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The success of any physical model critically depends upon adopt-
ing an appropriate representation for the phenomenon of inter-
est. Unfortunately, it remains generally challenging to identify
the essential degrees of freedom or, equivalently, the proper
order parameters for describing complex phenomena. Here we
develop a statistical physics framework for exploring and quan-
titatively characterizing the space of order parameters for rep-
resenting physical systems. Specifically, we examine the space
of low-resolution representations that correspond to particle-
based coarse-grained (CG) models for a simple microscopic model
of protein fluctuations. We employ Monte Carlo (MC) meth-
ods to sample this space and determine the density of states
for CG representations as a function of their ability to pre-
serve the configurational information, I, and large-scale fluc-
tuations, Q, of the microscopic model. These two metrics are
uncorrelated in high-resolution representations but become anti-
correlated at lower resolutions. Moreover, our MC simulations
suggest an emergent length scale for coarse-graining proteins,
as well as a qualitative distinction between good and bad rep-
resentations of proteins. Finally, we relate our work to recent
approaches for clustering graphs and detecting communities
in networks.
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Introduction
Remarkably simple models explain many physical phenomena
(1). This is clearly true of thermodynamic models for macro-
scopic systems (2). It is also true of simulation models for
soft materials, such as polymers and proteins. While atomistic
models provide exquisite detail, they are often computation-
ally intractable. Moreover, unnecessary atomic details tend to
obscure basic physical insight. Consequently, simulations of soft
materials often adopt simplified, coarse-grained (CG) models
that provide much greater computational efficiency and more
transparent insight (3, 4).

Just as thermodynamic models rely upon identifying appropri-
ate order parameters (1, 2), one expects the success of a CG
model will critically hinge upon the quality of the CG repre-
sentation, i.e., the degrees of freedom the CG model retains.
However, it is often difficult to discern the essential degrees of
freedom for complex phenomena. Historically, researchers have
generally relied upon physical intuition to determine CG rep-
resentations (5). For instance, generic bead-spring models of
polymers often represent each monomer with a single sphere (4).
More recent studies have proposed various methods for opti-
mizing the representation of CG models for specific chemical
systems (6–18).

Unfortunately, it is quite nontrivial to directly assess the
intrinsic quality of a CG representation since the perfor-
mance of a CG model will generally reflect various approx-
imations introduced, e.g., when parameterizing its potential
(5). Consequently, there remain many basic questions regard-
ing the choice of CG representations. For instance, it is often
far from obvious whether there exist significant distinctions
between good and bad representations. Moreover, assuming
such distinctions exist, it remains unclear whether good rep-
resentations share certain common features or whether they

are easy to find. These questions are also of considerable
importance for the closely related problem of identifying order
parameters or collective variables for accelerating, analyz-
ing, and interpreting calculations with high-resolution models
(19). Even more generally, these basic questions are of fun-
damental importance for developing reduced models for the
large datasets that are relevant to, e.g., modern materials
science (20).

In this work, we develop and apply a statistical physics frame-
work for addressing these questions. Rather than optimizing
the CG representation according to some specific metric, we
seek to explore and characterize the entire landscape of rep-
resentations (21). As an instructive case study, we start from
a simple microscopic model of protein conformational fluc-
tuations. There are an essentially infinite variety of ways to
represent the protein in CG detail. Each representation corre-
sponds to a different set of order parameters for characterizing
the fluctuations of the underlying microscopic model. In particu-
lar, we consider representations that replace connected atomic
groups with discrete CG particles. We introduce quantitative
metrics for assessing the intrinsic quality of each representa-
tion. We employ Monte Carlo (MC) simulations to sample
the space of representations and estimate a density of states
quantifying the number of representations with a given qual-
ity. Interestingly, this density of states suggests the emergence
of a phase transition distinguishing good and bad representa-
tions beyond a certain characteristic resolution. Finally, we also
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relate this work to research on community detection in complex
networks.

Results
Microscopic Model. We adopt the Gaussian network model
(GNM) as a simple microscopic model of protein fluctuations
about a single equilibrium conformation (22, 23). The GNM
describes a protein as an isotropic network of n atoms, each
corresponding to the α carbon of an amino acid residue. The
reduced potential for the GNM is u(q) = 1

2
q†κq, where q†=

(q1, . . . , qn) specifies the displacements of the n atoms from
their equilibrium positions, while κ is a symmetric matrix that
connects nearby atoms with linear springs and determines the
corresponding covariance matrix, c∝κ−1. The equilibrium dis-
tribution is then p(q)∝ exp[−βu(q)], where β is the inverse tem-
perature. Despite its simplicity, the GNM has proven remark-
ably useful for investigating functional motions in proteins and
biological complexes (24).

