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Structural and functional footprint of visual
snow syndrome

Christoph J. Schankin,1,2 Farooq H. Maniyar,2,3 Denise E. Chou,2,4 Michael Eller,2,5

Till Sprenger6 and Peter J. Goadsby2,7

Patients with visual snow syndrome suffer from a continuous pan-field visual disturbance, additional visual symptoms, tinnitus, and

non-perceptional symptoms. The pathophysiology of visual symptoms might involve dysfunctional visual cortex. So far, the extra-vis-

ual system has not been investigated. We aimed at identifying structural and functional correlates for visual and non-visual symptoms

in visual snow syndrome. Patients were compared to age- and sex-matched controls using 18F-2-fluoro-2-deoxy-D-glucose PET

(n = 20 per group) and voxel-based morphometry (n = 17 per group). Guided by the PET results, region of interest analysis was done

in voxel-based morphometry to identify structural-functional correspondence. Grey matter volume was assessed globally. Patients had

corresponding hypermetabolism and cortical volume increase in the extrastriate visual cortex at the junction of the right lingual and

fusiform gyrus. There was hypometabolism in the right superior temporal gyrus and the left inferior parietal lobule. Patients had grey

matter volume increases in the temporal and limbic lobes and decrease in the superior temporal gyrus. The corresponding structural

and functional alterations emphasize the relevance of the visual association cortex for visual snow syndrome. The broad structural

and functional footprint, however, confirms the clinical impression that the disorder extends beyond the visual system.

1 Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
2 Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
3 Department of Neurology, The Royal London Hospital (Barts and the London NHS Trust), London, UK
4 Amgen Inc., Thousand Oaks, CA USA
5 Department of Neurology, Monash Medical Centre, Monash University, Melbourne, Australia
6 Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
7 NIHR-Wellcome Trust King’s Clinical Research Facility, SLaM Biomedical Research Center, King’s College London, London, UK

Correspondence to: Peter J. Goadsby, MD, PhD

Wellcome Foundation Building

King’s College Hospital

London SE5 9PJ, UK

E-mail: peter.goadsby@kcl.ac.uk

Keywords: visual snow; non-visual symptoms; migraine; FDG PET; voxel-based morphometry

Abbreviations: VBM = voxel-based morphometry; VSS = visual snow syndrome

Introduction
Patients with visual snow syndrome (VSS) suffer from a con-

tinuous visual disturbance consisting of visual snow and

additional visual symptoms: palinopsia, enhanced entoptic

phenomena, such as floaters and blue field entoptic

phenomenon, photophobia and impaired night vision

(Schankin et al., 2014a). The pathophysiology of the condi-

tion is poorly understood. The high co-morbidity with mi-

graine (Schankin et al., 2014b), a disorder of sensory

processing (Goadsby et al., 2017), suggests some patho-

physiological overlap. This is supported by recent imaging
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and electrophysiological data suggesting a dysfunction of

visual processing at the level of the visual association cortex

(Schankin et al., 2014b; Eren et al., 2018; Luna et al.,

2018). Treatment remains frustrating. Further, many

patients with VSS also suffer from non-visual complaints,

such as tinnitus, concentration problems, irritability, and

lethargy (Schankin et al., 2014a). This suggests alterations in

several extra-visual cortical areas, such as the auditory or

the limbic system.

The objective of this study was to improve our under-

standing of VSS by exploring brain areas that differ in struc-

ture, or function, or both, from controls. Specifically, we

sought to determine areas with corresponding structural and

functional alterations. In addition, we assessed brain metab-

olism and structure in an exploratory, voxel-wise manner.

These data have been presented in preliminary form [17th

Congress of the International Headache Society, Valencia

14–17 May 2015 (Schankin et al., 2015)]

Materials and methods
This prospective case-control study was carried out at a tertiary

headache centre after approval by the local ethics committee

(11-07431) and the radiation safety committee (58605-RU-04-

URH). All subjects gave written informed consent. Patients were

recruited via advertisements in social media with the support of

a self-help group on visual snow (Eye on Vision Foundation;

http://eyeonvision.org). Data on a subgroup of patients pre-

sented here (n = 17) have been published in a previous report

investigating solely hypermetabolism (Schankin et al., 2014b).

