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Abstract

Perfluorooctanoic acid (PFOA) is a persistent organic pollutant prevalent in the environment and 

implicated in damage to the liver leading to a fatty liver phenotype called hepatocellular steatosis. 

Our goal is to provide a basis for PFOA-induced hepatocellular steatosis in relation to epigenetic 

alterations and mRNA splicing. Young adult female mice exposed to different concentrations of 

PFOA showed an increase in liver weight with decreased global DNA methylation (5-mC). At 

higher concentrations, the expression of DNA methyltransferase 3A (Dnmt3a) was significantly 

reduced and the expression of tet methycytosine dioxygenase 1 (Tet1) was significantly increased. 

There was no significant change in the other Dnmts and Tets. PFOA exposure significantly 

increased the expression of cell cycle regulators and anti-apoptotic genes. The expression of 

multiple genes involved in mTOR (mammalian target of rapamycin) signaling pathway were 

altered significantly with reduction in Pten (phosphatase and tensin homolog, primary inhibitor of 

mTOR pathway) expression. Multiple splicing factors whose protein but not mRNA levels affected 

by PFOA exposure were identified. The changes in protein abundance of the splicing factors was 

also reflected in altered splicing pattern of their target genes, which provided new insights on the 

previously unexplored mechanisms of PFOA-mediated hepatotoxicity and pathogenesis.
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1. Introduction

Perfluorooctanoic acid (PFOA) is a synthetic compound that belongs to a group of 

perfluoroalkyl substance (PFAS). PFOA consists a long hydrophobic chain with eight 

carbons, saturated with fluorine atoms and a hydrophilic polar functional group (Banks et 

al., 1994; Kissa et al., 2001; Taylor, 1999). PFOA is one of the most frequently used 

perfluoroalkyl compounds since the 1940s; and is abundant in the environment, with 

deleterious consequences due exposure through food and drinking water (US EPA, 2001; 

Martin et al., 2003; Ericson et al., 2008; Vestergren et al. 2008). PFOA has been detected in 

human cord serum and breast milk (Apelberg et al., 2007; Liu et al., 2010; Mondal et al., 

2012). In the human system, PFOA is known to be not easily metabolized due to its long 

half-life (mean estimated half-life is 2.7 years) as noted in past works (Li et al., 2018; Burris 

et al., 2002; Olsen et al., 2007). Experiments in animal model shows that PFOA 

predominantly accumulates in the liver, kidney and serum (Ylinen et al., 1990; Vanden 

Heuvel et al., 1991; Cui et al., 2009), resulting in hepatotoxicity, developmental toxicity, 

immunotoxicity, and neurotoxicity (DeWitt et al., 2008; Johansson et al., 2008; Gallo et al., 

2012; Christopher and Martin, 1977; Metrick and Marias, 1977; Yang et al., 2000; Yang et 

al., 2001; Sibinski et al., 1987; Johansson et al., 2008).

Past in vitro and in vivo studies show a lack of genotoxicity associated with PFOA 

(Fernández Freire et al., 2008; Eriksen et al., 2010; Florentin et al. 2011; Stefani et al., 

2014). Thus, one plausible way by which PFOA can exert its effect is through epigenetic 

programming. DNA methylation is one of the most important and well-established 

epigenetic indicators that especially plays a role in embryonic development and cellular 

differentiation (Jahner et al., 1982; Razin et al., 1984). Alteration at regions where cytosine-

guanine dinucleotide (CpG sites) are frequent (CpG islands) could typically lead to the 

repression of gene expression (Hackett and Surani, 2013). CpG methylation is regulated by a 

group of enzymes known as DNA methyltransferases (Dnmts). Three isoforms of Dnmts, 

namely DNA methyltransferase 1 (Dnmt1), DNA methyltransferase 3 alpha (Dnmt3a), and 

DNA methyltransferase 3 beta (Dnmt3b), all have unique functions to perform (Lyko et al., 

1999; Tucker et al., 1996). Apart from Dnmts, ten-eleven translocation methylcytosines 

(Tets), including Tet1, Tet2, and Tet3, also play major roles in DNA methylation status 

maintenance. These Tet enzymes catalyze the oxidation of 5-methylcytosine (5-mC) to 

generate 5-hydroxymethylcytosine (5-hmC) causing demethylation in CpG islands (Tahiliani 

et al., 2009; Ito et al., 2011); thus activating gene transcription. They can also subsequently 

catalyze the oxidation of 5-mC to 5-formylcytosine (5-fC) and 5-fC to 5-carboxylcytosine 

(5-caC) (Ito et al. 2011).

