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Abstract

The reaction of carboxylic acid derivatives with amines to form amide bonds has been the most 

widely used transformation in organic synthesis over the past century. Its utility is driven by the 

broad availability of the starting materials as well as the kinetic and thermodynamic driving force 

for amide bond formation. As such, the invention of new reactions between carboxylic acid 

derivatives and amines that strategically deviate from amide bond formation remains both a 

challenge and an opportunity for synthetic chemists. This report describes the development of a 

nickel-catalyzed decarbonylative reaction that couples (hetero)aromatic esters with a broad scope 

of amines to form (hetero)aryl amine products. The successful realization of this transformation 

was predicated on strategic design of the cross-coupling partners (phenol esters and silyl amines) 

to preclude conventional reactivity that forms inert amide by-products.

Graphical Abstract

Carboxylic acids are abundant, inexpensive, and stable compounds, and these properties 

render them attractive building blocks for organic synthesis. As such, metal-catalyzed 

decarbonylative or decarboxylative reactions that employ aryl carboxylic acid derivatives 
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[ArC(O)X] as coupling partners have gained tremendous attention over the past two 

decades.1,2 A variety of (hetero)aryl carbon–carbon, carbon–sulfur, carbon–boron, carbon–

silicon, carbon–halogen, and other carbon–heteroatom linkages can be formed using this 

approach.1 However, methods for the decarbonylative or decarboxylative coupling of 

ArC(O)X (Ar = aryl) with amines to afford aryl C(sp2)–N bonds (Figure 1A) remain limited. 

While a few such transformations have been reported, they often have a very narrow scope 

with respect to the carboxylic acid and/or amine coupling partner.3–6 For example, most 

decarboxylative methods require strong electron withdrawing groups on the arene ring, or 

weakly nucleophilic N-group to form carbamates.5–6 In decarbonylative reactions, couplings 

involving non-stabilized 1° or 2° amines remain challenging, largely due to the competing 

amide formation with these strongly nucleophilic partners (Figure 1A, conventional 

reactivity).3 This is exemplified by Rueping’s recent report of Ni-catalyzed decarbonylative 

amination of phenyl esters. As shown in Figure 1B, this transformation is effective for 

weakly nucleophilic benzophenone imine. In contrast, the use of more nucleophilic amines 

such as morpholine,3 aniline, and indole results in exclusive formation of the amide product.

The paucity of methods to convert carboxylic acid derivatives to amines is particularly 

noteworthy because the products are of high value in medicinal chemistry.7 As such, new, 

general, and practical approaches to forge (hetero)aryl C(sp2)–N bonds from abundant 

starting materials have the potential for widespread application.

We hypothesized that undesired background amide formation could be mitigated by masking 

the amine with a main group element (M). Appropriate selection of M would provide an 

amine nucleophile, M–NR2, that is inert to background acyl transfer but can selectively 

engage a metal catalyst via transmetalation.8 A catalytic cycle that leverages this approach is 

shown in Figure 1B. First, ArC(O)X reacts with a low valent metal catalyst via oxidative 

addition and carbonyl deinsertion to afford an arylmetal intermediate (B).9 Intermediate B 
then undergoes transmetalation with M–NR2 and subsequent C(sp2)–NR2 coupling to 

release the targeted aryl amine product. The success of this cycle relies on strategic design of 

M–NR2, ArC(O)X, and the metal catalyst such that: (i) background acyl transfer between 

M–NR2 and ArC(O)X is slow; (ii) B undergoes facile transmetalation with M–NR2; (iii) 

carbonyl deinsertion is fast relative to transmetalation (since reaction between M–NR2 and 

metal acyl intermediate A would afford the undesired amide by-product; Figure 1B);10 and 

(iv) other key steps of the catalytic cycle (oxidative addition, C(sp2)–N coupling) are 

energetically feasible. This report describes the successful realization of this transformation, 

using a nickel phosphine catalyst to couple aromatic ester electrophiles with in situ-

generated silyl amines.