In the following, we primarily focus on the small helical pro-
tein 2ERL, although SI Appendix indicates that our conclusions
are robust with respect to variations in the protein sequence,
structure, and size. Fig. 1A presents the equilibrium structure
of 2ERL, while Fig. 1 B and C present κ, c, and the corre-
sponding vibrational density of states. We consider two metrics
for characterizing the microscopic model: 1) the information
content, h ∝ ln detκ, determines the protein-dependent contri-
bution to the configurational entropy of the microscopic GNM
(25) and quantifies the information stored in its equilibrium dis-
tribution (26) and 2) the vibrational power, σ∝Tr c, quantifies
the magnitude of conformational fluctuations sampled by the
protein. Note that h emphasizes high-frequency motions, while σ
emphasizes biologically important, low-frequency motions (24).
Materials and Methods and SI Appendix describe the model and
metrics in greater detail.

Characterizing and Sampling Representations. There exist many
ways to represent the microscopic model in reduced detail.
We codify each representation in terms of a mapping, M, that
specifies the CG configuration Q = (Q1, . . . ,QN ) for N CG par-
ticles, or sites, as a function of the microscopic coordinates,
i.e., M : q→Q = M(q) (27). For simplicity, we assume that 1)
this mapping corresponds to partitioning the n atoms into N
disjoint groups of R =n/N connected atoms and 2) each CG
coordinate corresponds to the mass center for the associated
atomic group. For example, Fig. 1 D and E illustrate the block
map, which partitions the protein sequence into N contiguous
fragments of R consecutive residues and associates a site with
each fragment.

Given the microscopic equilibrium ensemble, M deter-
mines a mapped ensemble with the distribution P(Q; M) =∫

dq p(q)δ(Q−M(q)). The covariance matrix for the CG coor-
dinates in this mapped ensemble is CM = McM†∝K−1

M (25).
Importantly, the information content, H (M)∝ ln det KM, and
vibrational power, Σ(M)∝Tr CM, within the mapped ensemble
are functions of M. We quantitatively assess each CG repre-
sentation, M, based upon the fraction of information, I (M) =
H (M)/h , and vibrational power, Q(M) = Σ(M)/σ, that are
preserved in the mapped ensemble. While many metrics may
prove useful, I and Q exemplify metrics that emphasize high-
frequency, localized motions and low-frequency, global motions,
respectively. Importantly, these metrics directly assess the qual-
ity of the CG representation and can be analytically calculated
for the GNM (25).

We seek to explore the landscape of CG mappings and to
investigate the thermodynamics of selecting maps. Accordingly,
we define an energy function E(M)∝ I (M) or E(M) = 1−Q(M)
and perform MC simulations that sample maps according to a
canonical distribution, PM∝ e−βEE(M), at a conjugate inverse
temperature, βE . Starting from the block map, the simulations

Residue Index
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Fig. 1. Characterization of the model protein 2ERL. (A) Cartoon representation of the equilibrium folded structure with black spheres indicating α carbons.
(B) Intensity plots of the upper and lower halves of the symmetric connectivity, κ, and covariance, c∝κ−1, matrices. (C) Vibrational densities of states for
the high resolution GNM of 2ERL. (D and E) CG representations with spheres representing the location of the CG sites for block maps with N = 4 and 8 sites,
respectively. Figure employed VMD (66).
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Fig. 2. Statistical analysis of mapping space. (A and B) The natural logarithm of the density of states, ln Ω, quantifying the number of maps, M, with given
information content, I, or spectral quality, Q, for 2ERL at varying degrees of coarsening, R = n/N, indicated by the colors of the legend. The black crosses
indicate I andQ for the block map at each resolution. (C and D) Box plots indicating the mean (widest bar), extrema (top and bottom bars), and the 25 and
75% quantiles (shaded box) characterizing these densities of states for 2ERL (black) and for three other small proteins.

diffuse through mapping space by swapping atoms between pairs
of CG sites, while ensuring that each site remains connected.
Each move is accepted or rejected based upon a Metropolis cri-
terion ensuring detailed balance (28). Given the maps sampled at
a wide range of conjugate temperatures, we estimate densities of
states that quantify the number of maps with a given information
content, Ω(I ), and spectral quality, Ω(Q).

