� Nucleotide-binding Leucine-rich Repeat
NPR1/3/4	� Nonexpressor of Pathogenesis Related 

genes1
NRG1	� N Requirement Gene1
PAD4	� PhytoAlexin Deficient4
PEN1/3	� PENetration1/3
PBL2	� PBs1-Like protein2
PMR4	� Powdery Mildew Resistance4
PRR	� Pattern Recognition Receptor
PTI	� Pattern-Triggered Immunity
R	� Resistance
RACB	� RAt sarcoma-related C botulinum toxin 

substrateB
RAR1	� Required for MlA Resistance
RIN4	� RPM1 interacting protein 4
RKS1	� Receptor-like Protein Kinase1
RNL	� Rpw8-NLR
ROPIP1	� ROP Interactive Peptide 1
ROP	� RhO in Plants
ROS	� Reactive Oxygen Species
RPM1	� Resistance to Pseudomonas syringae pv. 

Maculicola1
RPS2	� Resistance to Pseudomonas Syringae2
RPW8	� Resistance to Powdery Mildew 8
S	� Susceptibility
SA	� Salicylic Acid
SARD1	� SAR Deficient1

SAG101	� Senescence-Associated Carboxylesterase 
101

SCFCOI1	� Skp1/Cullin/F-boxCOronatin Insensitive1

SCFCPR1	� Skp1/Cullin/F-box-
Constitutive expresser of Pathogenesis−Related genes1

SGT1b	� Component of Skp1-Cullin–F-box ubiqui-
tin ligase

SID2	� Salicylic acid Induction Deficient2
SKD1	� Suppressor of K+ transport growth 

Defect1
SNC1	� Suppressor of npr1-1, Constitutive1
SUMM2	� SUppressor of mkk1 mkk2, 2-1
SVRPM3A1/F1	� Suppressor of AvrPM3A1/F1

SWEET	� Sucrose transporter
SYP121/122	� SYntaxin in Plant121/122
TAL	� Transcription Activator-Like
TGA​	� TGACG-sequence-specific DNA-binding 

protein
TIR	� Toll-like, Interleukin-1 Receptor
TNL	� TIR-NLR
ZAR1	� HopZ-Activated Resistance1

Introduction

Crop plants suffer greatly from attack by pathogens, despite 
the use of a number of control measures. A recent interview-
based survey estimated that the global wheat production is 
reduced by 18% due to fungal pathogens, even though fungi-
cides are commonly applied [1], underlining the significance 
of plant diseases. NLR-type R-genes are broadly used to 
combat diseases, but they are generally overcome by patho-
gens within a few years after deployment, while there are 
only few examples of durable R-genes [2]. Meanwhile, a tre-
mendous amount of highly complex data has been generated 
over the last decades in this field of molecular plant–patho-
gen interaction, and it would be beneficial to have a simpli-
fied model to accommodate this complexity to help exploit-
ing our insight for designing improved disease resistance.

Genomic studies have added to the complexity by show-
ing that plants have hundreds of genes for intracellular NLR 
immunity receptors, where for instance hexaploid wheat has 
1400 such genes [3, 4]. Although the populations of these 
genes are very dynamic, the high numbers are maintained 
in the plant genomes, which indicates that they are active 
and required. Similarly, searches of genome sequences of 
filamentous plant pathogens for genes encoding unique and 
soluble proteins destined for secretion by help of signal pep-
tides have suggested that these pathogens often express sev-
eral hundred effector proteins [5–8]. Studies of barley pow-
dery mildew effectors have suggested that approximately 20 
out of 80 tested contribute significantly to virulence. One-
by-one silencing of these 20, in each case reduces virulence 
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by at least 25% [9–13]. What do all these effectors do, and 
why are the encoding genes maintained in the genomes? If 
keeping in mind that the genome of this fungus encodes up 
to 800 effectors [14], it becomes puzzling why these effec-
tors are not redundant [15]. Plant immunity functions in 
distinct pathways, and targeting of these by more effectors 
should be influenced by redundancy that prevents one-by-
one silencing of these effectors to show major contribution 
to virulence. In addition, evidence suggests that parallel 
hormone signaling pathways buffer each other, making the 
immune system less sensitive to suppression by effectors 
[16] (see also below). However, immunity can be broken 
down in consecutive steps, each of which may be able to 
arrest the pathogen. This can indeed make the role of effec-
tors, dedicated to target such steps, more visible.

Yet, it appears that a better model is required for explain-
ing the existence of the high numbers of effectors. An 
attempt to do this, while also addressing the high numbers of 
NLRs, requires that aspects of plant immunity are reviewed. 
Many NLRs monitor effector targets, and the fact that this 
does not activate efficient immunity when a virulent patho-
gen attacks is discussed, as this calls for a set of effectors 
that suppress this monitoring. Other aspects that contribute 
to the model is the phenomenon of lesion-mimic mutants, 
and the striking absence on knowledge on genuine suscep-
tibility factors, which as well may interact with effectors 
and NLRs. These perspectives are attempted unified in the 
iceberg model.

