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ABSTRACT

Atherosclerosis is a major cardiovascular disease and in 2016, the World Health Organisation (WHO) estimated
17.5 million global deaths, corresponding to 31% of all global deaths, were driven by inflammation and de-
position of lipids into the arterial wall. This leads to the development of plaques which narrow the vessel lumen,
particularly in the coronary and carotid arteries. Atherosclerotic plaques can become unstable and rupture,
leading to myocardial infarction or stroke. Extracellular vesicles (EVs) are a heterogeneous population of vesicles
secreted from cells with a wide range of biological functions. EVs participate in cell-cell communication and
signalling via transport of cargo including enzymes, DNA, RNA and microRNA in both physiological and pa-
tholophysiological settings. EVs are present in atherosclerotic plaques and have been implicated in cellular
signalling processes in atherosclerosis development, including immune responses, inflammation, cell prolifera-
tion and migration, cell death and vascular remodeling during progression of the disease. In this review, we
summarise the current knowledge regarding EV signalling in atherosclerosis progression and the potential of

utilising EV signatures as biomarkers of disease.

1. Pathophysiology of atherosclerosis

The term cardiovascular disease (CVD) is used to describe the
pathologies affecting the heart or circulation, including heart failure,
coronary artery disease (CAD), stroke, hypertension and athero-
sclerosis. Atherosclerosis is a chronic inflammatory disease char-
acterised by lipid-laden plaques developing in the vessel wall and can
cause myocardial infarction (MI), stroke, unstable angina and sudden
cardiac death [1-3]. Despite significant advances in pharmacological
treatments and surgical interventions over the past 20 years, athero-
sclerosis remains the leading cause of vascular death worldwide [4].
Atherosclerosis is no longer considered merely a lipid storage disease as
studies have reported inflammatory mechanisms that participate in
lesion progression such as leukocyte recruitment to the lesion site [5,6].
Leukocytes in the plaque can secrete growth factors inducing SMC
proliferation in advanced lesions [7]. Low density lipoprotein (LDL)
retention in the arterial wall is considered the initial step of the disease
[8,9]. Ross at al, in 1973 formulated the Respone to Injury theory
where atherosclerosis results from endothelial injury [10,11]. Williams

and Tabas in 1995, first formulated the Response-to-Retention Hy-
pothesis of Early Atherogenesis (suggesting that lipoprotein retention in
the vessel wall was the initial step of the disease), a theory that origi-
nated from the Anichkov and Khalatov hypothesis of cholesterol re-
tention in the vessel wall in atherosclerotic plaque formation [12,13].
The current knowledge regarding atherosclerotic lesion progression is
summarised in Fig. 1. In the vessel wall, LDL undergoes several mod-
ifications such as oxidation, enzymatic cleavage or aggregation [9,14].
Studies have shown that oxidised low density lipoprotein (oxLDL) can
act as an antigen and initiate an immunological response via the gen-
eration of antibodies against oxLDL [15]. Macrophages take up oxLDL
to remove it from the arterial site but the result is the formation of foam
cells and subsequent activation of an inflammatory response [14].
Clinical data have confirmed the pathological role of LDL levels in
disease progression and the subsequent reduced cardiovascular risk
after patients are prescribed lipid lowering therapy (the mechanism of
action of lipid lowering therapies such as statins involves reduced
cholesterol levels) [8,16,17]. Taking into consideration the in-
flammatory response present in all steps of the disease, LDL retention
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Fig. 1. Atherosclerotic plaque formation. (A) Lipoprotein retention to the vascular wall and disturbed flow activate the expression of adhesion molecules (vascular
cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1)) on endothelium with subsequent monocyte recruitment to the vessel wall.
Monocytes differentiate to macrophages, take up oxidised low density lipoprotein (oxLDL), form foam cells and a pro-inflammatory reaction is activated. Vascular
modifications result in SMC migration to the subendothelial space. (B) A stable plaque is formed of a lipid core and the accumulation of necrotic cells as foam cells
undergo apoptosis and necrosis. SMC secrete macromolecules like collagen, elastin, fibronectin and extracellular matrix facilitating fibrous cap formation. (C) Thin
fibrous cap results in a vulnerable plaque prone to rupture and secondary complications like thrombus formation. Macrophage proteolytic activity with matrix
metalloproteinases (MMPs) being the main proteolytic enzymes has been associated with plaque rupture.

occurs along with endothelial cell (EC) activation and dysfunction
triggered by cytokines resulting in the expression of adhesion molecules
[5]. Lipid lowering therapies are successful, however, the burden of
recurrent cardiovascular events exists [5]. Two recent clinical trials, the
Canakinumab  Anti-inflammatory = Thrombosis Outcome Study
(CANTOS) and the Colchicine Cardiovascular Outcomes Trial
(COLCOT) have shown that targeting inflammation may be a viable
approach to lower the ratio of recurrent cardiovascular events [18,19].

