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Abstract

Vector-borne diseases commonly emerge in urban landscapes, and Gaussian field models can be 

used to create risk maps of vector presence across a large environment. However, these models do 

not account for the possibility that streets function as permeable barriers for insect vectors. We 

describe a methodology to transform spatial point data to incorporate permeable barriers, by 

distorting the map to widen streets, with one additional parameter. We use Gaussian Field models 

to estimate this additional parameter, and develop risk maps incorporating streets as permeable 

barriers. We demonstrate our method on simulated datasets and apply it to data on Triatoma 
infestans, a vector of Chagas disease in Arequipa, Peru. We found that the transformed landscape 

that best fit the observed pattern of Triatoma infestans infestation, approximately doubled the true 

Euclidean distance between neighboring houses on different city blocks. Our findings may better 

guide control of re-emergent insect populations.
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1. Introduction

Vector-borne diseases are increasingly common in urban areas, and efforts to control these 

diseases are often targeted at the vector itself. However, detecting populations of disease 

vectors in large urban environments is especially complex (Weaver (2013), Knudsen and 

Slooff (1992)). Poor and unplanned urban environments can create ideal breeding grounds 

for many vectors, facilitating increased transmission of vector-borne diseases in population 

dense areas (Knudsen and Slooff (1992), Bowman et al. (2008), Levy et al. (2006)).
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This research is motivated by the need to understand vector distribution patterns in 

Arequipa, the second largest city in Peru. In particular, we are interested in models that can 

help guide search strategies for Triatoma infestans, a vector of Chagas disease. Chagas 

disease, which is caused by the parasite Trypansoma cruzi, causes significant mortality in 

the Americas (Dias et al. (2002), Bern (2015)). T. infestans, the only vector of T. cruzi 
transmission in Arequipa, is a species of triatomine that has proven well adapted to urban 

settings. The species prefers environments such as guinea pig pens, common in Peru, and 

housing materials with dark cracks and crevices (Levy et al. (2006)). Since the insect rarely 

flies, there is a highly spatial aspect to the observed vector distribution patterns on very fine 

scales. Previous studies have shown that the vectors are much more likely to move within 

city blocks than cross a street (Barbu et al. (2013)).

To control the spread of Chagas disease, the regional ministry of Health of Arequipa began 

an inspection and spray campaign targeting T. infestans in 2003 (Barbu et al. (2014)). 

Following the campaign, both the prevalence of the parasite and vector populations 

decreased substantially in metropolitan Arequipa (Barbu et al. (2014)). However, T. 
infestans are still occasionally observed, and targeted surveillance is ongoing. The ongoing 

surveillance is multifaceted; residents may report infestations, and in addition, inspectors 

proactively search households for vectors. Due to the size of Arequipa, inspectors cannot 

search every household, but must select which ones to search. To guide our prospective 

searches, we are motivated to develop risk maps, incorporating the geographic location of 

observed household infestations.

Creating risk maps using Gaussian fields (GFs) is an area of active research and 

development (Oluwole et al. (2015), Adigun et al. (2015), Jaya et al. (2016)). Until recently, 

fitting GF models was computationally difficult, due to large matrix calculations (the big n 
problem) in covariance estimation. However, recent advances in theory and computation, 

discussed below, have alleviated this problem. Lindgren et al. described the relationship 

between GFs and Gaussian Markov Random fields (GMRFs); an R package was developed 

to implement these analyses using nested integrated laplace approximations, easing the 

computational burden of these models (Blangiardo et al. (2013), Lindgren et al. (2011), Rue 

et al. (2009)).

However, geostatistical models using Gaussian fields do not typically incorporate the 

structure of urban landscapes (Diggle et al. (2003)). Several arboviruses, including Dengue, 

Chikungunya, West Nile, and Zika, have emerged repeatedly in urban areas (Haley (2012), 

Sikka et al. (2016)). Parasitic diseases, such as malaria and Chagas disease, once considered 

rural problems, have become common in cities (LaDeau et al. (2015), Delgado et al. (2013)). 

Including the spatial structure of city streets may more accurately describe spatial 

associations characteristic of insect infestations and therefore help in developing effective 

public health interventions to reduce transmission in population dense areas (Weaver 

(2013)).

In this paper we develop an approach to predict the probability of urban insect vector 

infestation using a geostatistical model that incorporates city streets as permeable barriers. 