The zig‑zag model

Molecular interactions between plants and pathogens func-
tion as networks of multiple elements, many of which 
function according to the so-called zig-zag model [17]. 
Following this model, conserved pathogen molecular pat-
terns are detected by plant plasma membrane-localized 
pattern-recognizing receptors (PRRs), which activates pat-
tern-triggered immunity (PTI). Well-known PRRs are the 
Arabidopsis FLS2 and EFR receptors that are activated upon 
binding of bacterial flagellin and elongation factor EF-Tu, 
respectively. Both these receptors hetero-dimerize with the 
co-receptor, BAK1. During the attack by fungal pathogens, 
chitin oligomers released from the fungal cell wall activate 
the CERK1–LYK5 receptor kinase complex. Signaling 
downstream of PRRs involves Ca2+ influx, a MAP-kinase 
cascade and activation of extracellular ROS production by 
an NADPH oxidase [18]. Meanwhile, pathogens translocate 
effector proteins and molecules to the plant. Effectors of 
pathogens, that are adapted to the attacked plant, efficiently 
interferes with PTI in what will be referred to as 1st level 
effector triggered susceptibility (1st ETS). Effectors can be 
extracellular and prevent pattern recognition by PRRs [19, 

20], or they can be translocated into the plant cell to target 
and manipulate immunity proteins, such as the PRRs them-
selves or immunity signaling components [21]. Now plants 
have evolved a second class of receptors to monitor whether 
the pathogen introduces intracellular effectors into the plant 
cell. These are the intracellular NLR receptors that are acti-
vated either by direct binding of effectors or when effectors 
manipulate immunity proteins, which the NLRs monitor 
[22]. This 2nd level immunity is referred to as effector-trig-
gered immunity (ETI). To overcome ETI, the pathogen can 
either eliminate or change the recognized effector, or evolve 
another effector that suppress this specific monitoring. This 
latter case will be referred to as 2nd level effector triggered 
susceptibility (2nd ETS). PTI and ETI involve dramatic tran-
scriptional reprogramming in the plant, including upregu-
lation of defence genes encoding antimicrobial proteins 
and enzymes for biosynthesis of anti-microbial secondary 
metabolites, as well as genes encoding proteins associated 
with signaling hormones (see below). Importantly, ETI gen-
erally includes a programmed cell death response, named the 
hypersensitive reaction (HR) [17, 23].

The zig-zag model has proven very useful for describing 
the monitoring of PTI effector targets by single NLR-type 
resistance (R) proteins (see below). However, it does not 
take into account how the remaining NLRs are prevented 
from triggering immunity despite they also monitor proteins 
that are being impacted by effectors during attack from an 
adapted pathogen. Along the same lines, it fails to address 
why large numbers of genes for effectors and NLRs are 
maintained in the genomes, as described above. Using the 
zig-zag model as basis, the iceberg model addresses these 
questions.

NLR function

When single plant genes can be genetically defined to pro-
vide protection towards one or more genotypes of a patho-
gen, they are referred to as resistance (R)-genes. R-genes 
most commonly encode NLRs, and based on the zig-zag 
model, resistance occurs when the NLR-protein detects an 
effector, either directly or indirectly, and subsequently trig-
gers efficient ETI. It can be speculated whether all NLR-
genes in a plant species can be genetically revealed as 
R-genes. This is a difficult question, but they should all con-
tribute to resistance to at least one potential invader for them 
to be maintained in a plant population. This may for instance 
also be towards nonadapted pathogens (see also below).

A typical NLR has a nucleotide-binding, Apaf1, resist-
ance, CED4 (NB-ARC) central domain, and a leucine-rich 
repeat (LRR) C-terminal domain. Three major classes of 
NLRs exist based on their N-terminal domains. These are 
toll-like, Interleukin-1 receptor domain TIR-NLRs (TNLs), 
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coiled-coil domain CC-NLRs (CNLs), and Resistance to 
Powdery Mildew 8 (RPW8) CC-type-NLRs (RNLs) [24, 
25]. Such typical NLRs are believed to function as molecular 
switches. In the “off” state, the LRR domain may function 
as a negative regulator. However, when it binds an effector, 
or for instance senses a modification of an effector target, 
a conformational change opens the P-loop of the NB-ARC 
domain to make an ADP → ATP exchange. This is believed 
to bring the NLR into its “on” state, where it triggers immu-
nity. Intrinsic ATPase activity of the protein may subse-
quently hydrolyze the ATP and inactivate the NLR [24, 26]. 
Some NLRs are translationally fused to additional domains, 
which are suggested to take over the effector-binding func-
tion [3]. Specific amino acid substitutions of the P-loop pre-
vent the ADP–ATP exchange and leave NLRs inactive and 
dominant negative, while a D → V substitution in the MHD 
motif of the NB-ARC domain makes NLRs constitutively 
active [27–32].