Based on the criteria outlined above, trimethylsilyl (TMS)-substituted amines as the M–NR2 

nucleophile are expected to slow background acyl transfer, while facilitating base-free 

transmetalation8 between TMS–NR2 and B. To identify a suitable ArC(O)X coupling 

partner, we evaluated the background reaction of TMS–morpholine with three carboxylic 

acid derivatives: acid chloride 1-Cl, acid fluoride 1-F, and aryl ester 1-OPh. Heating TMS–

morpholine with 1-Cl or 1-F at 100 °C for 1 h resulted in undesired acyl transfer to afford 

amide 3 in high yield (Figure 2A, [M] = TMS). In contrast, the less electrophilic 1-OPh 
showed <5% amide formation under analogous conditions. Notably, as expected, the use of 
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free morpholine as the nucleophile led to a high yield of the amide product with all three 

electrophiles (Figure 2A, [M] = H).

We next examined the coupling of TMS–morpholine with 1-F and 1-OPh in the presence of 

Ni-bisphosphine catalysts (Figure 2B). Importantly, Ni phosphine complexes are known to 

participate in oxidative addition and carbonyl deinsertion with diverse ArC(O)X 

electrophiles.1 Bisphosphine supporting ligands were chosen based on their ability to effect 

C(sp2)–N coupling at NiII centers.11 Representative results with dppf and dcype are shown 

in Figure 2 (see SI for larger ligand screen). Consistent with the fast background reaction, 

amide formation dominated with 1-Cl and 1-F under catalytic conditions. In contrast, with 

1-OPh, decarbonylative coupling to afford aryl amine 4 proceeded in modest to high yield 

with dppf and dcype, respectively. Under the optimized conditions (10 mol % Ni/dcype in 

toluene at 150 °C), 1-OPh reacted with TMS–morpholine to afford 4 in 90% yield with 

>19:1 selectivity for amine 4 versus amide 3.

We next explored the scope of this transformation and found that it is general for a variety of 

electron-deficient and electron-neutral carboxylic acid esters (Figure 3A).12 Substituents 

such as trifluoromethyl, methyl ester, nitrile, ketone, and phenyl ether (4-9) are well 

tolerated. Competing cross-coupling is not observed at methyl ester (5) or boronate ester 

(10) sites. Various N-containing heteroaryl carboxylic acid esters such as pyridine, 

quinoline, and quinoxaline derivatives are converted to N-heteroaryl amines (12-14) in 

moderate to excellent yields. S- and O-containing heteroaryl esters such as benzothiophene 

(15), benzofuran (16), chromone (17), and thiazoles (20) are also converted to the desired 

amine products. Esters derived from carboxylic acid-containing drugs such as probenecid 

(18), bexarotene (19) and febuxostat (20) afford good to excellent yields. This 

transformation is also general with respect to the amine coupling partner (Figure 3B). 

Utilizing the probenecid ester 18-OPh as the electrophile, various TMS-amines react 

smoothly to yield 18, 25, 27, and 28. More stable triethylsilyl (TES)- and triisopropylsilyl 

(TIPPS)-protected amines are effective coupling partners but provide lower yields of 25.

While TMS–amines are straightforward to synthesize, their commercial availability is 

limited. In addition, some derivatives are susceptible to hydrolysis. Thus, the in situ 
formation of these species from readily available amine starting materials would 

significantly enhance the practicality of this method. After some optimization, we identified 

the commercial silyl transfer reagent N-methyl-N-(trimethylsilyl)trifluoroacetamide 

(MSTFA) as effective for the rapid, room temperature conversion of diverse HNR2 to TMS–

NR2. Indeed, the direct addition of HNR2 and MSTFA to the standard coupling conditions 

resulted in effective Ni-catalyzed decarbonylative coupling (Figure 3B). Secondary dialkyl 

and diaryl N-heterocycles13 such as morpholines (18), piperidines (21, 22), piperazines (23), 

pyrrolidines (24), indoles (25), and carbazoles (26) underwent coupling in good to excellent 

yields under these conditions. Furthermore, both primary aryl (28-30), and alkyl amines 