Our approach estimates the reduced movement of vectors between blocks, compared to 
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within blocks, and predicts the heterogeneous urban vector distributions using a Gaussian 

field. Our model is computationally efficient and easily adaptable to other cities and vectors. 

Here, we present our methodology, demonstrate our approach on simulated data, and apply 

it to data on Chagas disease vectors in a district of the city of Arequipa, Peru.

2. Methods

2.1. Gaussian field approach

In this subsection we review the Gaussian field approach that can be used to create risk 

maps, ignoring the issue of streets as barriers. Gaussian fields are often used to model 

various types of point-level data, also known as geostatistical data. These models are popular 

for their flexibility and ability to capture complex processes across a wide range of 

applications such as epidemiology, ecology, and imaging (Rossi et al. (1992), Brooker 

(2007), Diggle et al. (2003)). Using this modeling approach, we assume the data, the 

presence of T. infestans, is a continuous stochastic process, with observations over a two-

dimension landscape, at locations c.

Denote by yi the indicator variable for vector presence at house i. We can model the 

probability of vector presence at house i, πi, using a logistic model with intercept and 

Gaussian field. Although we do not use any household-level covariates in our model, they 

can easily be incorporated into the formula (1) with additional regression parameters. We 

use the model:

logit πi = β0 + ui
u ∼ N(0, Σ) (1)

where ui is a realization of the GF, x(ci), and ci is the location of house i. We use a Matérn 

covariance structure, which is commonly used in spatial statistics. Specifically, the 

covariance between ui and uj is

Σij = σu2
21 − ν
Γ(ν) κ ci − cj

νKν κ ci − cj

where σu2 is the marginal variance of the random effect, ∥ · ∥ is the Euclidean distance, Kν is 

the modified Bessel function of the second order, and κ and ν are parameters. The parameter 

ν describes the smoothness of the stochastic process and therefore controls the shape of the 

covariance function (the function is ⌊ν −1⌋ times differentiable). The κ parameter 

characterizes how quickly the correlation between two points decreases as the distance 

between them increases, capturing the scale of the relationship.

The Matérn covariance structure has become widely accepted for GF models because of its 

link to GMRFs (Besag (1975), Rue and Held (2005), Rue et al. (2009), Lindgren et al. 

(2011)). Using the Matérn covariance, x(c) is a solution to the linear fractional stochastic 

partial differential equation (SPDE):
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W (c) = x(c) κ2 − Δ α/2

where α = ν + d/2 and Δ is the Laplacian

Δ = ∑
i = 1

d ∂2

∂x(c)i2

and d = 2 since c ∈ ℜ2 (Whittle (1954), Whittle (1963)).

Using this solution, Lindgren et al. (2011) found a direct link between the GF and GMRF, 

which greatly eases the computational burden of GF estimation. Using this link, we can 

estimate the precision matrix that represents the GF accurately, over a wide range of 

marginal variances, with sparse matrix calculations. For more details on this relationship, see 

Lindgren et al. (2011).

We follow the parameterization of Lindgren et al. (2011) and Krainski and Lindgren (2013), 

defining the covariance function in terms of θ = {θ1, θ2}, functions of κ, the scale 

parameter, and σu2, the marginal variance:

θ1 = − log 4πκ2σu2 /2

θ2 = log(κ)

We also fix α, as defined earlier, to α = 2. This setting is a natural choice for two 

dimensional problems, as argued in Whittle (1954), but researchers may vary the value of α 
as needed. Together, θ and α define the Matérn covariance, Σ, of the GMRF.

2.2. Incorporating streets as barriers

The Gaussian field assumes a continuous, non-linear, yet smooth relationship between 

houses as a function of the Euclidean distance between them. However, urban streets create 

an uneven landscape on which the stochastic process occurs. Previous studies have shown 

the vector of Chagas disease, T. infestans, is less likely to move between city blocks 

compared to within blocks (Barbu et al. (2013)).