1.1. Fatty streak and lesion progression

High levels of LDL particles in plasma are linked with coronary
events [20,21]. Atherogenic apoB-containing lipoprotein retention to
atheroprone arterial sites is the initial step in fatty streak lesion for-
mation (Fig. 1) [22-25]. Atheroprone sites are often branch points of
the arteries subjected to non-laminar and turbulent blood flow and
display predisposition to lesion development [26]. Atheroprone flow
activates NF-xB in ECs inducing expression of inflammatory cytokines
and sets the scene for an atherogenic environment [27]. Upon in-
flammatory stimuli, ECs start to express vascular cell adhesion mole-
cule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), fa-
cilitating monocyte migration into the intact vessel wall [28-30]. LDL is
oxidised via enzymatic or non-enzymatic pathways to form oxLDL
[9,31]. Subsequently, CD11b + monocytes upregulate scavenger lipo-
protein receptors such as Scavenger Receptor Class A type I and II (SR-
Al/II), Scavenger Receptor Class B, type I (SR-BI) and CD63, acquire a
macrophage (Mac3+) phenotype and transmigrate into the sub-en-
dothelial space and accumulate oxLDL [32-34]. This change of mac-
rophage phenotype into foam cells, is the hallmark of fatty streak le-
sions, the earliest sign of atherosclerotic plaque development [32,33].
Furthermore, the inflammatory reaction is enhanced as monocytes or
macrophages present antigenic epitopes of oxLDL to B-cells, inducing
the formation of antibodies to oxLDL and an immune reaction towards
deposited oxLDL [35].

The end result leads to several vascular modifications (Fig. 1). SMC

also accumulate in the atheroma and secrete macromolecules such as
fibronectin which contribute to the formation of the fibrous cap and
increase plaque stability [36]. SMC retain phenotypic plasticity, en-
abling them to undergo a switch from a contractile, quiescent pheno-
type to a synthetic, proliferative and migratory phenotype [37]. This
phenotype alteration to dedifferentiated SMCs is critical for the pa-
thogenesis of atherosclerosis (intimal lesion progression) and other
vascular diseases characterised by intimal thickening [36]. Interest-
ingly, recent lineage tracing studies have shown that dedifferentiated
SMC that lack normal SMC markers can express macrophage-like
markers such as CD68, Mac2 and LGALS3 [36,38,39]. SMC also express
scavenger receptors participating in foam cell formation in early
atherogenesis and express proteoglycans that promote LDL retention
[401.

1.2. Atheroma formation

Typical atheromas contain a lipid core, apoptotic macrophages
forming a necrotic core and a developing thick fibrous cap facilitated by
SMC production of collagen, elastin, fibronectin and extracellular ma-
trix [37]. Macrophage activation leads to the release of several cyto-
kines, their transformation into foam cells and their sequential necrosis
[41]. Activated macrophages release further inflammatory stimuli and
enhance the necrotic core formation in advanced atheromas [41].

1.3. Calcification

Vascular calcification is the process of accumulation of minerals to
intima or media of the vessel wall, and is present in the late stages of
atherosclerosis [42]. Plaque calcification is linked to plaque stability,
stable fibrous cap formation and reduced macrophage infiltration
[43-45]. Shaalan et al., suggested that quantification of calcified area
could be a novel marker to assess cerebrovascular ischemic event risk
[44]. However, older studies have linked the amount of calcium with
cardiovascular burden and the severity of the disease [46].
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Microcalcification in the fibrous cap can promote plaque instability and
rupture, but calcified plaques are less prone to rupture highlighting a
dual role for calcification in atherosclerosis [47]. A possible explanation
comes from high-resolution imaging and clinical data, showing that
microcalcification is found in areas with low levels of collagen (collagen
is responsible for formation of the thick fibrous cap), whereas heavily
calcified regions are bordered with collagen fibres [48]. SMC retain
phenotypic plasticity but transdifferentiation to chondrocytic, osteo-
blastic and osteogenic phenotypes marks the beginning of the calcifi-
cation process [49-52]. Molecular mechanisms regarding the calcifi-
cation process are still poorly understood.

1.4. Vulnerable plaques

Vulnerable and ruptured plaques are characterised by a thin fibrous
cap and expanding necrotic core due to macrophage and SMC apoptosis
[53]. Macrophage proteolytic activity has been implicated in plaque
destabilization and degradation of the stable fibrous cap [54-56]. De-
tection of proteolytic enzyme activity such as matrix metalloproteinases
(MMPs) (MMP-8, MMP-9 and MMP-12) is reported to predict plaque
rupture and thrombus formation, a major manifestation of athero-
sclerosis implications [57,58]. MMPs are proteolytic enzymes and de-
dradation of extracellular matrix including collagen by MMPs has been
extensively reported [57]. MMP-8 for example is a well known col-
lagenase and MMP-9 a well known gelatinase and reports suggest they
contribute to plaque destabilization and rupture by degradation of the
fibrous cap [59,60]. The exact mechanism for how increased proteo-
lytic activity affects plaque rupture is still poorly understood.

2. Extracellular vesicles
2.1. EV biogenesis

Extracellular vesicles (EVs) are small membrane-bound vesicles that
are secreted from all cell types and were first thought to remove un-
wanted membrane proteins from cells [61]. In the 20th century, re-
searchers started to gather evidence for the presence of EVs, and the
term extracellular vesicles was first used in 1971 [62-64]. First, EVs
were believed to remove unwanted proteins from cells but in recent
years their actions have been found to mediate a variety of biological
functions, thus, new insight into the role of EVs has been revealed. EVs
can carry lipids such as cholesterol, sphingomyelin, phosphatidylserine,
proteins, and genetic material (particularly RNA and small non coding
RNAs) [65]. They can transfer their cargo to other cells and are im-
plicated in many physiological processes including cell apoptosis, im-
mune responses, inflammation, and coagulation [65]. Many studies
have focused on unravelling their role in different diseases, including
CVD and atherosclerosis [66-69].