The effect of PFOA exposure on methylation has been noted in some in vitro and in vivo 
studies (Wen et al., 2020; Wan et al., 2010; Rashid el at., 2020; Tian et al., 2012). Prenatal 

PFOA exposure has been associated with reduced Insulin Line Growth Factor 2 (IGF2) 
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methylation in cord blood (Kobayashi et al., 2017), lower global DNA cytosine methylation 

in neonates (Guerrero-Preston et al., 2010), and increased methylation of Long Interspersed 

Nuclear Element-1 (LINE-1) (Watkins et al., 2014). Other studies have reported changed 

expression in cholesterol metabolism (Fletcher et al., 2013) and lipid metabolism (Wen et 

al., 2020). However, none have explored genome-wide methylation alterations and its impact 

in liver where PFOA accumulation can reach high levels.

PFOA-induced liver enlargement is an evident consequence as noted in past studies 

(Christopher and Martin, 1977; Metrick and Marias, 1977). Hepatocellular hypertrophy/ 

cytomegaly and increased liver mass were observed in male rats exposed to PFOA 

(Goldenthal, 1978; Perkins et al., 2004), which are notable features of non-alcoholic fatty 

liver disease (NAFLD) (Liang et al., 2014). Several animal studies have linked PFOA 

exposure to fatty liver disease, also known as hepatic steatosis (Sibinski et al. 1987). In 

chronic studies with Sprague-Dawley rats, PFOA exposure was known to induce 

hepatocellular adenomas, with increasing liver weight and hepatic β-oxidation activity 

(Biegel et al., 2001). Study has also reported on epigenetic alterations induced by PFOA in 

relation to lipid metabolism genes in liver cell model (Wen et al., 2020).

Besides epigenetic changes, gene or protein expression could also be influenced by changes 

in mRNA splicing and translational factors upon exposure to PFOA. Transcriptome-wide 

profiling studies have been previously carried out on human livers with NAFLD (Lake et al., 

2011; Moylan et al., 2014); but as with most studies they only examined changes in overall 

mRNA abundance and did not attempt to monitor changes in splice isoforms (Shackel et al., 

2006). Nonetheless, when mRNA level changes were profiled in the liver samples from 

insulin-resistant obese population, the key pathways downregulated in obese liver samples 

were related to alternative mRNA processing and splicing (Pihlajamäki et al., 2011). 

Alternative splicing decisions are determined by splice site strength, cis-acting regulatory 

elements within pre-mRNAs that promote or inhibit exon recognition, and expression/

activity of trans-acting factors that bind to these cis elements and regulate the accessibility of 

the spliceosome to splice sites (Chen and Manley, 2009; Kalsotra and Cooper, 2011; Lee and 

Rio, 2015). Notably, several new studies have shown that proper expression of alternative 

splicing factors is important for hepatocyte differentiation and function, implicating its 

major role in maintaining normal liver physiology (Pihlajamaki et al., 2011; Sen et al., 2013; 

Elizalde et al., 2014; Sen et al., 2015; Bhate et al., 2015, Cheng et al., 2016; Bangru et al., 

2018; Kumar et al., 2019).

Although numerous biochemical studies have been performed on PFOA exposed liver 

samples, none of the studies have investigated the mechanisms of epigenetic alterations or 

alternative splicing variations in PFOA exposed liver. Specifically, our study tested the 

hypothesis that PFOA induces hepatic hypertrophy and steatosis through specific alterations 

of DNA methylation patterns and changes in alternative splicing factors.
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2. Materials and Methods

2.1 Chemicals

PFOA (99% purity) was purchased from Sigma-Aldrich (St. Louis, MO). Stock solutions of 

PFOA were prepared by diluting PFOA in 0.5% v/v Tween 20 (MP Biomedicals, Solon, 

OH). Stock solutions were diluted to create doses of 1 mg/kg/day, 5 mg/kg/day, 10 mg/kg/

day, and 20 mg/kg/day of PFOA. PFOA concentrations were chosen based on previous 

studies and their relevance. The highest concentration of serum PFOA following 

occupational exposure was 92.03 μg/mL and the arithmetic mean was 2.21 μg/mL (Olsen & 

Zobel, 2007). In mice studies, a serum PFOA level of 171 μg/mL was reached after 17 days 

of 20 mg/kg/day oral gavage (Lau et al., 2006). Therefore, to consider both community and 

occupational exposure, we chose to expose mice at low to high concentrations (1, 5, 10 and 

20 mg/kg/day) in our study.

2.2 Animals and Dosing Paradigm

Adult female CD-1 mice (Charles River, USA) were housed at 25 °C in conventional 

ventilated polysulfone cages on 12 hr Light: 12 hr Dark cycles. Mice were fed Harlan Teklad 

Rodent Diet 8604 and given reverse osmosis filtered water in polysulfone water bottles ad 

libitum. The animal experimental methods and protocols were approved by the University of 

Illinois Institutional Animal Care and Use Committee and conform to the guidelines set 

forth by the National Institute of Health for the Care and Use of Laboratory Animals. 30-day 

old CD1 female mice were orally dosed with either vehicle control (water) or PFOA 

dissolved in water (1, 5, 10, or 20 mg/kg/day) consecutively for 10 days. Mice were 

euthanized during diestrus cycle after 10 days of dosing and liver samples were collected for 

further studies.