Participants

Eligibility was assessed during telephone interviews. Inclusion cri-

teria were black and white visual snow, i.e. dynamic, continuous,

tiny dots in the entire visual field lasting longer than 3 months,

with at least three additional visual symptoms (Schankin et al.,

2014a). Controls were matched for age and sex. Exclusion crite-

ria for controls were: presence of visual snow or any associated

visual symptoms, a history of migraine attacks more often than

once every 2 months, or of migraine aura (Headache

Classification Committee of the International Headache Society,

2018). Exclusion criteria for both groups were ophthalmological

pathologies other than refraction anomalies, any lifetime history

of intake of hallucinogenic drugs or recent (56 months) history

of intake of recreational drugs, age older than 50 years, contrain-

dications for PET or MRI, and pregnancy. Each subject under-

went a semi-structured interview focusing on visual symptoms,

migraine history including typical aura and general past medical

history. Standard questionnaires were used to assess potential de-

pression (PHQ-8) and anxiety (GAD-7) with clinically relevant

depression or anxiety being defined by a score of 49 (Lowe

et al., 2008; Kroenke et al., 2009).

Each patient had visual evoked potentials (standard pattern

reversal stimuli, monocular response, both eyes) and 18-channel

EEG (standard international 10-20 electrode placement).

Imaging

On the scanning day, each subject had a fasting period of at

least 6 h. High-resolution T1-weighted anatomical MRI [axial

T1, 3D IRSPGR (inversion recovery spoiled gradient echo), repe-

tition time 7.252, echo time 1.6, inversion time 400, 180 images

acquired, slice thickness 1 mm] was performed on a General

Electric Signa HDxT 3.0 T scanner (GE Healthcare). In three

patients with visual snow, a slice thickness of 1.5 mm was

applied instead because of a technical problem on the scanning

day. Afterwards, the subjects were injected with 370 MBq of
18F-2-fluoro-2-deoxy-D-glucose (FDG) as an intravenous bolus

and were instructed to rest in a darkened room for 45 min with

eyes closed. PET scans were acquired using a GE Discovery

VCT PET/CT scanner (GE Healthcare) in 3D mode with septa

retracted. A low-mA CT scan prior to the PET was used for at-

tenuation correction. Scatter correction was also applied based

on the CT-based attenuation map. During scanning, all subjects

had their eyes closed and were instructed not to fall asleep. The

scan duration was 15 min. One static frame was acquired. We

visually observed the patient head motion during the scan. In

our data, no significant blurring in reconstructed images was

noted that might be caused by significant head motion. Motion

correction was not applied. PET images were reconstructed

using the manufacturer-provided 3D iterative reconstruction

into 47 image planes (separation 3.27 mm) and into a

128 � 128 image matrix (pixel size: 2.1 � 2.1 mm2). These

images were used as input for the Statistical Parametric

Mapping (SPM) analysis. The image pixel values in activity con-

centration (Bq/ml) were used, instead of converting them to

standardized uptake values (SUVs).

Analysis

The structural MRI data were first co-registered to the PET data

using SPM8 (Wellcome Department of Imaging Neuroscience,

http://www.fil.ion.ucl.ac.uk/spm) followed by automated seg-

mentation as well as stereotactic normalization to MNI

(Montreal Neurological Institute) space.

The parameters obtained from this step were applied to normal-

ize stereotactically the PET images. The final resliced voxel size of

the PET images was 2 � 2 � 2 mm3. The PET images were

smoothed with a Gaussian kernel (full-width at half-maximum of

12 mm). The VSS patient group was compared to controls using a

two-sample t-test with masking of non-brain tissue (whole brain

explicit mask generated with WFU PickAtlas, Advanced

Neuroscience Imaging Research Laboratory, Department of

Radiology of Wake Forest University School of Medicine, http://

fmri.wfubmc.edu/) using proportional scaling. Statistical signifi-

cance was assumed for areas with P50.001, uncorrected for

multiple comparisons.