(31-34) afforded secondary aryl amines products in good yields. In the few cases where 

background acyl transfer reactivity was observed (31-34), prestirring of HNR2 with MSTFA 

for 1 h prior to catalysis resulted in selective generation of the desired aryl amine.
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Traditional metal-catalyzed couplings between aryl electrophiles and amines require 

typically stoichiometric quantities of an exogenous inorganic base to promote metalation of 

the amine coupling partner.14 This is a key limitation of the Buchwald-Hartwig amination of 

aryl halides, and significant recent effort has focused on identifying milder bases for these 

transformations.15 In contrast, the current method eliminates the need for an exogenous base 

for C(sp2)–N coupling. As such, base-sensitive amine substrates16 are well tolerated and 

deliver aryl amine products (24, 33, 34) in good yields.

We then set out studies focused on eliminating the need for air-sensitive Ni(cod)2 as the 

nickel source. These investigations revealed that the use of Ni(CO)2(PPh3)2, an air-stable 

and commercial reagent, as Ni(0) source affords aryl amine 28 in good yield (Figure 3C). 

All of the catalysts and reagents were weighed on the benchtop without the requirement of 

an inert glovebox.

Finally, we conducted stoichiometric studies to interrogate the proposed reaction 

mechanism. The reaction of phenyl ester 8-OPh with Ni(cod)2/dcype in toluene at 80 °C for 

3 h resulted in oxidative addition/carbonyl deinsertion to afford (dcype)Ni(Ph)(OPh) (B) in 

60% yield (Figure 4A).17 A NiII acyl intermediate (A in Figure 1B) was not detected by 31P 

NMR spectroscopy during this reaction, suggesting that carbonyl deinsertion is fast under 

these conditions. Notably, reactions performed at 60 °C or lower did not afford observable 

conversion of 8-OPh due to slow oxidative addition. The treatment of B with TMS–indole in 

toluene at room temperature for 1 h resulted in transmetalation to form NiII complex C in 

quantitative yield (Figure 4B). Complex C is stable and isolable at room temperature. Aryl 

C(sp2)–N bond-forming reductive elimination was only observed upon heating at 120 °C, 

which afforded aryl amine product 35 in 65% yield after 16 h. These studies show the 

feasibility of each proposed step of the proposed catalytic cycle. Furthermore, they 

demonstrate that in this stoichiometric system, C(sp2)–N bond formation is the most 

challenging step of the sequence.

In conclusion, we developed a Ni-catalyzed decarbonylative conversion of esters to aryl 

amines. The generality, selectivity, and base-free nature of this transformation render it 

complementary to existing Pd/Ni-catalyzed methods for the construction of (hetero)aryl 

amines. Current limitations, including low reactivity of electron rich and sterically hindered 

aryl esters (see SI), and the requirement of high temperatures and catalyst loading, will be 

addressed by future mechanistic and catalysis development studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Proposed strategy for the catalytic decarbonylation of carboxylic acid derivatives to aryl 

amines.
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Figure 2. 
(A) Uncatalyzed reaction of 1-X with morpholine and TMS–morpholine at 100 °C for 1 h. 

(B) Ni-catalyzed reaction of 1-X with TMS–morpholine at 150 °C for 24 h. Yields 

determined via 19F NMR spectroscopy.
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Figure 3. 
Scope of Ni-catalyzed decarbonylative amination. aUsing TMS–amine. bTMS–amine was 

generated in situ by premixing the amine with MSTFA. cUsing TES–indole or dTIPPS–

indole. dReagents were weighed on benchtop. For additional substrates that were found to be 

challenging under the optimized conditions, see SI.
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Figure 4. 
Mechanistic studies: stoichiometric reactions for the fundamental steps in decarbonylative 

amination. See the SI for details on reaction conditions.
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