2.3 Oil Red O staining

Lipid droplets with neutral and hydrophobic lipids can be stained red with Oil Red O 

(ORO). Livers from mice treated with 1mg/kg/day, 10 mg/kg/day PFOA for 10 days and 

control mice were frozen immediately with liquid nitrogen after sacrifice. Liver samples 

were then unfrozen and incubated in 10% neutral buffered formalin solution (HT501128, 

Millipore Sigma; St. Louis, MO, USA) at room temperature for 24 hours. Samples were 

subsequently freeze-fixed with Tissue-Tek O.C.T. compound (4583, Sakura Finetek; 

Torrance, CA, USA) and sectioned into 8 p,m thick slices. Sections were then stained with 

Oil Red O in isopropanol (MAK194, Sigma-Aldrich; St. Louis, MO, USA) per instructions 

per protocol. Slides were also counterstained with Hematoxylin.

2.4 TUNEL assay

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay is used to 

detect DNA break that occurs during the last phase of cell apoptosis, as an indicator of 

apoptotic cells. Liver samples from mice treated with 1mg/kg/day, 10 mg/kg/day PFOA and 

control mice were frozen immediately with liquid nitrogen after sacrifice. Samples were 

then unfrozen and incubated in 10% neutral buffered formalin solution (HT501128, 

Millipore Sigma; St. Louis, MO, USA) at room temperature for 24 hours. Subsequently, 
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liver samples were fixed in paraffin and 10 μm paraffin embedded sections were sliced. 

TUNEL assay (ab206386, abcam; Cambridge, MA, USA) was then performed per protocol. 

At the location of DNA fragmentation, diaminobenzidine (DAB) reacted with HRP-labeled 

samples would generate a brown substrate.

2.5 Quantification of DNA methylation

Genomic DNA of the mice liver samples were extracted and purified with Purelink genomic 

DNA mini kit (Invitrogen, Thermofisher; Waltham, MA, USA) per kit’s protocol. Additional 

RNase A treatment was followed per specifications. The concentrations of extracted DNA 

were measured by a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., Waltham, 

MA, USA). Genomic DNA (100 ng) methylation (5-mC) level in both the control and PFOA 

treated liver samples were determined with MethylFlash Global DNA methylation (5-mC) 

ELISA easy Kit (Epigentek Group; Farmingdale, NY, USA) following manufacturer’s 

protocol. The methylated DNA fraction was detected by an ELISA-like reaction with 

capture and detection antibodies based on absorbance (at 450 nm) with a BioTek microplate 

reader (BioTek Instruments, Winooski, VT, USA).

2.6 Protein isolation and western blot analysis

Proteins were isolated by homogenization of the frozen tissues (liver) in a bullet blender 

with appropriate homogenization buffer, 400 μL per 100 mg liver tissue (pH7.5, HEPES-

KOH 10 mM, Sucrose 0.32 M, EDTA 5 mM, Proteinase inhibitor (1 tablet per 20 ml 

buffer)). 20% Sodium Dodecyl sulfate (SDS) was added to a final concentration of 1% (v/v) 

prior to sonication. Samples were sonicated and clarified by centrifugation. Protein content 

was measured using BCA protein assay kit (Thermo®). A total of 40 to 60 μg proteins were 

resolved on a 10% SDS-PAGE electrophoresis gel and transferred onto a PVDF membrane 

(Immobilon, Millipore). Membranes were visualized for equal loading using Ponceau 

staining solution (0.5% w/v PonS, 1% Acetic acid). Membranes were blocked with 5% 

(w/v) milk powder in TBST (Tris-buffered saline, 0.1% Tween 20) for 2 hours at room 

temperature. Blots were incubated in primary antibodies overnight at 4 °C at pre-determined 

concentrations (see Supplementary Table S2), washed in TBST, and incubated in HRP 

conjugated secondary antibodies for 1 hour at room temperature. The immunoreactivity was 

visualized in ChemiDoc XRS+ using the Clarity Western ECL kit (BioRad®).