For voxel-based morphometry (VBM), only patients who had

MRI with slice thickness of 1 mm were analysed. The VBM

toolbox for SPM8 (VBM8, version 435, http://dbm.neuro.uni-

jena.de/vbm/) was used to normalize semi-automatically (modu-

lated normalization) and to segment the MRI data into grey

matter, white matter and CSF using standard parameters. Grey

matter images were smoothed with a kernel with 8mm full-

width at half-maximum. The smoothed grey matter images were

compared between VSS patients and controls using standard

parameters.
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For our primary research question, we assessed structural
(VBM)-functional (PET) correspondence of abnormalities in
VSS patients. The statistical peak coordinates from the PET clus-
ters were used to guide region of interest analysis in VBM. For
this purpose, spherical regions of interest with a radius of
10 mm (Carreiras et al., 2009) were generated around the PET
peak coordinate clusters as explicit mask using the MarsBaR
region of interest toolbox for SPM (Brett et al., 2002). The
VSS patient group was compared to controls using a two-sample
t-test with correction for multiple comparisons [familywise error
(FWE) rate of P50.05 on cluster level).

For the secondary research question, an exploratory whole
brain analysis was performed (two-sample t-test, P50.001, un-
corrected for multiple comparisons).

SPSS (v20, IBM Corp., Armonk, New York, USA) was used
for analysis of non-imaging data. Standard descriptive statistics
were applied. Where appropriate, data are presented as mean ±
standard deviation (SD). Nominal data were compared using
chi-square test, continuous data using t-test. Significance was
defined by P50.05.

Data availability

Anonymized data will be shared by reasonable request from any
qualified investigator.

Results

Participant demographics

Of 20 patients with black and white visual snow and at least

three additional visual symptoms (11 female, 18 right-

handed, mean age ± SD = 31± 7 years), nine had had visual

snow for as long as they could remember. Mean age of

onset in the remaining was 24±8 years. Sixteen (80%) had

a history of migraine. Five of those had migraine with typ-

ical aura (Headache Classification Committee of the

International Headache Society, 2018), and one had mi-

graine aura without headache (Table 1). Sixteen (80%)

patients suffered from concentration problems, 11 (55%)

from irritability, 10 (50%) from tinnitus, and eight (40%)

from lethargy. Past medical history was otherwise unremark-

able. According to the questionnaires, one patient had de-

pression and anxiety, one anxiety only, and one depression

only. Reports of an ophthalmological exam were available

in all patients (all had normal fundoscopy, automated visual

fields abnormal in one with generalized reduced sensitivity,

best corrected visual acuity normal in all except for 20/25 bi-

lateral in one and 20/20-2 left in another). Visual evoked

potentials (P100 latency and N75-P100 amplitude) and EEG

were normal in all patients.

The 20 controls had the same age and sex distribution [11

female, 18 right-handed, 30± 7 years, t(38) = 0.25, P = 0.81

for age], but differed significantly from patients in respect of

history of aura [exclusion criterion, v2(1) = 7.06, P = 0.02]

and history of migraine [no control subject had migraine,

v2(1) = 26.67, P50.001]. One control subject had anxiety,

another one had depression [v2(1) = 0.36, P = 1.00].

Imaging

In patients with VSS, FDG PET demonstrated hypermetabo-

lism in the right lingual gyrus in Brodmann area (BA) 19.

For VBM, three patients had to be excluded due to slice

thickness of 1.5 mm in MRI. Guided by the metabolic data,

VBM identified increased grey matter volume in the adjacent

lingual gyrus-fusiform gyrus junction (maximum of VBM at

MNI: x = 26, y = –69, z = –14, Z = 3.46, P = 0.03 FWE-

corrected on cluster-level, kE = 12). In FDG PET, there was

hypometabolism in the right superior temporal gyrus (BA

22) and the left inferior parietal lobule (BA 40), without cor-

responding changes in grey matter volume (Fig. 1 and

Table 2).

Using a whole-brain analysis, VBM identified additional

grey matter volume increases in VSS that did not co-localize

with PET changes in the right middle temporal gyrus, the

right parahippocampal gyrus, the left superior temporal

gyrus as well as the right anterior cingulate cortex. Grey

matter decreases were found in the left superior temporal

gyrus (Fig. 2 and Table 2).