Classification of EVs is a relatively new process and they can be
categorised based on their size and biogenesis [70]. Based on their
biogenesis EVs can be further categorised as exosomes, microvesicles
and apoptotic bodies [47]. Microvesicles represent large particles with
size range 100 nm up to 1 pm [47]. In contrast, exosomes, with size
range from 30 nm to 150 nm, are believed to be particles of endosomal
origin through the endosomal sorting complex required for transport
(ESCRT)-dependent pathway, as many endosomal proteins have been
identified on their membranes [71-73]. Another EV subtype are
apoptotic bodies with sizes up to 5 pm, released during apoptosis
(apoptotic body formation reviewed in [74]). Two subtypes of EVs,
exosomes and microvesicles, are being studied extensively regarding
their role in signalling in CVD and whether they could be utilised as
biomarkers to detect the early stages of the disease.

The biogenesis of microvesicles and exosomes has similarities, but
the main difference is that microvesicles come from shedding of the
plasma membrane (Fig. 2). Biogenesis of exosomes is initiated by in-
vagination of the plasma membrane where active molecules are
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captured by endocytosis forming a structure called the early-sorting
endosome (ESE) which then matures into late-sorting endosomes (LSEs)
[75]. Next, proteins of the ESCRT pathway are recruited to endosomes
to facilitate formation of multivesicular bodies (MVBs), through inward
budding of the endosomal membrane. During this time, pre-cursors to
exosomes termed intraluminal vesicles (ILVs) are enriched with cho-
lesterol and other lipids such as sphingomyelins [76-80]. The ESCRT
pathway then also transfers functional proteins including Tumor Sus-
ceptibility Gene 101 (TSG101) and Suppressor of K+ Transport Growth
Defect 1 (SKD1) into ILVs and an ESCRT subunit is then responsible for
ILVs maturing into exosomes [81-83]. MVBs are full of ILVs which then
later mature into exosomes. MVBs can either fuse with lysosomes and
be degraded or they can follow an alternative pathway and fuse with
the plasma membrane and release their cargo, called exosomes, into the
extracellular space [84]. Studies suggest that exosome secretion is
linked with removal of parts of the plasma membrane during plasma
membrane remodeling and this may be responsible for the presence of
cell-membrane specific proteins on the exosome surface, contributing to
maintaining cellular homeostasis and furthermore MVBs are associated
with receptor downregulation [85,86]. Lysosome degradation of un-
wanted or damaged proteins is a way to maintain cell homeostasis [87].
In both pathways, MVB fusion with either the cell membrane or the
lysosome, the anticipated effect is removal of proteins from the cell and
is achieved with the use of similar pathways, molecular components
and organelles [88]. A clear mechanism for how either MVB fusion with
the lysosome or MVB fusion with plasma membrane for later exosome
secretion interact is not clear. Key questions still remain unknown re-
garding whether the same population of MVBs participates in both
processes.

Generation of microvesicles via outward plasma membrane shed-
ding is also a physiological process. Generally, microvesicles are larger
vesicles than exosomes, although there is an overlap in their size pro-
files. Microvesicle biogenesis begins upon nucleation, whereby tetra-
spanin proteins and lipids on the plasma membrane surface cluster
[89]. The outward budding of the plasma membrane to release mi-
crovesicles requires changes in the architecture of the cytoskeleton and
elevated levels of free intracellular Ca®* act as a second messenger to
ensure the release of microvesicles [89]. As the cytoskeleton is exposed,
proteins and genetic material can internalise inside the lumen of the
microvesicle [90]. Two pathways have been reported to participate in
the budding and pinching off of the membrane for microvesicles to be
generated, the ESCRT pathway, which is also involved in exosome
generation, and a signalling cascade involving ARF6 through activation
and recruitment of PLD/ERK and phosphorylation of MLCK [91,92].
The distinct differences in exosome and microvesicle generation ac-
count for their different surface protein repertoire and also their cargo.
Generation of microvesicles through outward plasma membrane shed-
ding is a physiological process occurring in all cell types [89].

2.2. EV heterogeneity

Discussion around the diverse biological functions of EVs is ex-
tensive with studies reporting contradicting results for the same EV
population. It is crucial though to mention that EV heterogeneity makes
EV research challenging. EVs can differ in their size, cargo, biological
effect, cellular origin, and the microenvironment in which the cells
were cultured, as well as in their isolation method. Many factors that
effect EV generation and secretion, including budding of the cell
membrane and pinching off of ILVs or microvesicles can lead to exo-
somes or microvesicles with subpopulations of distinct size range
[93,94]. The microenvironment can also have an impact on the cargo of
EVs and, for example, determine specific miRNAs to be encapsulated
inside the EVs [95]. A study on quantitative and stoichiometric analysis
of miRNA cargo revealed that exosomes contain low number of miRNA
copies [96]. However, an increasing number of studies report func-
tional EV-mediated transfer of miRNAs to recipient cells [97-99].
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Fig. 2. EV Biogenesis. EV classification is based upon the particle size and their biogenesis. Apoptotic bodies are large vesicles and are formed after blebbing of the
plasma membrane. Microvesicles are a product of outward budding of the plasma membrane. Exosomes are smaller endosomal vesicles and released upon fusion of
the MVBs with the plasma membrane. The figure was generated with Blender 2.8 which is released for free use under a GNU General Public License (GPL).

Furthermore, a proteomic analysis of isolated EVs demonstrated the
existence of subpopulations within EVs with distinct protein markers
[100]. These data indicate the existence of subpopulations of EVs with
distinct cargo and functions and can explain their varied and con-
trasting effects on recipient cells.