2.7 Gene expression and splice isoform analysis

Total RNA was isolated from mouse livers using TRIzol reagent (Life Tech® or Ambion, 

Thermofisher, Waltham, MA, USA). 5 μg of RNA was reverse transcribed to cDNA using 

random primer mix (NEB; Ipswich, MA, USA) and Maxima Reverse Transcriptase kit 

(Thermofisher; Waltham, MA, USA ) or with high capacity cDNA synthesis kit (Applied 

Biosystems, Thermofisher; Waltham, MA, USA). For the results from Figure 1 to 3, the 

cDNA was diluted to 25 ng/μl to be used downstream for qRT-PCR and alternative splicing 

assays. Primers used are listed in Supplementary Tables S1 and S3. The qRT-PCR assays 

were performed using GoTaq® Green Master Mix (Promega; Madison, WI, USA) with an 

initial step at 95 °C for 5 min followed by 32 cycles of 95°C for 30 sec, 58°C for 30 sec, and 

72°C for 40 sec. Then it was ended with a final extension of 72°C for 3 min. PSI values for 

the alternatively spliced region were calculated with ImageLab software (BioRad; Hercules, 
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CA, USA) as [(exon inclusion band intensity)/(exon inclusion band intensity + exon 

exclusion band intensity) × 100]. For the transcripts of splicing factors, qRT-PCR was 

performed in triplicate with 50 ng of cDNA per reaction on an Eco Real-Time PCR unit 

(Illumina; San Diego, CA, USA) utilizing PerfeCTa SYBR Green FastMix (Quantabio; 

Beverly, MA, USA) with an initial activation step at 95°C for 10 min and followed by 40 

cycles at 95°C for 10 sec and 60°C for 30 sec.

2.8 Statistical analyses

Data analyses were conducted with the R statistics (R 3.6.1; R Core Team, 2019). R function 

“aov” was used to perform the one-way analysis of variance (one-way ANOVA) within each 

group of data. Two sample t-test with equal variances assumption was conducted between 

every treatment group’s result and its corresponding control group to evaluate the difference 

significance between their means. Standard error of the mean was shown in figures as error 

bar. Significance levels were presented as marks right above each column. Except Figure 6, 

“.” denotes 0.05≤P<0.1, “*” 0.01≤P<0.05, “**” 0.001≤P<0.01, “***” P≤0.001.

3. Results

3.1 Hepatocellular hypertrophy, increased hepatocellular lipid deposit and DNA damage

From the Oil Red O stained liver slides, we saw increased lipid storage in liver cells of mice 

treated with 1 mg/kg/day or 10 mg/kg/day PFOA (Fig 1B, C, E, F) compared to liver cells of 

mice treated with control (Fig 1A, D). Larger lipid droplets occurred in liver cells from 

mouse treated with 10 mg/kg/day PFOA, indicating a dose-dependent increase in lipid 

storage in liver cells. Another observation from ORO stained cryosections was that cells 

were enlarged significantly after PFOA treatment, especially at 10 mg/kg/day (Fig 1). 

Control mouse liver cells had an average diameter of around 15 μm. While the size of liver 

cells almost doubled in mouse treated with 10 mg/kg/day PFOA, with an overall average 

diameter of ~30 μm. The same phenomenon of cytomegaly can be observed in TUNEL 

assay paraffin embedded sections (Fig 2). All control liver tissue looked healthy and had no 

DNA break as detected by TUNEL assay (Fig 2A, D). Small brown spots were observed in 

liver tissue from mice treated with 1 mg/kg/day PFOA (Figure 2 B, E). Larger and more 

frequent brown spots were observed in liver tissue in mice treated with 10 mg/kg/day PFOA, 

indicating higher DNA damage after PFOA treatment and a possible dose-dependent 

correlation between liver cell DNA damage or apoptosis upon PFOA exposure. To see if 

increased PFOA exposure indeed increased the PFOA accumulation in mouse liver, we 

tested the amount of PFOA in liver sample from mouse treated with vehicle control, 1 and 

10 mg/kg/day PFOA through liquid chromatography-mass spectrometry (LC-MS) method. 

The results show a PFOA accumulation of 6.5 μg and 29.9 μg of accumulation in the liver 

corresponding to the 1 and 10 mg/kg/day exposed dose in the mouse.

3.2 Effect of PFOA on Cell proliferation and apoptosis-related genes

To assess whether PFOA exposure causes visible changes in the liver, we quantified liver 

weight both in PFOA exposed mice and in controls. Experimental results indicate that PFOA 

significantly increased liver weight in a dose-dependent manner (Fig 3A), possibly due to 

fatty liver (Fig 1) or increased cell proliferation. To evaluate the effect of PFOA exposure on 
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hepatocyte proliferation in liver, mRNA expression levels were quantified in different cell 

cycle genes. Significant increase in the expression of cyclin B1 (Ccnb1), cyclin E1 (Ccne1) 

and cyclin A2 (Ccna2) in PFOA exposed animals equal to or higher than 5 mg/kg/day (Fig 

3B) was noted. We also investigated the mRNA expression levels of pro and anti-apoptotic 

genes (Fig 3C). The expression levels of B cell leukemia/lymphoma 2 (Bcl2) and Bcl2-like 

10 (Bcl2l10), which both encode proteins that have shown to suppress cell apoptosis (anti-

apoptotic), significantly increased. PFOA exposure did not change the expression of BCL2-

associated X protein (Bax), encoding a protein that functions as an apoptotic activator (pro-

apoptotic).