A recent structural analysis of the Arabidopsis CNL, 
ZAR1, has potentially provided a significant advancement 
of the understanding of how NLRs activate immunity. Wang 
et al. [33] previously demonstrated that inactive ZAR1 inter-
acts with the pseudokinase RKS1 at the LRR domain. When 
attacked by Xanthomonas campestris, the effector protein 
AvrAC uridylylates the Arabidopsis PBL2 kinase, which 
subsequently interacts with RKS1, whereby ZAR1 is acti-
vated. Wang et al. [34, 35] recently uncovered that the ZAR1 
releases ADP when it associates with RKS1-PBL2UMP on 
its LRR domain, and they subsequently used cryo-electron 
microscopy to unravel that dATP or ATP-uptake is required 
for formation of a pentameric wheel-like supercomplex of 
the ZAR1–RKS1–PBL2UMP complex. The core of this so-
called resistosome is made up of the ZAR1 CC domain, 
in which the N-terminal ⍺-helix (⍺1) from each ZAR1 
molecule protrudes from the wheel-like structure. ⍺1 is 
required for the ability of the resistosome to induce a cell 
death response and for its association with the plasma mem-
brane, where the five ⍺1 helices make a tube-like structure 
believed to form a pore in the membrane, which by unknown 
mechanisms mediates the cell death response.

ZAR1 is an example of an NLR that appears to mediate 
immunity without assistance from other NLRs. However, 
during recent years, it has become apparent that NLRs often 
function in pairs or networks, where some serve as sensor, 
and others as helper NLRs. Adachi et al. [36] elegantly 
reviewed the current insight on this, and list many exam-
ples of sensor NLR and how they pair with a shorter list of 
helper NLRs. No downstream components have been identi-
fied for activation of cell death by sensor CNLs, other than 
helper CNLs and RNLs. This is consistent with the observa-
tion that the CNL resistosome complex itself activate cell 
death. TNLs on the other hand, mediate resistance through 
the related lipase-like proteins, EDS1, PAD4, and SAG101, 

where EDS1 complexes with either PAD4 or SAG101 [37, 
38]. When Arabidopsis TNL sensors signal through EDS1/
PAD4, they use ADR1 (RNL) family members as helpers 
and primarily mediate transcriptional reprograming, whereas 
when TNL sensors signal through EDS1/SAG101, they use 
NRG1 (RNL) family members as helpers, and primarily 
mediate HR [37–40].

How the signal is transferred from the sensor to the helper 
NLR is not fully understood. It is speculated that sensor 
and helper CNLs may enter the same resistosome complex, 
which alone may activate cell death [36]. In case of TNLs, 
data indicate that they interact physically with EDS1 lipase-
like complexes [41, 42], which in turn appear to interact 
with at least the NRG1 helper to active HR [38]. However, 
recently, it has been demonstrated that HR activation by 
TNLs is dependent of NAD+ cleavage and depletion from 
the cell by NADase activity of the TIR domain, upstream 
of EDS1 [43, 44].

An example of further branching of NLR networks has 
been suggested by the finding of an involvement of mem-
brane trafficking components in CNL-mediated immu-
nity. Here the multivesicular body-associated ESCRT-III 
components, the AMSH3 de-ubiquitinase and the SKD1 
AAA–ATPase, were found to be required for resistance and 
HR mediated by the Arabidopsis CNLs, RPM1 and RPS2, 
possibly by stabilizing these receptors [45]. AMSH3 was as 
well required for the lesion-mimic phenotype of lsd1, which 
otherwise is dependent on the helper ADR1 RNLs (see 
below). Interestingly, the work of Schultz-Larsen et al. [45] 
suggested that AMSH3 itself is TNL-monitored as knockout 
of it causes a strong EDS1-dependent lesion-mimic pheno-
type (see below for lesion-mimic mutants, LMMs).

Hormones amplify immunity

Both PTI, activated by plasma membrane PRRs, and ETI, 
activated by NLR-type receptors, are amplified by a hor-
mone signaling network, and involve transcriptional repro-
gramming activated by MAP kinases in PTI [46, 47] and the 
EDS1/PAD4 dimer entering the nucleus in TNL-mediated 
ETI [36]. The activation of transcriptional reprogramming 
in CNL-mediated ETI is less clear, but can be speculated to 
be caused by immune signals spreading from cells that have 
undergone HR. The hormone network involves an interplay 
of salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and 
N-hydroxypipecolic acid (NHP) [16, 48]. Many enzymes 
and other proteins, which are regulated during PTI and ETI, 
have been identified as being important for immunity due 
to their association with these hormones. In Arabidopsis, 
immunity-related SA is synthesized in chloroplasts by the 
shikimate-pathway, in which the isochorismate synthase, 
SID2, is a well-known enzyme. The MATE transporter, 
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EDS5, is another essential component for the production 
of immunity-related SA. NHP is synthesized from lysine, 
which is converted to pipecolic acid by the help of the 
aminotransferase, ALD1. The flavin-dependent monooxy-
genase, FMO1, subsequently hydroxylates pipecolic acid 
into NHP, which is the active signaling hormone. NHP 
acts synergistically with SA in stimulating immunity [48]. 
JA is synthesized in the chloroplast and peroxisome from 
unsaturated fatty acids primarily via 12-oxo-phytodienoic 
acid. JA is conjugated to isoleucine by JAR1 to make the 
signaling-active JA-Ile that after translocation to the nucleus 
stimulates SCFCOI1-mediated ubiquitination of the transcrip-
tion repressor, JAZ. Subsequent degradation of JAZ leads 
to transcription of JA-response genes [49]. Et is synthe-
sized from S-adenosyl-methionine in a two-step reaction by 
ACC-synthase and ACC-oxidase [50]. It is perceived via the 
Cu2+-ions in ETR1 and related proteins, which subsequently 
release CTR1. This indirectly causes cleavage and transfer of 
the EIN2 C-terminal to the nucleus, where it interacts with 
transcription factors to induce Et-response genes [51]. While 
these hormones integrate in a complex signaling network 
[52], the sectors controlled by SA, JA, and Et, respectively, 
are suggested to buffer for one another, making the output 
immune response less sensitive to blocking of a single sec-
tor [16]. Nevertheless, mutants knocked out in individual 
proteins required for hormone signaling, many of which are 
mentioned here, have enhanced disease susceptibility [53, 
54].