One option to capture the heterogeneity of the urban grid would be to add a parameter into 

the covariance function to indicate whether two points are on the same city block as each 

other. This approach would allow the relationship of the outcome and distance to depend on 

whether or not streets separate the points. However, the Matérn covariance is the key 

element that links the GF to GMRF and changing the function itself may impact the 

relationship, which is key to efficient parameter estimation. We propose an alternative 

approach that fits into existing GF estimation software and incorporates an additive effect, so 

if points are separated by multiple streets, the barrier increases.
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Our approach uses a single additional parameter, S, that influences the covariance function 

directly through the distances between houses by distorting the city map. Using S, we create 

additional Euclidean distances between houses on different blocks, but maintain the 

Euclidean distances between houses on the same block, creating permeable barriers. We 

define S as the ratio of the distorted distance between geographic block medians, calculated 

as the median c of each block, compared to the true distance (Figure 1). This additional 

distance between blocks influences the model directly through the spatial covariance 

structure, ∥ci − cj∥ by widening the streets between blocks. With this approach, if S is 

known, the Gaussian field model can be directly used. In addition, this approach has an 

additive barrier effect, rather than simply an indicator of whether or not two houses are on 

the same block. If points are more than one block apart, the width of each street between the 

points is modified. We assume streets do not facilitate improved vector movement and 

restrict S ≥ 1, with S = 1 representing the true map.

In other words, S reduces the correlation between houses that are a distance apart but on 

different city blocks. In practice, this additional parameter is a flexible, usable tool to 

characterize a heterogeneous landscape using a continuous latent field. On different types of 

landscapes, S could be used to define other potential permeable barriers such as rivers, 

valleys, or mountains.

2.3. Estimation and Interpretation

We now describe our approach to incorporate S into the model, interpret the map distortion, 

and estimate the parameters. Each house i is located on a known city block j. We first mark 

the spatial center of each block by finding the median coordinates of each block,

{XjM, Y jM} = median Xj , median Y j .

We then define the location of each house in relation to the center of the house’s block,

{Xi, Y i} = {Xi − XjM, Yi − Y jM} .

We stretch the map by moving the block centers by scale S and recording house coordinates 

relative to the block center, Xi, Y i , at the true distance. The distorted map coordinates, 

{Xj, Y j}, become

Xi, Y i = XjMS + Xi, Y jMS + Y i .

This approach retains the block structure but enables the manipulation of blocks relative to 

each other. The interpretation of the distorted map is somewhat dependent on the map itself 

due to the irregular size and shape of each individual city block. S describes the additional 

distance between the geographic median of each city block relative to the true distance. For 

example, S = 1.5 corresponds to adding 50% of the true distance between the geographic 

medians of each block. Due to the irregular grid, this distortion corresponds to varying 
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degrees of street distortion depending on the size of the blocks on either side of the street. 

The effect of the map distortion of the width of streets in the map in Figure 1 is summarized 

in Table 1. Larger city blocks result in greater distortion because the houses are located 

farther from the geographic median of the block. If blocks are all the same shape and size, 

the increase in street width will be proportional for all streets, however this is rare in 

practice.

To use the GMRF representation on irregular points, we divide our landscape into non-

intersecting triangles, as described in Lindgren et al. (2011). A Delaunay triangulation is 

created over the landscape, forming a mesh. Each house is located at a vertex in the mesh. 

To ensure a regular triangulation, the maximum edge length is specified to be 100S to 

appropriately adjust for map distortion. Although meshes are not identical between grid 

samples of S, controlling the maximum edge length as a function of S ensures that the 

triangulation is similar (Figure 2).

We implement this methodology using the R package ‘INLA’ (Rue et al. (2009), Rue et al. 

(2014), Krainski and Lindgren (2013)). The ability of this approach to fit into the existing R 

package makes the method easy to implement for researchers in different fields. INLA is a 

relatively new, yet powerful tool, and the package is designed for flexible and complex 

model development. The package is continually updated to incorporate new developments in 

spatial statistics. We chose to implement our approach using INLA due to the speed, 

package flexibility, and ease of implementation for future researchers. The code for our 

approach is available at https://github.com/chirimacha/Risk-maps-for-cities. We plan to use 

our method in real-time in the field to guide vector surveillance, and therefore these 

strengths are of particular significance.

In the last few years, INLA has become a popular method to fit GFs. The algorithm is an 

alternative to Markov chain Monte Carlo algorithms, which are common for geostatistical 

models but can be problematic in GF estimation due to non-convergence and long 

computation times. The latent field u tend to be highly correlated, and u also tend to be 

dependent on the model hyperparameters, a common issue that arises in MCMC algorithms. 

Rue et al. found estimation of GMRF models using integrated nested Laplace 

approximations was more precise and significantly faster (Rue et al. (2009)). This approach 

uses Gaussian approximations, nested Laplace approximations, and numerical integration to 

estimate the marginal distributions of the latent field and hyperparameters. The 

approximations are especially precise for GF estimation. For details on the algorithm, see 

Rue et al. (2009).