3.3 PFOA exposure activates mTOR signaling pathway

The mechanistic target of rapamycin (mTOR) signaling pathway regulates many metabolic 

and physiological processes in different organs or tissues. Dysregulation of mTOR signaling 

has been implicated in many human diseases including fatty liver diseases (Guri et al., 2017; 

Guo et al., 2018). Since mTOR signaling is involved in lipid biogenesis as well as cell 

proliferation and survival, the mRNA expression levels of different genes involved in the 

regulation of mTOR signaling was quantified. A significant increase in both mechanistic 

target of rapamycin kinase (Mtor) and KIT proto-oncogene receptor tyrosine kinase (Kit) 
levels was observed with PFOA exposure (Fig 4A). MTOR mediates cellular response to 

DNA damage and regulates cellular metabolism (Proud, 2004). KIT also plays an essential 

role in the regulation of cell survival and the activation of mTOR pathway. The mRNA 

levels of phosphatase and tensin homolog (Pten), a primary inhibitor of mTOR pathway, 

significantly reduced at PFOA exposure levels 10 mg/kg/day and 20 mg/kg/day. While no 

significant change in expression of TSC complex subunit (Tsc1), another known inhibitor of 

mTOR signaling (Fig 3B) was noted.

3.4 Effect of PFOA on DNA methylation and its regulation

To test this hypothesis that PFOA induces DNA methylation alteration in mouse liver, we 

quantified DNA methylation levels in the liver. For determining the global DNA methylation 

levels in mice liver following PFOA exposure, 5-methyl cytosine (5-mC) levels were 

quantified in liver samples. PFOA greatly induced global hypo-methylation in liver at 

exposure concentrations of 5, 10, and 20 mg/kg/day (Fig 5A). Next, we quantified the 

mRNA expression levels of the genes that encode major DNA methylation regulators 

namely DNMTs and TETs. The PFOA exposure reduced Dnmt3a expression levels at a 

higher concentration (10mg/kg/day, P<0.00001; 20mg/kg/day, P=0.0002; Fig 5B). The 

expression of Dnmt1 was also increased significantly at exposure concentrations 10 and 20 

mg/kg/day. However, Dnmt3b expression did not change with PFOA exposure in any 

specific pattern, except it was increased significantly at 1 mg/kg/day PFOA (P = 0.0052; Fig 

5B). The PFOA exposure also significantly increased Tet1 expression with no change in 

Tet2 or Tet3 expression (Fig 5C). Our data showed a concentration dependent effect on the 

mRNA expression of DNA methylation regulation proteins, especially Dnmt3a and Tet1, 

and in DNA methylation levels.
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3.5 PFOA exposure induces changes in RNA binding proteins (RBPs) and alternative 
splicing

Recent study showed that hepatocytes exhibit large-scale transcriptional and post-

transcriptional remodeling of the transcriptome after birth (Bhate et al., 2015). Specifically, 

there is a developmental switch in the mRNA splicing and translation programs, which 

supports postnatal liver development and maturation. Furthermore, under conditions of liver 

injury, these programs revert to a fetal-like state to promote proliferation of hepatocytes and 

restoration of liver function (Bangru et al., 2018). Therefore, we hypothesized that PFOA 

could alter gene expression of liver cells through directly or indirectly affecting the post-

transcriptional regulatory mechanism. These mechanisms are mediated by a class of tissue-

specific RNA binding proteins (RBPs) (Lewis et al., 2018; Arif et al., 2017). To explore 

whether post-transcriptional regulatory programs may be altered within the liver upon 

exposure to PFOA, we screened various RBPs and measured their relative abundance using 

western blot analysis (Fig 6A). Subsequently, western blot results with significance levels 

were presented in Fig 6B. Surprisingly, many RBPs such as polyadenylate-binding protein 2 

(PABPN1) and polyadenylate-binding protein 1 (PABPC1) showed significant and dose-

dependent reduction in abundance upon treatment with PFOA (Fig 6A, B). These proteins 

play a major role in the pre-mRNA splicing by binding to the poly(A) tails of transcripts, 

which in turns influence mRNA translation (Chorghade et al., 2017). We also observed a 

significant change in the hepatic levels of splicing factors CUGBP Elav-like family member 

1 (CELF1), Polypyrimidine tract-binding protein 1 (PTBP1) and Epithelial splicing 

regulatory protein 2 (ESRP2) following PFOA treatment (Fig 6A, B). Next, we used 

quantitative real time PCR (qRT-PCR) analysis to determine whether the protein abundance 

of RBPs was being regulated through a concomitant change in their mRNA levels. 