Discussion
From a clinical perspective, VSS presents with debilitating

visual as well as non-visual symptoms. Using two different

brain imaging modalities, FDG PET and VBM, this study

assessed brain metabolism and grey matter volume changes

as surrogate parameters for brain function and structure in

patients with VSS.

The corresponding hypermetabolism and cortical volume

increase in the extrastriate visual cortex at the junction of

the right lingual and fusiform gyrus is consistent with a pre-

vious smaller group-size functional study (Schankin et al.,

2014b) and electrophysiological evidence (Eren et al., 2018).

It confirms at a structural level the importance of this region

for VSS. Previous studies have shown involvement of the lin-

gual, or fusiform gyrus, or both, in colour perception (Rizzo

et al., 1992), face (Kanwisher et al., 1997), and shape recog-

nition (Corbetta et al., 1991) supporting that this region is

relevant for complex visual processing.

Palinopsia, i.e. the inability to suppress the just-seen

(Critchley, 1951) is a defining associated symptom in

patients with VSS (Schankin et al., 2014a), and was present

in 17 patients of this study. Palinopsia can be found in occi-

pito-parietal lesions (Gersztenkorn and Lee, 2015). The

hypometabolism in the inferior parietal lobule found in our

study might therefore represent a biological correlate of

patients’ palinopsia. This is supported by a case report of a

patient who had palinopsia with a haematoma in the angu-

lar gyrus of the inferior parietal lobule (Hayashi et al.,

2002). Palinacousis, i.e. the prolonged perception of the just-

heard, has been associated with the inferior parietal lobule

(Mohamed et al., 2012) suggesting that this region might be

important even for the suppression of the just-perceived in

general, independent of the sensory modality.
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Further, metabolic and grey matter volume alterations

were found in the temporal lobe, the limbic system and the

parietal lobe. These areas are not typically associated with

visual processing. Hypothetically, this functional and struc-

tural footprint might reflect the clinical observation of VSS

symptoms extending beyond the visual system (Schankin

et al., 2014a). Tinnitus, for example, is a relevant non-visual

symptom in VSS (Schankin et al., 2014a) and was present in

50% of our patients, potentially reflecting the acoustic

equivalent of visual snow. Recent evidence suggests that the

inferior parietal lobule (Lv et al., 2016) and the superior

temporal gyrus (Liu et al., 2018) might both be involved in

the development of tinnitus. In our patients, the hypometab-

olism of both regions and the altered grey matter volume in

the superior temporal gyrus might therefore represent a

pathophysiological correlate of tinnitus.

In clinical practice, patients further report non-perceptional

symptoms, such as problems concentrating, irritability, and

lethargy (Schankin et al., 2014a). This is sometimes mistaken

as an underlying or causative psychiatric or psychosomatic

condition. However, these symptoms might suggest involve-

ment of limbic or temporal structures in VSS. The hypome-

tabolism of the superior temporal gyrus found in our study is

in agreement with its role for irritability (Besteher et al.,

2017) and for thought suppression of pain (Chehadi et al.,

2018). The latter study further demonstrated involvement of

the middle temporal gyrus in cognitive pain control, an area

that also exhibited grey matter volume increase in VSS.

These areas might be correlates of the inability to suppress or

control the continuous visual perception in VSS.

A limitation of our study is that there was an asymmetric

distribution of co-morbid migraine and typical migraine

aura in both groups. Two previous studies have investigated

migraine and migraine aura using FDG PET, and neither

demonstrated hypermetabolism in the visual association cor-

tex (Aurora et al., 2007; Kim et al., 2010). With respect to

grey matter volume, paediatric patients with migraine with

aura demonstrated increased grey matter volume in the fusi-

form gyrus contralateral to our patients with VSS (i.e. left)

(Rocca et al., 2014). In patients with chronic migraine,

Coppola et al. (2017) found grey matter volume reductions

in the left middle temporal gyrus and the visual association

cortex, areas of grey matter volume increase in VSS.