2.3. EV isolation methods

EVs can be found and isolated from many biofluids, including
serum, plasma, saliva, urine, amniotic fluid, breast milk, cerebrospinal
fluid, nasal secretions, culture media as well as from cells in tissues
[101-109]. Taking into account EV heterogeneity and the fact that
isolated particles come from biological fluids contaminated with non-
vesicular components such as cell debris, proteins and other non-EV
particles, high purity EV yield with adequate separation of EV sub-
populations is challenging [110]. A major limitation of many EV iso-
lation protocols is the co-isolation of lipoproteins, protein aggregates or
non-EV particles along with the EV population. Co-isolation of lipo-
proteins like LDL or high density lipoprotein (HDL) particles comprises
a challenge when working with serum or plasma as abundant lipopro-
tein levels are found in blood. In a recent study using a density gradient
method of isolation it was shown that EVs were co-isolated with HDL
particles which have a similar density between 1.063 and 1.21 g/mL
[111]. LDL particles are no different as studies show they also co-isolate
with EVs [112]. Although, lipoprotein depletion with antibodies has
been proposed, it was shown that a significant number of EVs are lost
with that method [113]. The same limitation applies to non-EV mem-
brane shedding particles such as matrix vesicles which are known to
present EV characteristics [114].

To this day, there is no gold-standard method for EV isolation. Many
studies have compared isolation techniques for their efficacy and yield
purity [110,115]. Briefly, the main EV isolation methods include: dif-
ferential ultracentrifugation (UC), density-gradient separation,
polymer-based precipitation, immunoselection and size exclusion
chromatography (SEC) [116-118]. It is worth mentioning that each of
these methods comes with its own limitations [119]. One of the most
common techniques used for EV isolation is UC, whereby particles with
different sizes and densities will show different sedimentation char-
acteristics [120-122]. Inconsistencies and low method reproducibility

regarding EV isolation via UC have been reported and many factors can
be responsible for this including centrifugation speed, rotor type, and
temperature [110-122]. SEC allows the separation of particles based on
their size, although the separation between non-EV particles and co-
isolation of lipoproteins are limitations of this method [110,119].
Comparative studies between the two methods suggest that SEC allows
EV yield with higher concentrations but lower purity compared to UC
[110,119]. Polymer-based precipitation (PBP) methods exploit the use
of a polymer precipitation agent to reduce EV solubility and allow EV
isolation along with co-isolation of non-EV particles and proteins
[119,123]. Although, this isolation method does not affect EV integrity
it has been suggested that the precipitation agent may interfere with
downstream analyses [123,124].

Due to the increasing interest in researching the functions of EVs,
the need for standardization of an isolation method is fundamental.
Many factors may influence the choice of isolation method such as the
tools available to the researcher, downstream analysis required and
starting material. For example, SEC attracted a lot of interest as studies
have suggested that preservation of EV functionality is greater com-
pared to the classical UC method [110,125]. As discussed previously,
absolute separation of EV populations is challenging as EV subpopula-
tions can overlap in size. Sluijter et al., in a Position Paper from the
Working Group on Cellular Biology of the Heart of the European Society
of Cardiology make recommendations for optimal isolation methods
depending on the starting material [126]. A combination of two isola-
tion methods has been proposed to overcome the low purity of one
isolation method alone but at the expense of reduced EV yield
[119,127]. Therefore, until a universal isolation method is achieved,
great consideration regarding the method used to isolate EV popula-
tions should be given in order to assess the biological effects of isolated
EVs.

3. EV signalling in atherosclerosis progression

EVs are reported to be present in both intimal lesions in developing
plaques and in advanced plaques suggesting that they participate in the
initial and final stages of plaque formation in humans [128-130]
(Fig. 3). Characterisation of plaque thrombogenic EVs demonstrate that
the majority originate from leukocytes (52%), followed by
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Fig. 3. EV signalling in vascular inflammation and atherosclerosis. Brief schematic representation of EVs and their roles in the steps of atherosclerotic lesion
progression. (A) During fatty streak formation, EC-derived EVs promote endothelial ICAM-1, VCAM-1 expression, reduction of NO production, oxLDL uptake by
macrophages and macrophage migration. Monocyte-derived EVs induce vascular inflammation (expression of IL-6, IL-1(3), upregulation of adhesion molecules in ECs
(ICAM-1, VCAM-1 and E-selectin) and vascular cell death. Foam cell-EVs and platelet-EVs can induce SMC proliferation and migration, aggravating the progression of
the disease. Crosstalk between cells is fundamental; SMC-EVs can promote EC migration and via miRNA transfer promote tight junction destruction. (B) Dead cells
accumulate in the plaque's necrotic core. Platelet, endothelial, dendritic and monocytic-derived EVs encapsulate cell death related proteases: caspase-1 and caspase-3
that can induce macrophage apoptosis. Monocyte-EVs can promote SMC death via caspase-1 and participate in formation of the atherosclerotic plaque. (C)
Weakening of the fibrous cap is the main cause of plaque rupture. EVs from various sources (macrophage, neutrophil, endothelial) encapsulate MMPs and may
degrade extracellular matrix and destabilize the plaque. Platelet and monocyte derived EVs can also enhance thrombus formation.

macrophages (29%), erythrocytes (27%), lymphocytes (15%), SMCs
(13%) and ECs (8%) [129].