Surprisingly, our analysis revealed that the mRNA levels of various RBPs screened did not 

change significantly (Fig 6C). These data suggest that differences in protein abundance of 

RBPs following PFOA exposure is post-transcriptional and likely due to changes in 

translation efficiency of the associated transcript or stability of the protein. To assess 

changes occurring in alternative splicing, we performed splice assays for various target 

exons known to change during development (Fig 6D). Interestingly, after PFOA treatment, 

we found significant changes in exon usage in genes such as Fanci and Hjurp, which are 

known to play a role in DNA repair (Kato et al., 2007; Lopez-Martinez et al., 2019).

4. Discussion

Liver is a main organ where exogenous chemicals are metabolized and ultimately excreted. 

Liver cells exposed to high PFOA concentrations could result in liver dysfunction, cell 

injury, and eventually organ failure. From our experiments, we observed significant dose-

dependent increase in liver mass (Fig 3A) and liver cell enlargement (Fig 1, Fig 2), with an 

increase in PFOA exposure level. Besides the hepatocellular hypertrophy, increased lipid 

deposits in liver cells were also observed after PFOA exposure (Fig 1), which are 

characteristic to fatty liver disease. Previous studies have clearly established a correlation 

between PFOA exposure and increased liver mass, major characteristic feature of the 

NAFLD (Goldenthal, 1978; Sibinski et al. 1987; Perkins et al., 2004). Though our study is 
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an acute exposure study, results are in line with other studies (Goldenthal, 1978; Sibinski et 

al. 1987; Perkins et al., 2004).

Our results show increased expression of cell cycle regulation genes Ccnb1, Ccne1, Ccna2, 

and anti-apoptotic genes Bcl2 and Bcl2l10 (Fig 3B, C). Thus, the increased liver weight is 

possibly associated with activation of cell cycle genes and repression of apoptotic genes. It is 

well established that the mTOR pathway affects major eukaryotic signaling networks 

relevant to cell growth organismal physiology and cellular metabolism (Wiederrecht et al., 

1995; Metcalfe et al., 1997). Our results show increase in expression of Mtor and Kit after 

PFOA exposure (Fig 4A), indicating that mTOR pathway may be activated through the c-kit 

ligand in PFOA exposed liver. This phenomenon may be further enhanced by subsequent 

reduction in expression levels of mTOR inhibitor, Pten (Fig 4B). This establishes a 

relationship between PFOA mediated liver damage, activation of c-kit mediated mTOR 

pathway and hepatocyte proliferation. Given these results, it is evident that PFOA triggers 

different molecular pathways.

To determine the mechanisms that caused gene expression changes in liver tissues that were 

exposed to PFOA, we specifically examined two possible mechanisms, epigenetic changes 

and alternative splicing. Several recent reports point to the critical role for epigenetics 

(Jähner et al., 1982; Razin et al., 1984) or changes in splicing (Pihlajamäki et al., 2011; Sen 

et al., 2013; Elizalde et al., 2014; Sen et al., 2015; Bhate et al., 2015, Cheng et al., 2016; 

Bangru et al., 2018; Kumar et al., 2019) in various liver diseases thus providing 

opportunities for the identification of new biomarkers as therapeutic targets.

Few studies have reported on the epigenetic alterations due to PFOA exposure. However, 

these studies were predominantly carried out in blood samples from population exposed to 

PFOA toxicants (Guerrero-Preston et al., 2010, Watkins et al., 2014; Kobayashi et al., 2017). 

One such study has reported on the hypomethylation of specific gene (glutathione-S-

transferase Pi) in liver cells in vitro (Tian et al., 2012). Our previous study also showed 

significant changes in global DNA methylation in vitro with HepG2 cells (Wen et al., 2020). 

Therefore, it is compelling to investigate epigenetic alterations following PFOA exposure in 
vivo in mouse liver. Although in vitro studies in human liver L02 cells exhibit no changes in 

global DNA methylation (Tian et al., 2012), it is evident from our global DNA methylation 

assay that PFOA induced significant decrease in global DNA methylation levels in liver 

tissue (Fig 5A). To gain further insights on the alteration in DNA methylation levels, we 

assessed the mRNA levels of Dnmts and Tets, major regulators of DNA methylation and 

observed significant changes. PFOA exposure reduced Dnmt3a expression levels at higher 

concentrations (Fig 5B); thus, affecting de novo DNA methylation. The expression of 

Dnmt1 increased significantly at higher concentrations (Fig 1B). But without significance in 

one-way ANOVA test and any specific trend, Dnmt1 changes are less significant. 