Similarly, Riederer et al. (2012) demonstrated grey matter

volume decrease in medication overuse headache in the an-

terior cingulate cortex (Riederer et al., 2012), an area show-

ing grey matter volume increase in VSS. One study found

grey matter increases in migraineurs in the middle temporal

gyrus, but no other overlap with our results (Palm-Meinders

et al., 2017). The majority of studies in migraine did not

demonstrate grey matter volume increases in patients

(Schmidt-Wilcke et al., 2008; Valfre et al., 2008;

Table 1 Demographics, visual symptoms and migraine history in the study population with visual snow syndrome

Patient Age Age at

onset

Sex Visual symptoms Migraine Aura

BW Palinopsia Entoptic phenomena Nyctalopia Photo-

phobia

Trailing After

images

Floaters Photopsia BFEP Self-light

VS1 35 32 M 1 0 1 0 1 1 0 1 1 0 1

VS2 39 a F 1 0 0 1 0 1 1 1 1 1 0

VS3 24 a F 1 1 1 1 1 1 1 0 0 0 0

VS4 37 20 F 1 0 1 0 0 1 0 0 1 1 1

VS5 29 24 F 1 1 1 1 1 1 1 1 1 1 0

VS6 23 17 F 1 0 1 1 0 0 1 1 1 1 0

VS7 40 39 F 1 1 1 1 0 0 0 1 1 0 0

VS8 29 28 M 1 0 1 1 0 1 0 0 0 1 1

VS9 36 34 F 1 0 1 0 1 1 1 1 1 1 1

VS10 32 24 M 1 1 1 1 0 1 1 1 0 1 1

VS11 35 a F 1 1 1 0 0 0 1 1 1 1 0

VS12 24 a F 1 0 1 1 1 1 1 1 0 1 1

VS13 25 a M 1 1 0 1 0 1 0 1 1 1 0

VS14 35 a M 1 0 0 1 1 0 1 1 0 1 0

VS15 47 a F 1 1 1 0 0 1 1 1 0 1 0

VS16 22 13 M 1 0 1 0 0 1 0 1 1 1 0

VS17 21 20 M 1 1 0 1 0 0 1 1 1 1 0

VS18 27 a F 1 1 1 1 0 1 0 1 0 1 0

VS19 21 a M 1 1 1 1 0 1 0 1 0 1 0

VS20 33 16 M 1 0 0 1 0 1 0 1 1 0 0

aPatients recall having visual snow as for long as they can remember.

0 = absent; 1 = present; Aura = history of typical migraine aura; BW = black and white visual snow; BFEP = blue field entoptic phenomenon; migraine = history of migraine with or

without aura (depending on the presence of aura); nyctalopia = impaired night vision; photopsia = random flashes of light, mainly in the periphery and without mechanical stimula-

tion of the retina; self-light of the eye = patients perceive coloured clouds or waves when briefly closing their eyes.
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Figure 1 Differences in brain metabolism between patients with VSS and controls. When compared to controls, patients with VSS

demonstrated hypermetabolism in FDG PET (red) and a corresponding increase of grey matter volume as determined by VBM (yellow) at the

junction of the lingual and fusiform gyrus on the right, both in Brodmann area (BA) 19 (A–C). VSS patients showed additional areas of hypome-

tabolism in the right superior temporal gyrus (BA 22, D1) and left inferior parietal lobule (BA 40, D2) without corresponding alterations in grey

matter volume. PET statistical parametric maps at a threshold of P5 0.001 uncorrected for multiple comparisons are overlaid on a normalized

standard T1-weighted MRI. The VBM map was obtained using a 10-mm sphere as an explicit mask around the maximum from significant PET clus-

ters and thus represents only a part of the grey matter alterations shown in Fig. 2 (threshold P5 0.05, family wise error rate on cluster level).

VS = visual snow.