The mechanism by which SA causes immunity-associ-
ated transcriptional reprogramming has received significant 
attention, and the current model is that NPR1 and its paral-
ogues, the redundant NPR3 and NPR4, are master regulators 
of this [55–58]. These NPRs all have affinity for SA [55, 59], 
and SA-binding induces cytosolic NPR1 to translocate to the 
nucleus, where it interacts with TGA transcription factors to 
induce defense gene expression. NPR1 re-localization to the 
nucleus involves its nuclear localization signal and that S–S 
linked oligomers of this protein are reduced to monomers. 
In the nucleus, differential phosphorylation and sumoylation 
regulates NPR1’s interaction with the TGA transcription 
factors [56]. On the other hand, NPR3 and NPR4 interact 
with TGAs to repress defense gene expression. However, 
at high SA-level, NPR3 and NPR4-binding of this hormone 
de-represses gene expression [57].

Interestingly, SA-signaling appears to be self-perpetuat-
ing. Treatment of Arabidopsis with SA causes ~ 1500 genes 
to be upregulated already within the first hour after spraying. 
By far most of those are regulated by NPR1 and NPR3/4 
[57]. Pathogen induction of SA is mediated by induction 
of the SID2 transcript. Important transcription factors in 
this process are SARD1 and CBP60g, also required for full 
activation of many other immunity regulatory genes, includ-
ing EDS5 and NPR1 [60]. Now, the SARD1 and to a lesser 

extent also the CBP60g transcripts themselves are upregu-
lated by SA in an NPR1- and NPR3/4-dependent manner 
[57], which indicates that SA signaling is self-perpetuat-
ing, since SARD1 the overexpression activates immunity 
[61]. This self-amplification loop also involves NHP, as 
the biosynthesis genes ALD1 and FMO1 are dependent on 
SARD1/CBP60g and NPR1/3/4 regulation as well, thereby 
linking SA and NHP signaling [48, 57, 60, 62, 63]. Among 
the immunity-related genes upregulated in the loop many 
encode PRRs and NLRs [57], and in particular overexpres-
sion of NLRs can on its own stimulated defense responses, 
which explains how the self-perpetuating loop amplifies 
immunity.

Mechanisms to reduce NLR activation

Plants strike a fine balance between keeping the immune 
system alert and avoiding damaging effects from its unneces-
sary activation causing autoimmunity [64–66]. Even nonat-
tacked wild-type plants of Arabidopsis may be affected sig-
nificantly by background activation of the immune system. 
Tian et al. [67] could show that presence of the CNL, RPM1, 
had a yield penalty of 9% on seed production in Arabidopsis, 
which illustrates that it is essential to suppress the NLRs 
when they are not required for immunity. To this end, NLRs 
are regulated at several levels: (1) miRNAs and in turn pha-
siRNAs mediate broad transcriptional and post-transcrip-
tional silencing of NLR genes [66, 68]. (2) NLR transcript 
maturation is regulated at the level of intron splicing [64]. 
(3) Low level of NLR proteins is furthermore obtained by 
a constitutively active degradation pathway. This is exem-
plified for the TNL, SNC1, and the CNL, RPS2, where the 
protein levels in both cases are regulated by the SCFCPR1 E3 
ubiquitin ligase complex [69, 70] and the MUSE3 polyubiq-
uitin ligase [71]. The loss of SCFCPR1 leads to the accumula-
tion of SNC1 and RPS2, and consequently growth retarding 
autoimmunity. (4) Finally, the activity of NLRs is regulated 
at the level of (d)ADP-to-(d)ATP exchange and resistosome 
assembly [26, 34, 35], the latter likely involving the chaper-
ones, SGT1b, RAR1, and HSP90 [72].

Many lesion‑mimic mutants are NLR 
dependent

For these reasons, it is conceivable that immunity is eas-
ily activated by genetic changes, and indeed many autoim-
mune lesion-mimic mutants (LMMs) have been described. 
Besides, cpr1 that has lost the SCFCPR1 E3 ubiquitin ligase 
for SNC1 and RPS2, an amino acid change in SNC1 itself, 
encoded by snc1, interferes with its ubiquitination leading 
to SNC1 accumulation and lesion-mimic [69]. Furthermore, 
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D → V substitutions in the NB-ARC MHD motif, which 
makes the NLR constitutively active, also result in lesion-
mimic plants. This has been documented for the CNL, 
RPM1 [30] and the RNL, ADR1-L2 [31].