Interestingly, results indicate that increased Dnmt3b levels at low concentration exposure of 

PFOA may cause DNA hyper-methylation (Fig 5A, B). The PFOA exposure showed a 

significant dose-dependent increase in Tet1 expression with no change in Tet2 or Tet3 
expression (Fig 5C). In essence, our results show a dose-dependent effect of PFOA on the 

mRNA expression levels of DNA methylation regulation proteins, specifically Dnmt3a and 

Tet1, and in DNA methylation levels, suggesting that direct exposure to PFOA triggers 
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epigenetic alterations in the liver. Hepatic stellate cell activation is one of the important 

events in liver fibrosis, wherein, changes in DNA methylation at specific locus of Pten was 

observed. In particular, Pten gene was hypermethylated leading to decreased expression of 

Pten (He et al., 2016; Kumar et al., 2018). These prior works suggest possible connection 

between gene specific DNA methylation changes and Pten mRNA expression. This unusual 

Pten expression regulation further suggests liver dysfunction upon PFOA exposure.

To date, it is not known whether exposure to organic pollutants such as PFOA leads to 

alterations in post-transcriptional gene regulatory programs in the liver. In this study, the 

effects of PFOA on the expression of various RBPs were evaluated. Multiple splicing and 

factors were noted to show a significant change in their protein (Fig 6A, B) but not mRNA 

levels (Fig 6C) following PFOA exposure. For instance, both nuclear and cytosolic poly (A) 

tail binding proteins (PABPC1, PABPN1) showed a dose-dependent reduction in their 

abundance after PFOA treatment. PABPs act as multifunctional scaffold to form 

ribonucleoproteins complexes determining the post-transcriptional fate of mRNA (Li et al., 

2015). PABPN1 is a nuclear protein that was first discovered for its ability to provide 

processivity to the poly(A) polymerase and greatly enhance poly(A) tail formation in the 

nucleus (Mangus et al., 2003). It is also thought to be the primary regulator for controlling 

the position and length of the poly(A) tail (Goss et al., 2013; Elkon et al., 2013). PABPC1, 

on the other hand, is primarily cytosolic and stabilizes a “closed loop structure” between the 

5’-cap and the 3’-poly(A) tail on most mRNAs (Wells et al., 1998; Kahvejian et al., 2005; 

Safaee et al., 2012). By linking poly(A) tail to the 5’ end, PABPC1 not only enhances the 

stability of mRNAs through protection from exonucleases but also promotes their translation 

through better ribosomal recycling (Coller et al., 1998; Mangus et al., 2003; Goss and 

Kleiman, 2013). Alterations in PABPN1 and PABPC1 levels following PFOA exposure in 

the liver are therefore expected to affect mRNA maturation and translation of numerous 

hepatic transcripts. Consistent with this expectation, we found that changes in protein 

abundance of various RBPs following PFOA exposure were post-transcriptional and likely 

driven by changes in translation efficiency of the associated transcript or stability.

Significant reduction in the protein levels of several splicing factors, including ESRP2 was 

observed after PFOA treatment (Fig 6A, B). ESRP2 is an epithelial splicing regulatory 

protein that maintains a non-proliferative, mature phenotype of adult hepatocytes (Bhate et 

al., 2015). ESRP2 is normally absent in fetal livers but begins to be expressed shortly after 

birth. It is critically important for switching on the adult splicing program for approximately 

20% of hepatocyte mRNAs, producing splice variants that encode functional differences in 

multiple proteins (Bangru et al., 2018). Suppression of ESRP2 following PFOA exposure 

would result in the expression of fetal mRNA splice variants that might be incompatible with 

adult hepatic function and therefore promote pathological liver phenotypes. Indeed, after 

PFOA treatment, we found a significant reduction in the inclusion of developmentally 

regulated exons within Fanci and Hjurp transcripts (Fig 6D), both of which are implicated in 

DNA damage and repair response (Kato et al., 2007; Lopez-Martinez et al., 2019). From our 

TUNEL assay, small brown spots were observed in liver cells from mice treated with 1 

mg/kg/day of PFOA and large brown spots were observed in cells from mice treated with 10 

mg/kg/day PFOA (Fig 2). Together with the evidence that no detectable spots were observed 

in control, our results indicated higher DNA damage after PFOA treatment and possible 
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dose-dependent correlation between liver cell DNA damage or apoptosis and PFOA 

exposure.