3.1. EVs and fatty streak and lesion progression

EC activation is among one of the first steps in intimal lesion for-
mation. Levels of circulating EC-derived microvesicles are increased in
patients with underling cardiovascular risk factors [131,132] including
smoking [133,134], hyperlipidaemia [135] and high blood pressure
[136,137]. Endothelial dysfunction or activation induces the produc-
tion of EVs from ECs [138]. EC-derived EVs have gained interest as
indicators of pathology but studies have also reported that they can
bind platelets and monocytes and thus regulate thrombus formation
[139,140]. EC-derived EVs seem to have ambiguous roles in the initial
steps of the disease, being reported to signal in processes that promote
endothelial dysfunction and the development of atherosclerosis as well
as mediating protective signalling. Densmore et al., showed that EC-
derived EVs supressed nitric oxide (NO) production in ECs and ag-
gravated endothelial function [141,142]. Oxidised lipoproteins can also
alter the EC-derived EV cargo favouring proinflammatory molecules
which can induce the expression of adhesion molecules such as ICAM-1
and VCAM-1 [143-145]. Interestingly, Chatterjee et al., also showed
that EC-EVs can affect the initial steps of the disease by aggravating
endothelial barrier dysfunction [146]. EC-derived EVs induced desta-
bilization of tight junction proteins via c-Src kinase transfer causing
barrier function disruption [146]. Another study showed that miR-92a
transfer from EC-derived EVs to macrophages resulted in increased LDL
uptake and macrophage migration, while inhibition of miR-92a ex-
pression abolished these effects, indicating a regulatory role for miR-
92a in vascular disease [99].

EC-derived EVs exert atheroprotective effects too. Interestingly, EC-
derived EVs can regulate vascular homeostasis as miR-126 transfer to

recipient ECs promotes EC migration and miR-222 transfer reduces
ICAM-1 levels on ECs [147,148]. In both studies, reduced levels of miR-
126 and miR-222 in EVs were observed in patients with CAD [147,148].
Interestingly, non-EV transfer of miR-126 has an atherogenic impact on
SMCs by inducing proliferation and apoptosis of SMC, but these effects
were abolished under atheroprotective laminal shear stress (LSS) [149].
Regulation of EC migration is vital for re-endothelialisation after vas-
cular injury. Kriippel-like Factor 2 (KLF2) is a transcription factor im-
plicated in EC behaviour [150,151]. EC-derived EVs from KLF2 ex-
pressing cells promoted an anti-inflammatory response and repressed
monocyte activation by reducing the expression of the inflammatory
miR-155 [144]. Another study identified that endothelial EV-mediated
transfer of miR-10a repressed monocyte activation via NF-kB down-
regulation [152]. In vivo the same EV population reduced plaque size
and reduced M1 macrophage phenotype with a shift to the M2 anti-
inflammatory macrophage phenotype [144]. These findings show that
inhibition of miR-155 could be a new target for atherosclerosis treat-
ment. Furthermore, it was also reported that EC-derived EVs from KLF2
expressing cells could control SMC phenotype through EV-mediated
transfer of miR-143/145 and in vivo this led to reduced aortic lesion
size in apolipoprotein-E (apoE) /™ mice [153]. These data highlight
that two different triggers can alter the behaviour of EC-derived EVs,
underlining the role of the microenvironment in the biological effects of
EVs and why sometimes it is very difficult to decipher their net con-
tribution to the progression of the disease. One possible explanation
could be that a different trigger alters the EV cargo and thereby mod-
ulates cell-cell communication thus generating a different biological
effect.

Another important cell type participating in lesion progression is the
monocyte. In many studies it has been reported that monocyte-derived
EVs (exosomes and microvesicles) promote vascular inflammation and
vascular cell death, often via miRNA transfer or increased cytokine
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expression (IL-6, IL-1B) and via upregulation of the expression of
VCAM-1, ICAM-1 and E-selectin in ECs [154-156]. Zhang et al., re-
ported that monocyte-derived EVs can induce EC migration by miR-150
transfer to ECs [157]. Atherosclerotic plaque EVs can transfer ICAM-1
directly to ECs and promote inflammatory cell recruitment suggesting
that plaque EVs aggravate lesion progression [158]. Macrophage-de-
rived EVs and in particular their miRNA cargo are of great interest. It
has been reported that upon application of the atherogenic stimuli
oxLDL, macrophage EVs are enriched for many miRNAs including miR-
146a, miR-128, miR-185, miR-365, and miR-503 [159]. Furthermore,
miR-146a could accelerate the progression of atherosclerosis by indu-
cing macrophage migration into the vessel wall [159]. Foam cell-de-
rived EVs have been shown to induce SMC migration and extracellular
signal-regulated kinases (ERK) pathway activation which could ag-
gravate lesion progression [160].

Platelet-derived EVs have been implicated in phenotypic modula-
tion of immune and vascular cells by interacting with subendothelial
elements [161]. Phenotypic modulation of SMC towards a synthetic
phenotype is characteristic of the disease. Platelet-derived EVs can in-
duce SMC proliferation and migration by inducing a proinflammatory
phenotype in SMCs [162,163]. Proteomic analysis of EVs, revealed that
Ras-related protein 1 (Rapl) was overexpressed in patients with me-
tabolic syndrome compared to healthy donors [164]. A larger propor-
tion of Rapl + EVs originating from platelets, promoted SMC migra-
tion and proliferation probably via ERK5 activation in vitro and these
effects were abolished after Rapl inhibition [164]. Elevated levels of
Rapl were detected on circulating EVs from high fat fed apoE ~/~ mice
too [164]. Evidence also suggests that they are responsible for mono-
cyte recruitment to the atheroprone endothelium [165]. Transcriptomic
analysis of platelet and platelet-derived EVs during senescence revealed
that several miRNAs in platelet-EVs (miR-144-3p, miR-486-5p, miR-
142-5p, miR-451a, miR-25-3p, miR-145-5p, and let-7f-5p) could target
components of lipid metabolism, the inflammatory response and coa-
gulation [166].