It is noteworthy that there are LMMs that are caused by 
NLRs being indirectly activated by modifications or elimina-
tions of the monitored cellular component, which is either 
an effector target or a component anticipated to be related 
to effector function. A well-known example is the Arabi-
dopsis rin4 mutant. RIN4 is an important immunity com-
ponent and a major target of bacterial effectors. Knockout 
of RIN4 causes lethality, which is rescued by knockout of 
the RIN4-monitoring CNL, RPS2, agreeing with the activa-
tion of RPS2 by the effector, AvrRpt2, that cleaves RIN4 
[73–76]. Other example of LMMs, which are documented 
to involve an NLR monitoring of an effector-targeted path-
way, is the set of mutants, mekk1, mkk1 mkk2, and mpk4. 
Here all lesion-mimic phenotypes depend on the CNL, 
SUMM2 [76]. MEKK1, MKK1/2, and MPK4 constitute a 
MAP kinase cascade that is essential for PTI [77], in which 
MPK4 is targeted by the P. syringae effector, HopAI1. By 
sensing the phosphorylation status of the downstream sub-
strate, CRCK3, SUMM2 appears to elegantly monitor the 
whole pathway [78].

On the one hand, a number of LMM have been described 
where elimination of monitored proteins also activate known 
NLRs, but effectors have not yet been implicated. Exam-
ples are lsd1 that has an autoimmunity involving the ADR1 
RNLs [31, 79], acd11 dependent on the TNL, LAZ5 [29], 
and exo70B1 dependent on TN2, which is a TNL without 
the LRR domain [80]. Precise primary function of LSD1, 
ACD11, and EXO70B1 in immunity have not been allocated.

On the other hand, a number of proteins that have well-
documented positive functions in Arabidopsis immunity, 
appears also to be negative regulators of immunity. PEN 
genes are such examples. PEN1 encodes the syntaxin 
SYP121, important for preinvasive immunity [81, 82], and 
pen1 mutants have a weak autoimmune response [83]. How-
ever, when the closely related gene, SYP122, is knocked out 
as well, then strong LMM plants appear [45, 83, 84]. PEN3 
encodes an ABC-transporter, also essential for preinva-
sive immunity [85], and PMR4 encodes a callose synthase 
that synthesizes the callose deposited at the site of attack 
[86–89]. Both PMR4 and PEN3 are negative regulators of 
immunity, apparent by the lesion mimic phenotypes of pmr4 
and pen3. Lastly, AMSH3, required for RPM1 and RPS2-
mediated immunity (see above) also appears to be a nega-
tive regulator of an NLR, revealed by the fact that amsh3 
knockout plants are LMMs [45, 89]. These lesions, as well 
as those of pen1 syp122, are believed to be caused by TNLs 
as they in all cases can at least partially be rescued by eds1 
and/or pad4 mutations [45, 84, 85, 87]. However, none of 
these monitoring NLRs have been described.

Remarkably, the potential powdery mildew susceptibility 
component, MLO (see below), may also be NLR-monitored. 
mlo knockout mutants in different species result in lesions 
in certain genetic backgrounds, and the lesions, but not the 
powdery mildew resistance of Arabidopsis mlo2 are PAD4-
dependent [90]. This suggests TNL-monitoring.

In summary, many examples of LMMs suggest that 
genetic modifications of effector targets trigger monitoring 
NLRs. This triggering may be a direct result from the change 
or elimination of the target protein as seen for rin4, or it may 
result from the changed activity of the protein as seen for 
the MAP kinase cascade mutants, where SUMM2 monitors 
the phosphorylation level of the downstream CRCK3 [78]. 
The loss of activity is apparently also monitored in the case 
of the pen1 syp122 mutant, where high expression of an 
inactive version of PEN1 does not rescue the lesion-mimic 
phenotype [83].

The lesion-mimic phenotype of pen1 syp122 provides an 
example of a link between immunity and membrane traffick-
ing. Meanwhile, mutation of membrane trafficking-related 
genes is often detrimental to the plant, which is generally 
taken as evidence that the encoded protein is vital for devel-
opment [91]. However, it occurs that these phenotypes are 
lesion-mimic-like, and indeed the work of Schultz-Larsen 
et al. [45], showing that the lethality of the knockout of 
the MVB-associated AMSH3 de-ubiquitinase is partially 
rescued by eds1, provides an example that such assumed 
development mutants in fact can turn out to be autoimmun-
ity mutants.

Susceptibility components

Plant susceptibility (S) components are interesting for plant 
breeding, as they generally cause resistance when knocked 
out. They come in two flavors: genuine S components that 
directly serve to promote disease, independently of immu-
nity, and those that indirectly promote disease as they are 
negative regulators of immunity. The above described muta-
tions in immunity genes, which results in lesion-mimic 
phenotypes, are of the latter type as loss of them leads to 
reduced susceptibility. In recent reviews, both types of S 
components have been described [92–95].