Densities of States. Fig. 2 presents the natural logarithm of the
resulting density of states, ln Ω, for different degrees of coarsen-
ing, R. Since ln Ω exhibits pronounced peaks for each R, each
resolution is characterized by a very large number of typical
maps with a characteristic information content, I , and spec-
tral quality, Q. As expected, the characteristic values for I and
Q systematically decrease with increased coarsening, although
they decrease less rapidly than might be näıvely expected. For
instance, when each site represents two atoms, i.e., R = 2, typical
representations preserve ∼60% of the information and vibra-
tional power present in the microscopic ensemble. Interestingly,
ln Ω(I ) is similarly narrow at each resolution R> 2. In contrast,
ln Ω(Q) becomes increasingly broad with coarsening. In particu-

lar, at a given resolution, there exist rare mappings that provide
significantly higher spectral quality than typical maps.

Fig. 2 C and D present box plots summarizing these statistics as
a function of resolution for 2ERL and three other small proteins.
The I distributions are not only narrow but also almost identi-
cal for different proteins. Thus, the information content depends
strongly upon resolution but appears relatively insensitive to the
details of the mapping or the particular proteins. In contrast, the
Q distributions are much broader, demonstrate greater protein
dependence, and demonstrate long tails toward relatively high
spectral quality. Certain proteins and certain resolutions appear
particularly amenable for preserving the low-frequency motions
of the microscopic model.

The crosses in Fig. 2 A and B indicate I and Q for the block
map at each resolution. When compared to typical represen-
tations, the block map tends to exhibit relatively low I and
relatively high Q. Due to the simplicity and symmetry of the
2ERL structure, the block map provides nearly minimal I and
maximal Q at almost every resolution for this protein. For some
proteins and resolutions, though, block maps do not optimize
either metric but instead exhibit more typical values of I andQ.

High
Resolut ion

Low
 Resolut ion

N =  8 N =  4 N =  2

Max 

Max

Fig. 3. Maps that maximize Q (Top) and I (Bottom) among maps with N = 8, 4, or 2 sites. The ribbon and line diagrams are colored to indicate the atoms
that are grouped together in the three-dimensional structure and in the one-dimensional amino acid sequence, respectively. Figure employed VMD (66).
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Fig. 4. Characterization of the apparent transition for N = 4 site represen-
tations of 2ERL. (A) The dimensionless free energy, βQF, at the transition
temperature (black) and at temperatures above (red) and below (blue) the
transition. The black X indicates the separatrix, Q*, for which P(Q<Q*) =

1/2 at the transition temperature. (B and C) The averages and variances,
respectively, for several metrics. The metric d0(M) quantifies the difference
in the atomic groups defined by the map, M, and the ground state map, M0,
while RG(M) quantifies the compactness of the associated atomic groups. For
convenience, we have shifted RG such that ∆RG(M) vanishes as TQ→ 0 and
have normalized variances relative to their TQ→∞ limit. Error bars esti-
mate statistical uncertainty. The dashed vertical line indicates the transition
temperature, which is defined by the variance peak in Q. T denotes the
fictitious temperature, TQ, conjugate to E(M) = 1-Q(M).

Optimal Representations. Fig. 2 indicates that I and Q are not
equivalent measures of model quality. Fig. 3 illuminates the
difference between these two metrics by comparing the repre-
sentations of 2ERL that maximize Q and I at various resolu-
tions. SI Appendix presents analogous comparisons for several
additional proteins. Representations that maximize the spec-
tral quality, Q, preserve low-frequency fluctuations by group-
ing atoms into densely packed sites that move coherently.
Accordingly, the block map generally has relatively high spec-
tral quality and, in the case of 2ERL, even maximizes Q at
certain resolutions. In contrast, representations that maximize

the information content, I , form sites by grouping atoms that
are distributed across the protein in order to preserve high-
frequency motions. Because these high-frequency motions are
usually localized and often physically uninteresting in soft mate-
rials, we focus on the spectral quality, Q, in the remainder
of this work.