Table 2 Coordinates of metabolic and structural differences between patients with visual snow syndrome and

controls

MNI kE Z-score P-value Side Lobe Gyrus BA

x y z

PET

VS 4 C 20 –68 –7 49 3.4 0 Right Occipital Lingual 19

VS 5 C 66 4 –9 309 3.68 0 Right Temporal Superior temporal 22

–64 –32 21 58 3.57 0 Left Parietal Inferior parietal lobule 40

VBM

VS 4 C 26 –69 –15 29 3.52 0 Right Temporal Fusiform 19

54 –27 –15 159 4.11 0 Right Temporal Middle temporal 21

20 –24 –23 21 3.28 0.001 Right Limbic Parahippocampal 35

–50 –15 –14 71 3.41 0 Left Temporal Superior temporal 22

15 35 7 57 3.28 0.001 Right Limbic Anterior cingulate 32

VS 5 C –54 5 1 30 3.32 0 Left Temporal Superior temporal 22

Metabolic (FDG PET, n = 20 per group) and structural (VBM, n = 17 per group) changes in patients with visual snow syndrome in comparison to age and sex matched controls.

Guided by the metabolic data, small volume correction using a sphere with 10-mm radius around the peak of metabolic activity (VS 4 C in PET, MNI 20, –68, –7) identified corre-

sponding increased grey matter volume (VS 4 C in VBM, FWE corrected P = 0.03 on cluster level, peak at MNI 26, –69, –14, data not shown in table).

BA = Brodmann area; kE = number of contiguous voxels with Z-score 4 3.3 (P5 0.001); MNI = standard space as defined by the Montreal Neurological Institute; VS 5 C = visual

snow group is metabolically less active (FDG PET) or has less grey matter volume (VBM) than control group; VS 4 C = visual snow group is metabolically more active (FDG PET)

or has larger grey matter volume (VBM) than control group.
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Neeb et al., 2017). In patients with migraine with aura,

Hougaard et al. (2015) found differences in cortical thick-

ness in the inferior frontal lobe that were not altered in

patients with VSS. The same group assessed response to vis-

ual stimulation in patients with strictly side-locked migraine

aura. Compared to the contralateral side, there was an

increased response in the inferior parietal lobule on the aura

side (Hougaard et al., 2014). In VSS, we demonstrated

hypometabolism in the same area. A bias from the higher

frequency of co-morbid migraine aura in the VSS group,

however, is unlikely in the view of only six patients having

migraine aura that was side-locked in none. In summary, the

metabolic and structural profile found in our study for VSS

does not substantially overlap with the profile of migraine. It

is therefore unlikely that our findings are a consequence of

co-morbid migraine or aura rather than VSS.

Another limitation is that the power of the study was too

low for subgroup analyses looking specifically for the areas

responsible for individual additional symptoms, such as pali-

nopsia or tinnitus.

The structural and functional footprint of VSS suggests

dysfunction of several brain areas involved in visual, audi-

tory, emotional, and cognitive processing. The co-localizing

structural and functional alteration in the occipital lobe sup-

ports the idea that the disturbance causing visual symptoms

might be located in the visual association cortex and not in

the primary visual cortex. The alterations in the other areas

shown in this study are first imaging evidence that VSS is in-

deed a complex clinical syndrome that affects more than just

the visual system. It is in line with the various complaints

stated by patients in daily clinical practice and suggests that

multimodal and multidisciplinary treatment might be useful,

Figure 2 Grey matter volume differences between patients with VSS and controls. Using VBM, we observed grey matter volume

increases (visual snow 4 control) in the right fusiform gyrus (A), the right middle temporal gyrus (B), the right parahippocampal gyrus (C), the

left superior temporal gyrus (D) as well as the right anterior cingulate cortex (F) in patients with visual snow syndrome. Grey matter decreases

were found in the left superior temporal gyrus (E). VBM statistical parametric maps at a threshold of P5 0.001 uncorrected for multiple compar-

isons are overlaid on a normalized standard T1-weighted MRI. VS = visual snow.
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in addition to a potential pharmacological treatment of the

visual symptoms. Clinical profiling of visual, auditory, emo-

tional, and cognitive functions might be important for better

understanding the interactions between these domains.

Correlating symptoms with neurobiology secure the identifi-

cation of visual snow as an entity and offer directions for

potential therapeutic developments for this currently very

challenging to manage disorder.
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