To estimate S, we fit the model at several values of S and compare the log-likelihoods. We 

estimate S as the value that maximizes the log-likelihood of the model. Using the INLA 

estimation algorithm, it is not possible to update the estimate of S in the same way as an 

MCMC algorithm. In addition, changing S changes the mesh used in the model. However, 

for the purposes of creating risk maps, estimating a full posterior distribution for S does not 

provide a benefit over using the estimate of S directly.
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3. Simulations

To evaluate the performance of our proposed method, we simulate data on a subset of the 

study region consisting of 2265 houses over 93 city blocks (Figure 1a). Our barrier effect 

parameter, S, and three parameters (κ, σu, β0) in the model (1) with 2×2×2=8 simulation 

scenarios with a fixed intercept β0 = −3 are considered: (1) κ is either 0.005 or 0.01, (2) σu2 is 

either 5 or 10, and (3) S is either 1.5 or 2.5. Additional simulation scenarios are considered 

in Appendix A. Each simulated data is generated with respect to the true values of the four 

parameters in each simulation scenario.

Table 2 shows the simulation results from 100 Monte Carlo simulations for each scenario. 

The table summarizes the true parameter values, the parameter estimates using our approach, 

and the proportion of simulations with successful identification of S. It is important to tune 

the parameters so that they produce realistic infestation patterns; under some parameter 

regimes, extremely sparse or over-saturated landscapes will be produced. The simulation 

results demonstrate the ability of this approach to successfully identify S in most cases. In 

addition, the model captures the covariance function remarkably well, using only observed 

binary data (Figure 4).

We conduct additional simulations to quantify the gain in infestation prediction using 

permeable barriers. To do so, we simulate datasets and fit the model assuming one-third of 

the infestations are observed. We simulate the data under S = 1 (true map – no additional 

barrier effect), S = 2.5, and S = 4, and fit the model using both the true map and distorted 

map under the estimated scale, S (Table 3). To describe the results, we report the difference 

in number of positive houses discovered if inspectors searched the unobserved houses with 

the top 30% of probabilities. These simulation results indicate that the model using barriers 

better guides risk-based searches, especially when streets are strong barriers (Table 3). When 

streets are not barriers (S = 1), using the approach does not hinder the number of positive 

houses discovered, but also does not improve it. In addition, even when the majority of 

houses are unobserved, our approach identifies and estimates S reasonably well (Table 3).

From the simulations, we identified two issues. First, for a small subset of simulated 

infestation patterns, it is difficult to identify the scale parameter S (Figure 3). The 

identification issue can be understood from the following example. Consider two infected 

houses on separate blocks and assume that the spatial components of the two locations are 

weakly correlated. This weak correlation can appear either due to a large value of the street 

barrier effect parameter S, or to a rapidly decreasing Matérn covariance function. The 

identification issue is easily overcome when a larger number samples is provided–but in the 

case of very scarce infestations, it is difficult to capture S (Figure 3ac). Rarely, we observe 

an oversaturated landscape, with few uninfested blocks, which also creates an unidentifiable 

pattern (Figure 3b). For more details on identification of S, see Appendix A. Secondly, the 

estimation of Matérn covariance parameters κ and σu2 is not consistent. In Figure 4, each 

estimated covariance function is plotted and compared with the true covariance function. We 

can see that though κ and σu
2 are biased, the estimated covariance function itself is 
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remarkably close to the true function (Figure 4). Our main interest lies in capturing the 

function, rather than the individual covariance parameters, to create useful risk maps.

4. Data Results

We apply the method to data collected during a vector control campaign in the district of 

Mariano Melgar in Arequipa in 2009. The district contains 12,069 houses, of which 586 

were found to be infested with insect vectors (Figure 5). To fit the model to the dataset, we 

sample S over (1, 4) by increments of 0.1 and also estimate κ, ν, and β0. We use the value of 

S that maximizes the log-likelihood of the model as our estimate, S, and the corresponding 

model parameters, θ , and β0.