Apparent Phase Transition. Given a mechanical model for a finite
physical system with energy E , an inflection point in the cor-
responding density of states, Ω(E), implies the existence of
a first-order phase transition (29–31). Interestingly, the densi-
ties of states, Ω(Q), in Fig. 2B also exhibit inflection points
at sufficiently coarse resolutions, which suggest the existence
of analogous phase transitions in the space of CG represen-
tations. In order to characterize these transitions, we define a
dimensionless free energy, βQF (Q;βQ) =− lnP(Q;βQ), where
P(Q;βQ) is the probability of sampling a map M with spectral
quality Q at the inverse temperature βQ that is conjugate to
E(M) = 1−Q(M). Similarly, we define averages and variances
as a function of the temperature TQ=βQ

−1. Fig. 4 character-
izes the suggested transition in the space of maps for N = 4 site
representations of 2ERL.

Fig. 4A demonstrates that at the transition temperature the
free energy surface features two shallow minima, corresponding
to maps with relatively high and low Q. These minima are sep-
arated by a relatively small barrier, as might be expected for a
weak first-order transition in a small system. The black cross
indicates the separatrix, which is estimated based upon equal
population for the two states. Fig. 4B demonstrates that near
this transition the spectral quality increases and the informa-
tion content decreases, as expected. Fig. 4C demonstrates that
the variance in these metrics also peaks at or near this transition
(32). In particular, we define the transition temperature by the
variance peak forQ.

Fig. 4 B and C also present two additional metrics characteriz-
ing this transition. For each resolution, R =n/N , we define the
ground state map, M0, as the N -site map with maximum spec-
tral quality. We define the distance, d0, of a map M from M0,

Fig. 5. Global perspective on mapping space for 2ERL. The heat map col-
ors indicate the magnitude of the 2D ln densities of states, ln Ω(Q, I), for
CG maps with resolutions R = 2, 4, 5, 8, 10, and 20. The dashed red and
solid black curves indicate the maxima of ln Ω and Q, respectively, at each
resolution. The dashed-dotted green curve presents a naı̈ve estimate of the
expected information content at each resolution, i.e., N/n, and the opti-
mal spectral quality,QN;max, which corresponds to reproducing perfectly the
N− 1 lowest vibrational frequencies of the high-resolution model. The dot-
ted blue curve and crosses indicate the separatrices of transitions that are
observed at sufficiently low resolutions.
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Fig. 6. Coarse-graining the GNM defined by Zachary’s karate club network.
(A) The N = 2 CG map with optimal spectral quality (Q2;max = 0.11803), as
well as the first two excited states with slightly lower spectral quality. (B)
ln Ω(Q). (Lower Left Inset) The spectra for the first 100 maps. (Upper Right
Inset) As a function of conjugate temperature, the average spectral qual-
ity (red curve, right scale) and the corresponding variance (blue curve, left
scale), which has been normalized relative to its βQ→ 0 limit. The verti-
cal line in Upper Right Inset indicates the transition temperature, while the
horizontal line indicates the corresponding mean.

based upon the variation of information (VI) (33), which quan-
tifies the dissimilarity of the corresponding atomic partitions,
i.e., d0(M) = VI(M, M0). Additionally, we define RG(M), by the
average gyration radius of the partitioned atomic groups in the
equilibrium protein conformation. Fig. 4 B and C demonstrate
that the sampled maps become more compact and also more sim-
ilar to M0 at the observed transition. Interestingly, the variance
in d0 peaks at a noticeably lower temperature, which indicates
considerable variation among the clusterings of maps with high
spectral quality. Nevertheless, SI Appendix demonstrates that
these metrics correlate quite well with the spectral fitness.

Consequently, Fig. 4 demonstrates that this transition in the
space of representations bears consider similarity to a physical
phase transition between different phases of matter. Moreover,
this transition suggests a qualitative distinction between good
and bad representations of a protein at a given resolution. In par-
ticular, good maps are characterized by compact sites that ensure
high spectral quality and by quantitatively similar partitions of
atoms.

Global Perspective. Fig. 5 provides a broader perspective on the
space of representations by presenting an intensity plot of the
natural logarithm of the joint density of states, ln Ω(Q, I ) for
CG representations of 2ERL. In particular, this two-dimensional
density of states indicates the correlation between Q and I .
While Q and I are essentially uncorrelated for the highest-
resolution CG representations, they become highly anticorre-
lated for lower resolutions. As noted above, at a given resolution,
the CG representations sample a fairly narrow range in I but a
much broader range inQ. For comparison, the green curve indi-
cates, for each resolution, the maximum possible spectral fitness,
Qmax, which would be achieved if the N -site CG representa-
tion perfectly preserved the N − 1 lowest vibrational frequencies
of the atomic model, as well as a näıve scaling expectation for
the information content I = 1/R. Fig. 5 demonstrates that the
CG representations almost always preserve more information
than might be näıvely expected. Moreover, the best maps achieve
∼80% ofQmax.