Mutant screens for loss of susceptibility to powdery mil-
dew have been performed successfully [96, 97]. However, it 
is unclear whether any of the mutated genes encode genuine 
S components, as the plants generally are LMM-like, indi-
cating negative regulation of immunity. Yet, examples of 
genuine susceptibility components include the rice SWEET 
sucrose transporters that are transcriptionally activated by 
TAL effectors from Xanthomonas oryzae. SWEETs directly 
contribute to the thriving of a pathogen by increasing the 
extracellular level of sucrose [98, 99]. The amino acid 
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metabolic enzymes, aspartate kinase 2, and dihydrodipico-
linate synthase 2 [100], as well as homoserine kinase [101], 
are also directly required for plant susceptibility to Hyalop-
eronospora arabidopsidis.

Other aspects of susceptibility concern the accommo-
dation of the pathogen in the host tissue, for instance how 
niches are established for haustoria inside plant cells. Haus-
toria are surrounded by plant-derived extrahaustorial mem-
branes (EHM), and it has recently been uncovered that the 
barley powdery mildew EHM has ER-like properties [102] 
and data suggest that it has a translocon that allows the pas-
sage of proteins [103]. This is different from plants attacked 
by the oomycetes, H. arabidopsidis and Phytophthora 
infestans. Here the EHM share features with the plasma 
membrane and the tonoplast [104, 105]. Yet, no detailed 
insight is available on how EHMs are generated, nor have 
any S components been involved in these processes.

Having said this, the ROP GTPase RACB is positively 
required for the powdery mildew fungus to develop hausto-
ria in barley epidermal cells. RACB is involved in microtu-
bule organization and detailed studies of RACB regulation 
has documented that this GTPase organizes the cell polarity 
to allow establishment of the haustorial complex [106, 107]. 
Furthermore, it is speculated whether the broadly occurring 
MLO protein is a genuine S component for powdery mil-
dew fungi, potentially involved in establishing the haustorial 
complex. The absence of MLO confers strong and durable 
resistance, observed as preinvasive immunity, to powdery 
mildew. This resistance has been used in barley for decades 
and has more recently emerged in many other plant spe-
cies. Homozygous mlo mutants often suffer from pleiotropic 
effects including spontaneous immune responses and early 
senescence. Here mlo alleles conferring stronger resistance 
generally also confer stronger pleiotropic effects [108]. This 
has complicated the deciphering of whether the resistance 
is due to expression of autoimmunity or whether MLO is a 
genuine S component. However, the fact that lesions, and not 
the preinvasive immunity, in Arabidopsis mlo2 are depend-
ent on PAD4 and intact SA signaling [90] strongly advocate 
for MLO being a genuine S component required for pow-
dery mildew invasion, and that mlo2 at the same time is an 
LMM due to monitoring by a TNL. The first barley culti-
vars with this type of powdery mildew resistance suffered 
severely from lesion, but breeding efforts have overcome this 
problem without losing the effective powdery mildew resist-
ance, despite the same mlo alleles being used [109]. It is 
hypothesized that this breeding effort has selected favorable 
NLR alleles encoding receptors responding less to the loss 
of MLO. This may well have been possible due to the high 
variation in the plant NLR populations.

These thoughts raise the idea that not only immunity com-
ponents, but also plant genuine S components are monitored 
by NLRs. This idea is also stimulated by the rationale that 

effectors should target S components. In fact, Arabidopsis 
MLO2 is indeed targeted by the bacterial effector HopZ2 
[110]. The primary function of the seven-transmembrane-
helix plasma membrane MLO protein is not known, and if 
the NLR-monitoring hypothesis is correct then MLO appears 
not to play vital roles for the plant. Barley RACB and the 
associated proteins that regulate the plant cell cytoskeleton 
to accommodate the powdery mildew haustorium are other 
examples of S components [106, 107]. Indeed, RACB is tar-
geted by the fungal effector ROPIP1, which destabilizes the 
host cell microtubules, possibly to facilitate fungal entry and 
haustorium formation [111]. It is expected that much more 
plant developmental proteins will be revealed as S compo-
nents, which pathogens manipulate by help of effectors to gain 
nutrients or to establish a niche in the host cell. Such S com-
ponents are well-known in animals and humans, where for 
instance membrane trafficking-related proteins are targeted by 
effectors and exploited by intracellular bacteria for establishing 
“vacuoles” for them to dwell in and thereby escape the host 
immune system [112, 113].

Pathogen effectors

As referred to above, pathogens transmit effectors to the host 
to manipulate host processes important for the interaction 
between the organisms. Many excellent reviews describe 
effectors, the corresponding NLRs, and the primary targets 
(e.g., [114-117]). Yet, efforts to describe why in particular 
filamentous pathogens express hundreds of effectors have 
been sparse. To study this, it would be required not only to 
analyze those effectors that are recognized by R-proteins, 
but to take an unprejudiced approach for studying the effec-
tors encoded by the pathogen genomes. Such an approach 
has been followed intensely in two articles. Mukhtar et al. 
[118] and Weßling et al. [119] did systematic yeast 2-hybrid 
searches for Arabidopsis targets of effectors from a bacterial 
pathogen and from downy and powdery mildew filamen-
tous pathogens, all adapted to this host. Here, hundreds of 
effectors from these pathogens were used as preys to find 
long lists of targets, and interestingly many of them were 
targeted several times and by the evolutionarily very diverse 
pathogens. Furthermore, only very few effector targets were 
NLRs, while more than 150 were proteins not previously 
associated with pathogen interactions. Meanwhile, many of 
those in turn interacted with NLRs, supporting the notion 
that effectors often are indirectly monitored. Interestingly, 
more than a hundred effector targets were tested for their role 
in the interactions with the three pathogens using knockout 
mutant plants. About 20% of these mutants had enhanced 
susceptibility, while another 20% had enhanced resistance 
[118, 119]. The latter may reflect that these 21 genes encode 
genuine S components and/or that they encode NLR-moni-
tored effector targets.
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Effectors that perform 2nd ETS