5. Conclusion

Our current study has established two major findings, (i) PFOA induces global epigenetic 

alterations, specifically DNA methylation, in the liver; (ii) PFOA induces tissue-specific 

changes in RNA binding proteins affecting alternate splicing factors. Our study is also the 

first to report a dose-dependent effect of PFOA on alternate splicing factor providing new 

insights on previously unexplored mechanisms of PFOA-mediated hepatotoxicity and 

pathogenesis. However, additional experiments are needed to further study the epigenetic 

mechanisms that are influenced by PFOA, as well as the translational regulation of mRNA 

expressed.
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Highlights

• Epigenetic alterations and RNA splicing in hepatocellular steatosis were 

noted

• Effect of DNMTs and TETs in liver tissues were evaluated upon PFOA 

exposure

• PFOA exposure alters mTOR expression and decreases pten expression

• Tissue specific changes in RNA binding proteins were noted

• Changes in alternate splicing factors were identified upon PFOA exposure
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Figure 1. Oil Red O stained mouse liver sections.
All images were photographed with brightfield microscope with white light source. (A), (B), 

and (C) were imaged with 10x objective with scale bar of 100 μm. While (D), (E), (F) were 

imaged with 50x objective with scale bar of 20 μm. (A) and (D) are from control mice. (B) 

and (E) are from mice treated with 1 mg/kg/day PFOA. (C) and (F) are from mice treated 

with 10 mg/kg/day PFOA. Red spots exampled with arrows are lipid droplets stained red 

with Oil Red O.
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Figure 2. TUNEL assay of mouse liver sections.
All images were photographed with brightfield microscope with white light source. (A), (B), 

and (C) were imaged with 10x objective with scale bar of 100 μm. While (D), (E), (F) were 

imaged with 50x objective with scale bar of 20 μm. (A) and (D) are from control mice. (B) 

and (E) are from mice treated with 1 mg/kg/day PFOA. (C) and (F) are from mice treated 

with 10 mg/kg/day PFOA. Locations with brown colored spots exampled with arrows are 

where DNA break happened, indicating unusual cell death.
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Figure 3. PFOA induced hepatocellular hypertrophy and changes in expression of cell 
proliferation and apoptosis related genes.
(A) Histograms plot shows liver weight of animals treated with different concentrations of 

PFOA treatments. Increased PFOA concentration increases liver weight (B) Histograms 

quantifying the relative mRNA expression of cell cycle genes Ccnb1, Ccne1 and Ccna2. (C) 

Histograms quantifying the relative mRNA expression of pro and anti-apoptotic genes Bax, 

Bcl2 and Bcl2l10. The expression levels were normalized with GAPDH. n = 3 for all 

experimental data. PFOA treatment concentrations are shown as the mass in legends per kg 

mouse per day. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.
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Figure 4. Activation of mTOR signaling pathway following PFOA exposure.
(A) Histograms demonstrating increased expression of Mtor and Kit with increased PFOA 

exposure, suggesting activation of mTOR pathway. (B) Histograms also quantifying mRNA 

levels of inhibitors of mTOR pathway namely Pten and Tsc1. A significant reduction in Pten 

expression was noted at higher PFOA exposure. The expression levels were normalized with 

GAPDH. n = 3 for all experimental data. PFOA treatment concentrations are shown as the 

mass in legends per kg mouse per day. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

‘.’ 0.1.
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Figure 5. PFOA induced epigenetic changes in mice liver
(A) Histograms demonstrating quantification of 5-mC levels from liver genomic DNA. 

Increased PFOA concentration induces hypo-methylation (B) Histograms quantifying Dnmts 
mRNA expression levels. The expression levels of Dnmt1 increased and Dnmt3a decreased 

significantly with the increased concentration of PFOA (C) Histograms quantifying Tets 
mRNA expression levels. Tet1 expression levels were elevated dose-dependently. The 

expression levels were normalized with GAPDH. n = 3 for all experimental data. PFOA 

treatment concentrations are shown as the mass in legends per kg mouse per day. 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.
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Figure 6. Changes in tissue-specific RNA binding proteins (RBPs) and alternative splicing 
following PFOA exposure.
(A) Western blot showing dose-dependent changes in abundance of select RNA binding 

protein levels in mouse livers following PFOA exposure. (B) Quantification of Western 

Blots shown in A. Data are represented as box plots from at least 2 independent 

experiments. (C) Heat map representation of the qPCR data showing relative transcript 

levels of RNA binding proteins following PFOA exposure. The raw Ct values were first 

normalized to β-actin, and then converted to expression levels using the formula relative 

expression = 2^(ΔCt(ctl)- ΔCt(treatment)). Z scores of the relative expressions were used to 

generate the heat map using “heatmap()” function in R. (D) RT-PCR gel images showing 

alternative splicing changes in developmentally regulated splicing events following PFOA 

exposure. (+) and (−) bands show inclusion and exclusion of alternative exon, respectively. 

Percent spliced in (PSI) values were calculated by dividing (+) band intensities with the sum 

of (+) and (−) band intensities. Significant comparisons are denoted in the figure. * denotes 

p≤0.05, ** p≤0.01, *** p≤0.001, **** p≤0.0001. (n=3 biological replicates for each 

condition).
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