The blue crosses in Fig. 5 indicate the separatrices for the
transitions that are observed at lower resolutions. In the case of
2ERL, we only observe these transitions for resolutions grouping
at least eight residues per site, corresponding to approximately
two turns of an α helix. SI Appendix presents ln Ω(Q) for six
additional proteins of up to 72 amino acid residues with vary-
ing secondary structures and topologies, which suggest that these
trends are quite common among proteins. In almost every case,
the densities of states indicate the onset of a phase transition past
a certain threshold resolution, which suggests a characteristic
length scale for coarse-graining these proteins.

Relation to Networks. The process of determining CG representa-
tions for molecular systems bears striking similarity to clustering
or detecting communities in complex networks. The GNM makes
this analogy particularly transparent. The GNM defines an inter-
action network for a single protein by connecting nearby residues
with linear springs. The protein residues correspond to the nodes
of the network (or, equivalently, to the vertices of a graph) that
are connected by edges corresponding to linear springs. The
curvature of the GNM potential, κ, corresponds to the graph
Laplacian, L, which specifies the edges of the protein inter-
action network (34). The process of grouping atoms into CG
sites then corresponds to clustering nodes in a graph or defining
communities in a network.

Consequently, the present work bears considerable similar-
ity to several leading approaches for clustering and community
detection (35, 36). For instance, SI Appendix demonstrates that
the spectral quality, Q, of a CG representation is quite cor-
related with the modularity (37), which quantifies the strength
of the corresponding communities based upon the fraction of
edges connecting the nodes within each cluster. Thus, the ground
state representation that maximizes Q should be quite similar to
the clustering obtained in simulations of Potts models that opti-
mize the modularity (38, 39). The present work is also related to
spectral clustering approaches that, e.g., partition nodes accord-
ing to the lowest eigenvalues of L (40, 41) or that identify
communities based upon the stability of random walks on the
graph (42, 43).

However, the present work bears two crucial distinctions with
respect to prior investigations of network communities. First,
while many prior studies have sought a single clustering that
achieves a specific objective (38, 40, 42) or an ensemble of graphs
with certain characteristics (44, 45), we have focused on the space
of representations for a single GNM, which corresponds to an
ensemble of clusterings for a single graph (46). Second, and more
importantly, the process of coarse-graining does not simply cor-
respond to grouping nodes but rather to the process of viewing
the fluctuations of an underlying microscopic model for a physi-
cal system through a particular coarse lens. This physical process
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corresponds to a rigorous thermodynamic projection that renor-
malizes the underlying microscopic potential (47), such that the
resulting effective springs connecting CG sites vary in strength
and even in sign (25, 48).

Accordingly, it is intriguing to apply the physical coarse-
graining process to Zachary’s karate club network (49, 50), which
is illustrated in Fig. 6. Zachary’s karate club provides a partic-
ularly simple archetype of networks considered by community
detection algorithms and is known to have two meaningful com-
munities. We defined a corresponding GNM by defining κ as the
graph Laplacian of the network. In this case, we can exhaustively
enumerate all representations of the GNM since the network
includes only 34 nodes with local connections. Fig. 6A presents
the three CG representations that maximize Q. Indeed, the
ground state representation of the GNM corresponds to the
known communities, while the first two excited state representa-
tions correspond to very similar clusterings. Fig. 6B presents the
density of states, Ω(Q), for two-site representations of this GNM.
Interestingly, a similar phase transition is also observed between
good and bad representations of the GNM for Zachary’s karate
club network.

Conclusions
We have presented a statistical thermodynamic formalism and
computational investigation of the landscape of CG representa-
tions for physical systems. In this first investigation, we adopted
the GNM as a high-resolution model since it provides a qualita-
tively useful description of protein fluctuations and is amenable
to theoretical analysis. We considered CG representations that
are both linear and local since we defined CG coordinates as
linear combinations of the atomic coordinates for connected
groups. By employing an analytic coarse-graining of the GNM
(25), we quantitatively and exactly assessed the intrinsic quality
of CG representations without introducing any approximations,
e.g., due to approximating the interactions between CG particles.