Regarding macrophages, studies have shown that platelet EVs can
reduce macrophage reactivity by altering their differentiation into the
M2 phenotype [167,168]. Laffont et al., demonstrated that platelet EVs
transfer miR-126-3p to macrophages resulting in alteration of their
gene expression profile (ATF3, ATP1B1, ATP9A and RAI14 expression),
downregulation of inflammatory cytokine production (CCL4, CSF1 and
TNF) and an increase in macrophage phagocytic capacity [169]. Im-
portantly, platelet-derived EVs are also reported to have both pro- and
anti-inflammatory effects in recipient cells. Although isolation techni-
ques can also alter the biological effect of isolated EVs, the previously
discussed studies used differential centrifugation for EV isolation.
Therefore, the diverse biological responses may be explained by varied
target cells and the different cargo being transferred from platelet-de-
rived EVs.

Intercellular communication between EC and SMC is important in
maintaining vascular homeostasis. The X-box binding protein 1 (XBP1)
is crucial for the vascular functions of EC and SMC [170]. XBP1 splicing
can lead to miR-150 EV-mediated transfer from SMC to EC and activate
the VEGF-A/VEGFR/PI3K/Akt pathway that regulates EC migration
[170]. Inhibition of miR-150 transfer suppressed the EC-migratory ef-
fect [170]. Moreover, miR-155 EV mediated transfer from KLF5-trans-
duced SMCs to ECs resulted in the destruction of tight junctions and
endothelial barrier integrity and promoted atherosclerosis and infusion
of these EVs into high fat fed apoE™/~ mice resulted in larger size
plaques, an effect inhibited by transfer of miR-155 [97]. MiR-143 and
miR-145 transfer from KLF2-induced endothelial EVs blocked SMC
transdifferentiation providing an atheroprotective effect mediated
through EC-SMC communication [153]. MiRNAs have attracted a lot of
interest as inhibition of EV-mediated miRNA transfer has proved to be
an effective therapeutic target in atherosclerosis [97].
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3.2. EVs and plaque stability

The need to find biomarkers that would enable an assessment of
endothelial dysfunction and the possibility of a coronary event is im-
perative. Endothelial- and platelet-derived EVs are the major circu-
lating particles in blood and studies have shown that they can be used
as independent biomarkers for CAD status [171-175]. Activated mac-
rophages undergo necrosis and build up in the plaque's necrotic core.
Many signals can promote macrophage necrosis, including EV signal-
ling. A recent study showed that T-cell-derived EVs were cleared by
macrophages via phagocytosis and caused macrophage apoptosis [176].
Interestingly, as well as increased apoptosis, EVs also promoted mi-
croparticle release by macrophages, possibly generating new apoptotic
messages which could then amplify cell death [176]. Studies have
shown that T-cell-derived EVs activate the phospholipid-ceramide
pathway, production of arachidonic acid and increased levels of proa-
poptotic ceramides by EVs [177]. However, other studies indicate that
platelet, endothelial, dendritic and monocytic-derived EVs encapsulate
cell death related proteases: caspase-1 and caspase-3 that can induce
macrophage apoptosis [178-181]. SMC death can also increase the
plaque necrotic core and therefore plaque size [182]. Monocyte-derived
EVs were reported to encapsulate caspase-1 and induce SMC death
[181]. Furthermore, T-cell derived EVs promoted cholesterol accumu-
lation into monocytes and macrophages, forming foam cells, unravel-
ling another proatherogenic factor and increasing lipid accumulation in
the lipid core [183].

3.3. EVs and vascular calcification

Many studies have identified the presence of EVs in calcified pla-
ques and showed their involvement in the process [42,184,185,186].
Endothelial EVs have been reported to have increased calcium and bone
morphogenetic protein 2 (BMP-2) levels resulting in promotion of cal-
cification and in BMP-2 inducing an osteogenic phenotype in SMCs
[184]. Macrophage-derived EVs are rich in S100A9 and annexin V,
molecules that aggravate calcification processes in chronic kidney dis-
ease [186]. Chen et al., showed that EVs derived from calcified vascular
SMCs could promote changes in neighbouring cells, accelerating calci-
fication via many pathways [187]. A further study defined the EVs
secreted from SMCs as exosomes and showed that they mediate vas-
cular calcification [42]. In this study certain atherogenic stimuli such as
elevated levels of calcium, tumor necrosis factor-a (TNF-a) and platelet
derived growth factor (PDGF) were reported to induce exosome secre-
tion and therefore manipulation of the EV secretory pathway and could
comprise a new potential therapeutic target [42]. EV cargo and its role
in vascular calcification is of great importance. The role of miRNAs in
vascular calcification has been extensively discussed (reviewed in
[188]). Lin et al., proposed a similar mechanism where they showed
that miR-206 expression in ECs controlled the contractile phenotype of
SMCs by inhibiting both exosome secretion from ECs, and miR-26a
transfer from ECs to SMCs via EVs, through targeting ARF6 and NCX1
[189]. Collagen in a major component of the fibrous cap and reduced
collagen leads to a thin and fragile cap resulting in a vulnerable and
unstable plaque [182]. Hutcheson and colleagues, showed in a 3-D in
vitro model that EV aggregation increased mineralization and collagen
acted as a scaffold for EVs to aggregate and direct the calcification
process [48].