This work by Mukhtar et al. [118] and Weßling et al. [119] 
suggest that NLR recognition of effectors in most cases is 
indirect via an effector target. Because knockout of some of 
these targets may cause NLR-mediated enhanced resistance, 
it is assumed that effector-binding will also activate these 
NLRs. Yet the pathogens used in the studies successfully 
overcome Arabidopsis’ immunity and cause disease. How 
would this be possible with several of their effectors acti-
vating NLRs, i.e., ETI? The answer is likely to be that these 
pathogens also express effectors that can suppress ETI, and 
mediate 2nd ETS. Examples of this have been revealed for a 
number of R-proteins. P. syringae effector AvrRpt2 has 2nd 
ETS activity against ETI mediated by Arabidopsis, RPM1, 
since it cleaves RIN4, and thereby it prevents RPM1 from 
responding to AvrRpm1-induced RIN4 phosphorylation 
[17, 73, 120]. Similarly, the Avr1 effector from Fusarium 
oxysporum suppresses resistance in tomato mediated by the 
R-proteins I-2 and I-3, while it activates resistance medi-
ated by I and I-1 [121, 122]. Based on a genetic segregation 
study of the wheat powdery mildew fungus, another 2nd 
ETS effector was uncovered. Here, “suppressor of Avr”, 
SVRPM3A1/F1 suppressed distinct resistances mediated five 
PM3 NLRs encoded by an allelic series of R-genes and trig-
gered by distantly related AVRPM3s [8, 123, 124]. Lepto-
sphaeria maculans effector AvrLm4-7 suppresses resistance 
mediated by R-protein, Rlm3, after recognition of AvrLm3 
in oil seed rape [125]. Finally, nine out of twenty Puccinia 
graminis and P. striiformis wheat rust effectors suppressed 
HR in Nicotiana benthamiana. Here different heterologous 
NLR/Avr expressions activated HR, which the rust effectors 
suppressed in specific manners [126]. The fact that effectors 
exist that mediate 2nd ETS in association with NLRs, that 
by-the-way are genetically defined as R-proteins, suggests 
that 2nd ETS effectors, which are not easily revealed genet-
ically, also occur. They should be required for pathogens 
to suppress ETI, activated when other effectors target and 
manipulate host proteins that are monitored by NLRs. With 
the high numbers of effectors, effector targets and NLRs, it 
is conceivable that many such 2nd ETS effectors may exist. 
Coming back to the question from the “Introduction” regard-
ing the many effectors that by individual silencing can be 
documented to have significant contribution to virulence, an 
important part of the answer may be 2nd ETS. Silencing an 
effector with such a function can have severe consequences 
for the pathogen, as it will result in ETI, an effect not hidden 
by redundancy. This could help explain why some patho-
gens maintain large numbers of genes encoding effector-like 
proteins.

It is a question, whether pathogens have “silver bullet” 
effectors that once and for all stop the immune system. 

Indeed, this may in broad sense be the case for many necro-
trophic pathogens, where no NLR-type R-genes have been 
found [127]. However, even though SVRPM3A1/F1 sup-
presses ETI activated by closely related NLRs, other R-genes 
can confer resistance against wheat powdery mildew isolates 
expressing SVRPM3A1/F1, showing that this is not a silver 
bullet effector [8, 123, 124]. This and other examples above, 
in turn indicates that 2nd ETS effectors function at the stage 
of effector target monitoring. It is as well in agreement with 
the fact that CNLs, like ZAR1 appear to activate HR them-
selves, and; therefore, it is difficult to imagine effector targets 
downstream of CNLs. The current insight into the interplay 
between sensor and helper NLRs is insufficient to suggest 
that 2nd ETS effectors interfere with ETI activated via 
such combined NLR function. For TNLs, the downstream 
EDS1/SAG101 or EDS1/PAD4 step can be envisioned to 
be effector targeted. Meanwhile, it was discussed above that 
hormone signaling amplify ETI, and effectors indeed target 
these signaling components [117, 128]. However, since hor-
mone signaling only amplify immunity, effector inhibition 
of hormone signaling should not be detrimental to ETI. In 
fact, it is likely that pathogen have effectors dedicated to 
reduce the hormone amplification of ETI in general. The 69 
(out of 91 tested) Puccinia striiformis f.sp. tritici effectors 
newly described to suppress Bax-induced programmed cell 
death in N. benthamiana are potentially such effectors [129].