The present work focused on characterizing CG representa-
tions according to two metrics, I andQ, which quantify the ability
of the CG representation to preserve the information and large-
scale fluctuations, respectively, contained in the microscopic
ensemble. A priori, one might anticipate that these metrics
would both prove useful for optimizing CG representations. Our
numerical studies demonstrate that both I and Q decrease in
a similar fashion with coarsening for typical maps. However,
while I appears relatively insensitive to the details of the CG
representation or the protein,Q appears more sensitive to varia-
tions in representation and protein structure. Furthermore, these
metrics appear uncorrelated for high-resolution representations
but become highly anticorrelated for low-resolution represen-
tations. Representations that maximize I feature loosely con-
nected sites that preserve the information associated with the
many localized and, thus, relatively informative high-frequency
vibrations. Conversely, representations that maximize Q corre-
spond to densely connected sites that preserve few low-frequency
vibrations.

These considerations explain why block maps that group
residues consecutively in sequence tend to be information-poor
but provide a good description of low-frequency fluctuations.
This intuition also underlies the connection between principal
component analysis and the renormalization group (51), as well
as current strategies for optimizing CG representations (6, 13)
and order parameters (52, 53). In particular, SI Appendix demon-
strates that Q is (anti-) correlated with the objective function,
χ2, which is minimized in the essential dynamics coarse-graining
methodology for determining good CG representations (7).
Moreover, our estimates for Ω(χ2) indicate that similar phase
behavior would be observed if χ2 were adopted as a metric
for characterizing CG representations. Since Q emphasizes the
large-magnitude, low-frequency motions that define the essen-

tial dynamics subspace of the mapped covariance matrix (54), we
expect Q is representative of many metrics employed to identify
coherent structural domains in proteins.

Quite generally, one expects that physical models of soft
materials will often demonstrate relatively few low-frequency
motions that correspond to important physical transitions and
comparatively many high-frequency modes that correspond to
uninteresting localized motions. In other words, most of the
information contained in high-resolution models describes unin-
teresting noise, while a comparatively small fraction of the infor-
mation describes interesting physics. For this reason, physical
models are often “sloppy” in the sense of predicting large-scale
phenomena that are insensitive to most of the parameters defin-
ing the model (55, 56). Moreover, these results suggest that it
may be unwise to optimize representations of physical systems by
näıvely maximizing their information content. Similarly, it may
be unwise to optimize CG representations for backmapping to
atomic resolution, i.e., for reintroducing high-resolution details
into low-resolution structures. Rather, it is important to con-
sider the physical variables of interest when determining the CG
representation of a particular system.

Most interestingly, our numerical results suggest the emer-
gence of a characteristic resolution for coarse-graining proteins.
For relatively high resolutions, all CG representations are qual-
itatively similar. Below this characteristic resolution, a phase
transition indicates a qualitative distinction between good and
bad representations that becomes increasingly significant with
further coarsening. Good representations reflect similar parti-
tions of atoms into spatially compact, highly modular sites with
relatively many stabilizing intrasite interactions.

In the case of 2ERL, this phase transition first emerges in
N = 5 site representations for which R = 8 amino acids are
grouped into each CG site. Fig. 3 indicates that just below this
critical resolution, the ground state map represents each of the
two small helices with distinct sites, while splitting the larger helix
into contiguous fragments. This suggests that the critical resolu-
tion corresponds to the emergence of distinct, modular subunits
that are stabilized by many internal interactions with relatively
few interactions between different subunits. It also indicates that
the details of this transition may depend somewhat upon the
specific interactions included in the microscopic model. In the
extreme limit that the microscopic GNM only includes nearest-
neighbor interactions along the backbone, then only block maps
are allowed, and no phase transition will be observed. However,
SI Appendix demonstrates that similar transitions and critical res-
olutions are observed when the length scale defining interactions
in the microscopic GNM is either decreased or increased by 30%.
Thus, our findings appear fairly robust with respect to variations
in the microscopic model.