Using this approach, we find the the log-likelihood is maximized at S = 1.5. Our result 

indicates that streets are permeable barriers in the distribution of T. infestans, in agreement 

with previous studies (Barbu et al. (2013)). Our map contains blocks of varying sizes and 

shapes, and therefore our estimate, S, means the average minimum distance between houses 

on different blocks is increased 2.1 fold with a standard deviation of 0.5. This increase in 

average minimum distance is unique to our irregular map given the sizes and shapes of the 

city blocks. A scaled subsection of the map, incorporating this additional distance, can be 

seen in Figure 1B. Using this S, the covariance function is described using the estimates of κ 
= 0.009 with a 95% posterior credible interval of (0.007,0.013) and σu2 = 7.716 with a 95% 

posterior credible interval of (5.492,10.047) (Figure 6). We estimate the model intercept, β0 

= −6.10 (0.41). Estimates of all parameters across values of S are summarized in Appendix 

B.

Using the scale of S = 1.5, we develop a risk map, representing the probability of infestation 

for each household (Figure 7). For comparison, we also present the risk map at S = 1, the 

true city map, and S = 3, additional widening of the barriers. Using this map, we can 

visualize the areas with elevated probability of infestation and compare the risk to the 

analysis without incorporating streets as barriers. Our estimates of the additional parameters, 

the covariance parameters θ, and the model intercept β0, suggest there is significant spatial 

correlation between houses both within and between city blocks.

5. Discussion

We presented an approach to assess the significance of the urban landscape on the spatial 

distribution of disease vectors and quantify the effect of city streets in the distribution of the 

Chagas disease vector T. infestans in Arequipa, Peru. We estimated that streets add a 

distance of 50% to the true street width in the spatial distribution of vectors in the study 

region. Our estimate is qualitatively similar to Barbu et al. who estimated a fixed additional 

distance for each street regardless of the original width, however a direct comparison is 

difficult due to the difference in approaches (Barbu et al. (2013)).

Using the urban landscape and observed distribution of T. infestans in a portion of 

households, we created a risk map incorporating the city structure that can be used to guide 

searches over large areas of Arequipa for T. infestans. The methodology is easy to 
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implement across large districts in Arequipa, and the risk maps are presented to control 

personnel in an easy to use application (Gutfraind et al. (in press)). By distorting the map 

and using Euclidean distance to define distance between points, we avoid complexities 

associated with using non-Euclidean distances (Curriero (2006)). The approach runs in just a 

few hours, or even less, depending on the size of the dataset and S used. On our dataset of 

12,609 households, the process took 70 minutes when S = 1, 80 minutes when S = 1.5, and 

90 minutes when S = 2. Overall, the time increases for larger values of S, but is much more 

affected by the size of the dataset. On smaller datasets, the approach can be completed in 

just a few minutes, even for large values of S.

Our model has limitations, both theoretically and in its interpretation. From our simulation 

studies, we observed specific unidentifiable datasets. We suspect that these parameter values 

occasionally generate simulated datasets where the pattern of infested houses is clustered 

such that the S is difficult to identify, including heavily clustering within a city block and 

lower total numbers of infested houses. From the likelihood plots (Figure 3), it is clear 

which datasets are unidentifiable, as they peak and then do not decrease as S increases. The 

unidentifiability of certain datasets is also a practical limitation, as scarce infestations are 

expected after control actions, and thus the barrier may not be identifiable.

The practical interpretation of our scale parameter, S, is complex when using irregular maps. 

While the distance between the center of each city block directly increases by S, the distance 

between points not at the center of each city block will increase by varying amounts 

depending on the size and shape of that particular block. Distortion of maps with irregularly 

shaped blocks may result in unintended changes, such as the alignment of blocks relative to 

each other. Incorporating multiple geographic barriers, such as streets and rivers, is difficult, 

if only one element is intended to be a barrier, or if they are barriers of different 

permeabilities.

In addition, our model assumes a constant scale factor for all barriers. In fact some streets, 

such as paved streets, may present more of a hindrance to insects than others. It would be 

quite difficult to incorporate covariates in the effects of barriers given within the framework 

presented here. Alternative methods have been developed to estimate complex spatial 

dependencies, which are arguably more statistically rigorous (Krivoruchko and Gribov 