The iceberg model

As discussed, plants have large numbers of sensor NLRs 
and filamentous pathogens likewise have large numbers of 
effectors. These effectors have targets in the plant, many of 
which in turn are NLR-monitored according to the zig-zag 
model. Effector targets will often be important for immu-
nity, but as suggested above, another set of effector targets 
will be S components, which pathogens must manipulate 
to sustain themselves. Both types of targets are likely to be 
NLR monitored.

These proteins function in “interaction units”. In a plant, 
attacked by a pathogen most interaction units will remain 
silent. Such silent units in their minimal form consist of an 
effector target, a monitoring NLR that the effector target sup-
presses, a 1st ETS effector, and a 2nd ETS effector, where 
the latter protein causes the silence, as it prevents the NLR 
from activating immunity (Fig. 1).

In a population of plants interacting with an adapted path-
ogen, many such silent units will occur. An iceberg model 
is proposed to visualize that these many silent units do not 
become apparent in genetic studies of wild-type populations 
of plant and pathogens. They are pictured to be under the 
surface in the “bottom” of the iceberg. If a pathogen fails 
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to express a functional 2nd ETS effector, the correspond-
ing interaction unit may be genetically visible through allele 
variants of the 1st ETS effector gene and the NLR-gene that 
in this case will be an R-gene. This unit will be in the “top” 
of the iceberg (Fig. 2). The model illustrates how it is possi-
ble for many effectors to contribute significantly to virulence 
as demonstrated by their individual silencing, and how the 
phenotype of LMMs is dependent on specific NLRs.

Nonadapted pathogens have smaller or larger numbers of 
effectors that target plant proteins inefficiently. The plant is 
said to be “nonhost” for these pathogens, towards which it 
has efficient and durable nonhost resistance. Schulze-Lefert 
and Panstruga [130] suggested that nonhost resistance in 
plants, that are remotely related to the pathogen’s host, is 
based on PTI. The reason should be that the 1st ETS effec-
tors are not able to inhibit the components of this form of 
immunity. According to this iceberg model, the inefficient 
effectors can be both 1st and 2nd ETS types, and the nonhost 
resistance can be a combination of PTI and ETI.

Individual pathogens will not have effectors to target all 
NLR-monitored immunity and susceptibility components. 
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Therefore, there will be many nontargeted, and thus silent, 
effector target/NLR sets in the bottom of the iceberg.

As suggested above, a silent interaction unit consists in 
its minimal form of four components. However, other inter-
action units are predicted to involved sensor/helper NLRs 
or higher order complexes of NLRs [36]. Besides, single 
immunity/susceptibility components may be targeted by 
more effectors [118, 119]. The iceberg model is considered 
to be able to accommodate such more complex units, and the 
future will show whether it can contribute to a holistic view 
of these, for instance involving predicted effector targeting 
of recurrent helpers as well as single effectors targeting more 
immunity/susceptibility components.

Does the iceberg model explain why plants and filamen-
tous pathogens have large numbers of NLRs and effectors? 
Possibly, yes. The model suggests that pathogens benefit 
from more 1st ETS effectors, and that plants in the arms race 
have benefitted from more NLRs, which in turn require more 
2nd ETS effectors, stimulating evolution of more NLRs, etc. 
In this way, plants and pathogens have force one another 
to undergo gene amplifications leading to the large gene 
numbers. In other words, in the arms race during the co-
evolution of plants and their adapted pathogens, more and 
more silent interaction units have been placed in the bottom 
of the iceberg.

Conclusion

An iceberg model is suggested to unify many aspects of 
ETI and to provide a holistic view of this level of immu-
nity. From the model, a number of thoughts appear that may 
affect our understanding of the plant immune system and 
molecular interactions of plants and pathogens:

•	 Many effectors can be shown in silencing studies to 
contribute significantly to virulence. The iceberg model 
explains the risk of mis-interpreting this to be due to 
suppression of PTI, as it suggests many such effectors 
will be 2nd ETS effectors, which contribute indirectly 
to virulence and not necessarily by affecting the primary 
activity of the target.

•	 Knockout mutants affecting cellular processes are often 
lethal, which is generally taken as evidence that the pro-
cesses are indispensable. There will be cases where the 
lethality rather is due to the activation of monitoring 
NLRs, since the knocked out proteins in fact are patho-
gen effector targets.

•	 A sub-group of these lethal mutants may be affected in 
susceptibility components, which are essential for patho-
gens. It is potentially possible to exploit these mutations 
for resistance, provided the corresponding NLR genes 
are knocked out as well.

•	 Nonhost resistance is efficient and durable, and often 
referred to as an ideal protection against disease. This 
model can help us decipher individual components of 
nonhost resistance and learn how to exploit these towards 
adapted pathogens.

•	 Searching for novel R-genes, by screening collections 
of plant genotypes for individuals showing lesions after 
introduction of single effector in the absence of the path-
ogen, will hardly be a good strategy. The reason is that 
the pathogen is also likely to express corresponding 2nd 
ETS effectors, which will suppress the specific NLR-
mediated recognition.

•	 Mutant studies of immunity have favoured revealing of 
components, which are not NLR-monitored in the used 
gene background. Examples may be NPR1, EDS5, SID2, 
ALD1, and FMO1. Potentially, NLR-monitored immu-
nity components are PEN1, PEN3, PMR4, and AMSH3.
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