Additionally, our work also highlights the similarity between
the selection of CG representations for physical systems and
recent work in clustering and detecting communities in complex
networks (35). In particular, our work bears striking similarity to
a variety of spectral approaches based upon the eigenvalues of
the graph Laplacian (40–43). Importantly, though, the process
of coarse-graining the microscopic GNM reweights the edges of
the reduced graph to reflect the effective interactions at the CG
resolution. Interestingly, this physical coarse-graining approach
identifies the known communities for an archetypal network.
Consequently, the present landscape approach may prove fruit-
ful for considering ensembles of clusterings of a single graph (46)
and for characterizing the effective interactions between commu-
nities. Conversely, the tools developed for community detection
may prove useful for developing CG representations of physical
systems (15, 16).

In closing, we note several promising directions for future
work. First of all, future studies should further investigate the
sensitivity of the observed phase transition and critical resolution
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to protein size and structure. Moreover, while the present work
assumed that each CG particle corresponded to an equal num-
ber of atoms, we anticipate that it may be fruitful to relax this
assumption. Similarly, while the present work considered linear,
local CG representations, future studies should consider more
general nonlinear, nonlocal order parameters. Additionally, we
anticipate further exploring the relation to network community
detection in future studies. Finally, it would be most interesting
to extend this approach to simple model potentials with multiple
metastable states (57) and, ultimately, to more realistic poten-
tials that allow for folding–unfolding transitions (58). In this
case, the quality of a given CG representation may vary among
these metastable states (17, 59, 60). Nevertheless, we hope that
this first study provides a useful framework for systematically
constructing representations of complex physical systems.

Materials and Methods
High-Resolution Model. The GNM represents a protein as a network of
n atoms with linear springs connecting nearby atoms. The dimensionless
GNM potential is u(q) = 1

2 q†κq where the dimensionless configuration
q† = (q1, . . . , qn) specifies the displacement of the atoms from equilibrium,
and † denotes the transpose. The present approach can be readily adopted
for anisotropic network models (61) or for quasiharmonic approximations
to more general nonlinear models (62). The symmetric matrix, κ, corre-
sponds to the graph Laplacian (34) for a protein interaction network that
is formed by representing each atom with a vertex and introducing edges
between nearby atoms. Because the protein is connected, the null space of
κ is spanned by a single vector corresponding to uniform translation of all
n atoms. Consequently, we consider matrix inverses and determinants in the
complementary image space.

We employ the ProDy server to determine κ for the high-resolution GNM
(63). This GNM treats the n α carbons associated with the n residues of the
protein and includes interactions between each pair of α carbons that are
within a cutoff of Rc = 7.5 Å.

The (dimensionless) excess configurational entropy, s, of the GNM is

s =−
∫

dq p(q) ln
[
Lnp(q)

]
= (n− 1)s0−

1

2
ln tκ, [1]

where s0 = 1
2

(
1 + ln[2π/βL2]

)
is a protein-independent constant, while

tκ = n−1 det κ is the number of spanning trees for the protein interaction
network (34). Consequently, we define h = h(κ) = 1

2 ln tκ as the nontriv-
ial information in the high-resolution model. Additionally, we consider the
mass-weighted fluctuations about the equilibrium configuration:

σ=

〈
n∑

i=1

mq2
i

〉
= Trnmc = β

−1
n−1∑
i=1

ω
−2
i , [2]

where c = (βκ)−1 is the covariance matrix describing correlated fluctua-
tions, the angular brackets denote an equilibrium average according to p(q),
and ωi > 0 is the ith vibrational frequency. For simplicity, we assume that all
atoms have equal mass, m.

Coarse Representation. We codify CG representations with a mapping, M,
that specifies the CG configuration, Q = (Q1, . . . , QN), as a function of the
microscopic configuration, Q = M(q). We consider mappings that partition
the n atoms into N mutually disjoint subsets, {S1, . . . , SN}, each of which
contains R = n/N atoms that form a connected subgraph of the high-
resolution protein interaction network, i.e., the bonds of the GNM must
connect the atoms within each site. We associate a CG site, I, with each
atomic group, SI, and we define the CG coordinate, QI, by the mass center
of the atomic group.

The mapping, M, along with the microscopic configuration distribution,
p(q), determines the configuration distribution for the mapped ensemble:

P(Q; M) =

∫
dq p(q) δ(Q−M(q))∝ exp

[
−

1

2
βQ†KMQ

]
, [3]

where K−1
M = Mκ−1M† for the maps we consider (25). The excess entropy

of the mapped ensemble is

S(M) =−
∫

dQ P(Q; M) ln
[
LNP(Q; M)

]
, [4]

= (N− 1)s0−
1

2
ln TKM , [5]

where TK = N−1 det K. Accordingly, H = H(M) = 1
2 ln TKM quantifies the non-

trivial information preserved in the mapped ensemble. We also consider the
mass-weighted fluctuations in the mapped ensemble:

Σ(M) =

〈
N∑

I=1

MQ2
I

〉
= TrNMCM = kBT

N−1∑
I=1

Ω
−2
I , [6]

where CM = McM†, M = mn/N is the CG mass, and ΩI > 0 is the Ith

vibrational frequency of the CG model.