(2004), Anders and Gudmund (2003), Sampson and Guttorp (1992), López-Quílez and 

Muñoz (2009)). However, the aim of our approach was to capture the spatial dependencies 

of the urban grid, while using fast and established statistical estimation software, so our 

methodology could be implemented to create risk maps in real time, and guide our field 

investigations. Hong developed a method that considers barriers such as streets as ‘sunken’ 

in relation to the remainder of the Gaussian field, rather than stretching the streets as we do 

here (Hong (2013)). Using grid methods similar to those we employ he estimated the degree 

of ‘sinkage’ of each barrier. His method would allow for greater flexibility to assess barriers 

of different types. In addition, his method is not affected by the irregularities of the specific 

urban grid. Hong et al also described a link between non-participation in vector control 

campaigns (from which these data are derived) and lower rates of infestation. We have not 

incorporated this association in our current analysis, which is another limitation to our 

approach. ‘Sinking’ the streets requires enormous and tedious manipulation of the 
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triangulation used to approximate the Gaussian field, while stretching the streets is simple 

and easily incorporated into the existing R package, INLA. The ability to quickly 

incorporate our approach into existing software makes our method accessible to researchers 

across many disciplines for real-time risk map creation.

6. Conclusions

Risk maps are often used to develop epidemic predictions and intervention strategies. The 

observation of identifiable permeable barriers raises new potential targets for public health 

interventions in urban landscapes. For example, given our results, it may be more effective 

to inspect houses on the same city block as known infested houses rather than inspect houses 

within a set radius of them. We intend to use this modeling approach to guide inspections in 

Arequipa, Peru. As inspections are completed, we will update the model to reflect the latest 

observed infestations. The flexibility, generalizability, and computational efficiency make 

our approach a promising tool for real-time risk map creation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Detailed simulation results

Our simulation studies suggest we need a minimum amount of observed information to 

identify the scale parameter. More research must be done to identify the requirements for 

identifiability of S. Our initial investigations suggest that the scale is identifiable when at 

least 2% of houses are infested, however this approximation also seems sensitive to the 

specific infestation pattern. The requirements may vary by the specific map and model used. 

In our testing, when the parameter is unidentifiable, the log-likelihood sharply increases near 

the true value but then does not decrease as the scale increases. It may be possible to identify 

specific patterns when these unidentifiable cases occur. As a general rule, we noticed 

unidentifiable likelihoods in cases with very low levels of infestation. Occasionally, we 

observed an unidentifiable likelihood when there was a high number of infested houses.
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Table 4:

Simulation results with the variation in intercept β0.

True values Estimates

κ σu2 S β0 S β0 Coverage (β0) Identification

0.01 5 2.5 −3 2.68 (0.48) −2.92 (0.35) 0.96 0.76

10 2.69 (0.55) −2.99 (0.49) 0.95 0.92

25 2.65 (0.45) −3.11 (0.79) 0.97 0.93

50 2.65 (0.40) −3.42 (1.21) 0.95 0.94

100 2.67 (0.44) −3.31 (l.86) 0.95 0.98

200 2.64 (0.38) −4.02 (3.24) 0.97 0.98

Table 5:

Simulation results with the variation in intercept κ.

True values Estimates

κ σu2 S β0 S β0 Coverage (β0) Identification

0.001 5 1.5 −3 1.42 (0.52) −2.35 (4.19) 0.93 0.69

0.002 1.52 (0.51) −2.56 (1.34) 0.98 0.89

0.005 1.57 (0.35) −3.11 (0.89) 1.00 0.95

0.01 1.64 (0.27) −2.97 (0.53) 0.97 1.00

0.001 10 1.5 −3 1.70 (0.64) −4.24 (6.78) 0.97 0.73

0.002 1.55 (0.45) −2.63 (1.99) 1.00 0.93

0.005 1.61 (0.33) −3.13 (1.26) 0.97 0.98

0.01 1.58 (0.19) −3.16 (0.77) 0.96 1.00

Table 6:

Simulation results with the variation in intercept β0.

True values Estimates

κ σu2 S β0 S β0 Coverage (β0) Identification

0.005 5 2.5 −3 2.76 (0.48) −2.91 (0.35) 0.96 0.76

−4 2.64 (0.53) −4.07 (0.46) 0.98 0.69

−5 2.52 (0.58) −5.06 (0.67) 0.92 0.66

−6 2.12 (0.74) −6.25 (l.17) 0.94 0.52

κ = 0.01, σu2 = 5, S = 2.5 are fixed. The intercept β0 varies from −6 to −3. The intercept plays 

a important role that decides the total number of infestations. A larger value of the intercept 

β0 implies more infestations. Table 6 shows the simulation results with the variation in β0. 

As β0 decreases, the variation in the estimation of S increases and the identification rate 

decreases.
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Figure 8: 
Log-likelihood analysis across different scales, S. In most cases, S is clearly identifiable, but 

in some cases (red rectangles) it is not.