Another molecule which has attracted interest in vascular calcifi-
cation research is Sortilin 1. Sortilin 1 is reported to be localised to
calcified human plaques and calcified arteries from patients and in an
experimental model with chronic renal disease (CRD) [190]. Further-
more, sortilin 1 ablation rescues vascular calcification with no effect on
bone mineralization and moreover ablation of sortilin in mice on a LDL
receptor-deficient (Ldlr=77) background reduced vascular calcification
by 80% when compared with Ldlr ™/~ mice expressing sortilin 1 [190].
In vitro experiments in which sortilin was either silenced or
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overexpressed in human coronary arterial SMCs (hSMCs) confirmed its
direct role in vascular SMC calcification [190]. Sortilin 1 was also re-
ported to control transfer of the calcification protein tissue nonspecific
alkaline phosphatase (TNAP) into EVs and as a result regulated the
impact of EVs on calcification [190]. This study provided a novel me-
chanism for the production of SMC calcifying EVs and a new ther-
apeutic target to address in vascular calcification.

3.4. EVs and vulnerable plaques

Many studies have underlined the role of EVs in atherosclerotic
plaque destabilization and thrombus formation. Characterisation of EV
content of vulnerable plaques showed that they contained a number of
thrombogenic microvesicles mainly originating from leukocytes, mac-
rophages, erythrocytes, lymphocytes and SMC [129,130,191]. Further
research highlighted that these EVs were more concentrated in the
plaque area and their capacity to generate tissue factor and thrombin
was greater in plaque EVs indicating the procoagulant potential of EVs
[129]. Fibrous cap rupture exposes such thrombogenic material to
circulating platelets activating them and leading to thrombus formation
[47]. Finally, circulating monocyte-derived and platelet-derived EVs
can enhance thrombus formation [192,193]. Since EVs have phospho-
lipids on their surface it is no surprise they can bind to coagulation
factors. However, the thrombogenic effects of EVs in destabilising
atherosclerotic plaques are yet to be determined.

Plaque rupture is mainly caused by fibrous cap weakening and
studies have suggested that circulating EVs can disturb local in-
flammation and destabilize atherosclerotic plaque caps [47]. SMC hold
a crucial role in forming a thick fibrous cap by secreting collagen,
elastin, fibronectin and extracellular matrix [37]. EVs, mainly platelet-
derived EVs, have been shown to cause vascular cell death [47,194].
The breakdown of extracellular matrix and destabilization of the plaque
has been attributed to MMPs and several studies have now demon-
strated that EVs carry different MMPs as their cargo [195]. Macro-
phage-derived EVs exposed to tobacco were reported to carry MMP14
[134]. EC-derived EVs (both in vitro and in vivo) were shown to carry
MMP-2, MMP-10, MMP-9 and MMP-14 [196-198] on their external
surface. Characterisation of neutrophil-derived EVs showed that they
encapsulate proteolytic enzymes, among them MMP-9 [199]. The cell
source of EVs can affect their proteolytic cargo and this may also effect
fibrous cap integrity. For example, microvesicles isolated from athero-
sclerotic lesions expressed the metalloprotease TNF-a converting en-
zyme (TACE/ADAM-17) [200]. TACE/ADAM17 was previously found
on atherosclerotic lesions [200]. ADAM-17 and similar proteases cleave
transmembrane molecules such as cytokines. ADAM-17 is responsible
for TNF-a secretion by cleaving the precursor of TNF-a (pro-TNF-a)
into the soluble cytokine and maintains a balance between anti- and
pro-inflammatory molecules [200]. Potential cell sources could be
leukocytes or erythrocytes and it was shown that EVs could stimulate in
vitro release of TNF-a [200]. EVs isolated from abdominal aortic an-
eurysm samples were found to be positive for a disintegrin and me-
talloprotease-10 (ADAM-10) and ADAM17 [201].

4. Extracellular vesicles as biomarkers for cardiovascular disease

As previously stated EVs are present in many biological fluids in-
cluding blood, saliva and urine and in both health and disease
[106,202] and have therefore attracted attention as liquid biomarkers.
Studies have reported that elevated levels of circulating EVs show a
correlation with cardiovascular events in patients with stable CAD
[171-174]. In many of these studies, quantification of endothelial-de-
rived EVs was used to predict future coronary events related to en-
dothelial dysfunction [171-173]. Circulating CD31 + /Annexin V+ EVs
were found to be increased in patients with stable CAD and cardio-
vascular risk factors (e.g. diabetes) suggesting them as an independent
risk factor for cardiovascular outcomes in patients with CAD [174].
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Interestingly, circulating endothelial-derived EVs are increased in pa-
tients with underlying cardiovascular risk factors [131,132] including
smoking [133,134], hyperlipidaemia [135] and hypertension
[136,137]. Furthermore, studies suggest that leukocyte-derived EVs
could be used as a biomarker to predict subclinical atherosclerosis and
the role of leukocyte-EVs in atherosclerosis is reviewed in [203].
Quantitative data showed that patients with acute coronary syndrome
(ACS) (and undergoing percutaneous coronary intervention (PCI)) had
elevated levels of circulating EVs compared to patients with stable
angina [204,205]. Another study showed that leukocyte EVs were
found to be elevated in patients with unstable carotid plaques com-
pared to patients with stable carotid stenosis, therefore leukocyte-de-
rived EVs are a potential biomarker to determine plaque vulnerability
[206]. Annexin V+ EVs of platelet, endothelial, neutrophil and gran-
ulocyte origin were found to be elevated in heterozygous familial hy-
percholesterolemia (FH) patients with atherosclerotic plaque compared
to patients without plaque [207]. Both group of patients were asymp-
tomatic and circulating EVs could predict atherosclerotic burden and
cardiovascular events in FH patients [207]. Elevated levels of EV-de-
rived CD14 showed a strong correlation with vascular disease [208].
Lastly, circulating EVs from patients with cardiometabolic syndrome
are enriched with Rapl and could be a surrogate biomarker for early
atherosclerosis detection [164]. Taken together these data suggest that
EVs could be used as liquid biomarkers to monitor CVD progression.