Metrics for Characterizing Representations. We consider two metrics for
quantitatively assessing the quality of a CG representation. We define the
information quality

I = I(M) = H(M)/h = ln TKM/ ln tκ [7]

as the fraction of information preserved by the mapping. We define the
spectral quality

Q=Q(M) = Σ(M)/σ=

N−1∑
I=1

Ω
−2
I

/ n−1∑
i=1

ω
−2
i [8]

as the fraction of vibrational power preserved by the CG representation.
Both metrics satisfy 0≤ I,Q≤ 1, vanish in the limit N→ 0, and equal unity
only in the limit N = n.

Fig. 4 considers two additional metrics: 1) Given the folded structure of
a protein, we define the physical size of a CG site as the three-dimensional
radius of gyration for the α carbons that are grouped into the site. We
define the radius of gyration, RG(M), for the map, M, as the average gyration
radius of the corresponding sites. 2) Given the ground state map, M0, which
maximizes Q, we define the distance of a map, M, from the ground state
as d0(M) = VI(M, M0), where VI is the variation of information (33), which
is a distance metric commonly employed for distinguishing clusterings on
graphs and is explicitly defined in SI Appendix.

Exploring Representations. We employ MC simulations to sample the space
of connected CG maps at different resolutions, R. These simulations treat
the CG mapping, M, as the microstate and employ a dimensionless energy
function E = E(M) = 1−Q(M) or 2H(M) to define an equilibrium Boltzmann
distribution:

PM∝ exp [−βEE(M)], [9]

where βE is the conjugate inverse temperature. Starting from a map
defined by N connected atomic subgroups, i.e., M = {S1, . . . , SN}, we con-
sider two move sets for generating a new trial map, M′. Both move sets
select a pair of sites SI, SJ ∈M that are replaced with a new pair of sites,
S′I and S′J , while leaving the remaining N− 2 sites unchanged. 1) The swap-
based move set swaps a pair of atoms between the two sites, i.e., one atom
is moved from site I to site J, while a second atom is moved from site J to
site I. 2) The site-based move set merges the two sites to form a supersite
SIJ = SI ∪ SJ of 2R atoms and then partitions SIJ into two new sites, S′I and
S′J , each of which contains R atoms. Both move sets require that the result-
ing sites S′I and S′J are connected subgraphs of the high-resolution protein
interaction network. Note that we employed the swap-based move set to
exhaustively enumerate the set of maps for Zachary’s karate club. It is pos-
sible that the swap-based move set is not ergodic under certain conditions,
although we have obtained numerically identical results with the less restric-
tive site-based move set. In cases that the move set is not ergodic, our results
strictly apply to the subset of mapping space that is reachable from the block
map.

The restriction to connected maps significantly reduces the size of map-
ping space but also complicates sampling. Operationally, given a connected
map, M, and a specific move set, we first determine the number, CM, of con-
nected maps that can be reached in one move from M. We then select one of
these connected maps, M′, according to a uniform probability distribution
and determine the number of maps, CM′ , that can be reached in one move
from M′. We accept or reject the move M→M′ according to the acceptance
probability (28)

Acc(M→M′) =
CM

max{CM, CM′}
min {1,PM′/PM}. [10]
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Because in general, CM 6= CM′ , a prefactor is necessary to preserve detailed
balance, although other prefactors are possible.

We performed MC simulations using either energy function E = 1−Q or
2H at a range of positive and negative conjugate (inverse) temperatures, βE .
Given the CG maps, M, sampled from these MC simulations, we employed
the multistate Bennett acceptance ratio method to estimate their statistical
weights for various energy functions and conjugate temperatures (64, 65).
We estimated the density of states for each energy function E from the
βE→ 0 limit of these statistical weights.

Data Availability. Software, Python notebooks, and text data files have been
deposited in http://www.datacommons.psu.edu with DOI 10.26208/139c-8x65.
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