Appendix B. Additional Data Results

See Table 7 and Fig. 9
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Figure 9: 
Log-likelihood analysis across different scales, S. Likelihood is maximized at S = 1.5 

indicating the model of best fit.

Table 7:

Results of grid sampling S on dataset, including estimates and standard deviations of θ1, θ2, 

and β0. The log-likelihood is maximized when S = 1.5, and the bolded results are reported in 

the main text.

S θ1 θ2 β0 ll

1.0 2.06 (0.14) −4.30 (0.14) −6.14 (0.45) −1809.18

1.1 2.08 (0.15) −4.36 (0.17) −6.16 (0.44) −1799.65

1.2 2.13 (0.16) −4.41 (0.20) −6.15 (0.43) −1795.19

1.3 2.19 (0.18) −4.47 (0.21) −6.13 (0.42) −1793.33

1.4 2.36 (0.23) −4.63 (0.21) −6.10 (0.42) −1793.35

1.5 2.35 (0.18) −4.63 (0.17) −6.10 (0.41) −1791.74

1.6 2.45 (0.19) −4.71 (0.19) −6.07 (0.42) −1793.44

1.7 2.49 (0.18) −4.75 (0.19) −6.06 (0.42) −1793.56

1.8 2.54 (0.19) −4.79 (0.19) −6.06 (0.42) −1793.02

1.9 2.61 (0.19) −4.86 (0.18) −6.04 (0.42) −1794.38

2.0 2.66 (0.19) −4.91 (0.18) −6.03 (0.42) −1794.74

2.1 2.71 (0.19) −4.96 (0.18) −6.03 (0.42) −1794.87

2.2 2.77 (0.19) −5.00 (0.17) −6.02 (0.43) −1795.97
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S θ1 θ2 β0 ll

2.3 2.82 (0.15) −5.07 (0.15) −6.00 (0.42) −1795.65

2.4 2.85 (0.20) −5.09 (0.18) −6.01 (0.42) −1796.46

2.5 2.88 (0.21) −5.12 (0.19) −6.01 (0.42) −1796.70

2.6 2.95 (0.20) −5.15 (0.18) −6.01 (0.43) −1797.74

2.7 3.00 (0.19) −5.19 (0.17) −6.00 (0.43) −1798.51

2.8 3.02 (0.15) −5.26 (0.15) −5.99 (0.42) −1797.84

2.9 3.06 (0.20) −5.25 (0.18) −6.00 (0.43) −1799.25

3.0 3.11 (0.16) −5.31 (0.15) −5.99 (0.43) −1799.15

3.1 3.11 (0.16) −5.36 (0.16) −5.97 (0.43) −1799.84

3.2 3.16 (0.16) −5.34 (0.15) −5.98 (0.43) −1800.82

3.3 3.21 (0.16) −5.38 (0.15) −5.98 (0.44) −1801.66

3.4 3.24 (0.16) −5.40 (0.15) −5.97 (0.44) −1802.66

3.5 3.30 (0.15) −5.48 (0.14) −5.97 (0.44) −1802.78

3.6 3.31 (0.17) −5.48 (0.16) −5.97 (0.45) −1803.63

3.7 3.37 (0.15) −5.54 (0.14) −5.96 (0.45) −1804.08

3.8 3.35 (0.16) −5.68 (0.19) −5.93 (0.44) −1803.83

3.9 3.39 (0.16) −5.72 (0.19) −5.93 (0.44) −1804.50

4.0 3.40 (0.17) −5.76 (0.19) −5.92 (0.45) −1805.19
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Figure 1: 
A) S = 1, which corresponds to the true map of section in Mariano Melgar, Arequipa, Peru 

used for simulations. There is no map distortion at this scale. B) Distorted map to a scale of 

S = 1.5, where the distance between geographic medians of blocks are 1.5 fold the true 

distance. C) Map distorted to scale S = 2.5, where distance between geographic medians of 

blocks are 2.5 fold the true distance. Note distance between houses within block is 

maintained but distance between houses on different blocks is stretched.
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Figure 2: 
Mesh over the map of the simulation region (houses in blue). Maximum edge length is 

constrained to 100S to keep meshes consistent between scales. A. S = 1 B. S = 1.5
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Figure 3: 
Three unidentifiable and identifiable log-likelihoods and the corresponding simulated 

datasets. Unidentifiable landscapes were uncommon, (rates varied based on the true 

parameter values of κ and σu2) and in most cases had scarce infestations (panels a and c). 