The active cargo of EVs, mainly miRNAs, is of great research interest
with studies correlating levels of EV-miRNA with prediction of CAD
events. It was reported that elevated levels of EV miR-126 and miR-
199a but not circulating soluble miRNAs were linked with lower ad-
verse cardiovascular events in patients with stable CAD [175]. Another
study examined the miRNA levels from atherosclerotic plaques and
healthy regions of the artery from patients undergoing heart trans-
plantation and showed decreased levels of EV miR-143-3p and miR-
222-3p at lesion sites [209]. Several other EV-derived miRNAs such as
miR-133a, miR-143/145, miR-150, miR-155, miR-214, miR-223, and
miR-320b have also been reported as biomarkers for atherosclerosis risk
prediction (reviewed in [210]). Goetzl et al., reported that the protein
cargo of EVs could also be exploited to predict the progression of the
disease [211]. In patients with atherosclerotic cerebrovascular disease,
EC-derived EVs were enriched with VCAM-1 and PDGF proteins, which
was implicated in lesion progression, compared to the healthy control
group [211]. These studies highlight the potential use of EVs as bio-
markers for monitoring atherosclerosis progression, however further
clinical studies in independent cohorts are required to draw definitive
conclusions.

5. EVs as therapeutic delivery vectors

EVs have attracted a lot of attention as therapeutic delivery vectors
in CVD as they may have advantages over current delivery systems
which may exhibit limitations such as non specific binding, toxicity and
increased clearance and as a result lower therapeutic potential [212].
EVs are normally secreted from cells, thus they present low im-
munogenicity and their lipid core offers stability [213]. Two types of
EV delivery systems can be used: native EVs which are secreted from
parental cells or engineered EVs which can be loaded with therapeutic
molecules after isolation or can be genetically modified to express cell
specific proteins for targeted delivery and to avoid clearance [214,215].
Different mechanisms can be manipulated for drug loading into the EVs
such as electroporation or sonication [213]. Certain limitations re-
garding EV exploitation as therapeutic delivery systems still exist such
as drug loading efficacy or cell-specific targeting [216]. Furthermore,
EVs may already contain their own endogenous contents which may be
difficult to control. Recent studies have investigated the effect of native
EVs in cardiocascular disease. Mesenchymal stem cell (MSC)-derived
EVs have been used for tissue regeneration such as cardiac regeneration
after MI [217] or reperfusion injury [218]. MSC-derived EVs have also
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gained interest in atherosclerosis treatment. Li et al., reported that
treatment of apoE ™/~ mice under high fat diet with MSC-derived EVs
resulted in reduced plaque size and macrophage infiltration to the
plaque area [219]. In vitro experiments revealed that EVs promoted
macrophage polarization towards the M2 phenotype via the axis miR-
let7/IGF2BP1/PTEN and unraveled a potential target for athero-
sclerosis [219]. Another study, used human bone marrow MSC-derived
EVs containing miR-221 to treat apoE ~/~ mice under high fat diet and
reduced plaque size was observed [220]. In vitro and in vivo experi-
ments also revealed that EV mediated miR-126 transfer from ECs to
SMCs regulated SMC proliferation and resulted in reduced neointima
formation after vascular injury [221]. EVs participate in various steps of
atherosclerotic disease progression (as described in section 3). Direct
targeting of EV mediated pathological functions or EV loading with
therapeutic molecules has been proposed. Inhibition of EV mediated
miR-155 transfer from SMCs to ECs reduced plaque size in apoE™"~
mice under high fat diet after receiving LNA anti-miR-155 for 4 weeks
[97]. Another in vitro study observed that when macrophages and SMC
were treated with EC-derived EVs loaded with anti-miR-33a-5p, ATP-
binding cassette transporter ABCA1 protein expression was increased
and elevated apoAl-mediated cholesterol efflux was observed too
[222]. Molecularly engineered EVs for treatment of atherosclerosis
have also been investigated [223]. Wu et al., exploited M2 macrophage-
derived EVs which were electoporated and loaded with the FDA ap-
proved compound, hexyl 5-aminolevulinate hydrochloride (HAL)
[223]. Administration of engineered EVs to apoE’/ ~ mice under high
fat diet showed reduced lesion area compared to control mice or mice
receiving HAL or M2-derived EVs. In vitro experiments revealed that
engineered EVs had higher levels of anti-inflammatory cytokines such
as IL-10 [223]. EVs as vectors offer an enormous opportunity for the
development of new pharmacological therapies and will be an area of
further investigation in the future.

6. Conclusion

EVs represent a new growing area of research with respect to both
understanding and treating CVD. They are naturally occurring secreted
particles and thus they are suggested to participate in intercellular
signalling. Their biological functions are diverse as they can exert both
protective and pathological effects. The lack of a single standard EV
isolation method is a great challenge regarding the study of EVs as this
could be a factor in the observations that EVs often contribute to di-
verse and conflicting biological effects. Many studies have reported the
presence of EVs in atherosclerotic plaques and characterised the bio-
logical functions of certain cell-derived EVs. The cross-talk between ECs
and SMCs in atherosclerosis development is still not yet completely
understood and requires further research. Finally, EVs have been stu-
died as biomarkers for CVD and as therapeutic vehicles; while some of
these findings are promising more work to replicate observations in
independent study populations is required. Overall, there remains much
to be learned in the recently emerging field of EV signalling in ather-
osclerosis.
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