Occasionally, an unidentifiable landscape was oversaturated and also unidentifiable (panel 

b). For comparison, most simulated datasets were identifiable with clear maximums of the 

log-likelihoods (panels d, e, and f)
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Figure 4: 
Comparing the estimated Matérn covariance function (gray) with the true Matérn covariance 

function (black) under four parameter sets.
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Figure 5: 
Map of the study region, the district of Mariano Melgar, Arequipa, Peru, which consists of 

12,069 houses and 724 blocks. Color corresponds to number of known infested houses on 

the block. The map is made using a UTM projection.
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Figure 6: 
Posterior distributions of estimated parameters when S = 1.5. A. Posterior distribution of σu2

B. Posterior distribution of κ. C. Estimated posterior distribution of Matérn covariance, as a 

function of distance. For reference, when the map is scaled to S = 1.5, the average distance 

between nearest neighbors on the same block is 10.2 (sd = 5.5) and the average distance 

between nearest neighbors on different blocks is 62.4. (sd = 18.0)
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Figure 7: 
Risk map of predicted probabilities of infestation using A) S = 1 (true map) B) S = 1.5 and 

C) S = 3. The last panel shows differences in risk between scales of the area enclosed in the 

black rectangle in more detail. The color scale ranges from 0.74 (red) to 0.00 (purple). The 

map is made using a UTM projection.
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Table 1:

Description of map distortion in Figure 1 scaled so the spatial unit is the average distance between nearest 

neighbors on the same block. Interpretation of S varies by specific map due to variability in sizes and shapes 

of city blocks. S describes ratio of distance between geographic median of each city block relative to the true 

map (which is equivalent to S = 1). Table summarizes how this distortion corresponds to additional distance 

between houses on different blocks using mean and standard deviation (sd). The distortion varies block by 

block due to irregular grid.

S = 1 S = 1.5 S = 2.5

Average distance (and sd) between nearest neighbors on the same block (ie. no barrier) 1.0 (0.3) 1.0 (0.3) 1.0 (0.3)

Average distance (and sd) between nearest neighbors on different blocks (ie. one barrier) 3.6 (1.1) 8.0 (1.5) 16.0 (2.3)

Ratio of average distance between nearest neighbors on different blocks compared to same distance when S 
= 1

- 2.2 (0.4) 4.4 (0.9)
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Table 2:

Results from 100 Monte Carlo simulations for each parameter set. The parameter estimates are shown with the 

corresponding estimated standard deviations with the true values set for the simulations. The coverage of (β0) 

is the average rate that the credible interval captures the true value of β0 for identified simulation cases. The 

last column is the proportion of identifiable simulated datasets.

True values Estimates

κ σu2 S β0 S β0 Coverage (β0) Identification (S)

0.005 5 1.5 −3 1.57 (0.35) −3.11 (0.89) 1.00 0.95

2.5 −3 2.48 (0.53) −3.13 (0.61) 1.00 0.73

10 1.5 −3 1.61 (0.33) −3.13 (1.26) 0.97 0.98

2.5 −3 2.77 (0.55) −3.05 (0.94) 0.97 0.89

0.01 5 1.5 −3 1.64 (0.27) −2.97 (0.53) 0.97 1.00

2.5 −3 2.76 (0.48) −2.91 (0.35) 0.96 0.76

10 1.5 −3 1.58 (0.19) −3.16 (0.77) 0.96 1.00

2.5 −3 2.76 (0.55) −3.00 (0.49) 0.95 0.92
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Table 3:

Difference in number of positive houses in the top 30% of probabilities of infestation using our approach of 

map distortion compared to using the true map with no distortion (S = 1). Model fit with true values of S = 1, 

S = 2.5, and S = 4 when a randomly selected one-third of points were observed. Intercept fixed at β0 = −5. 100 

simulated datasets were run at each value. We report number of positive houses in the top 30% of probabilities 

which were treated as unobserved (ie. no gain for houses that were observed as positive).

κ σu2 S S + houses under S + houses under S = 1 Difference

0.005 20 4 4.4 316 302 14

2.5 3.1 324 319 5

1 1.1 315.5 316.5 −1

10 4 4.3 230 216 14

2.5 3.4 245 241 4

1 1.1 252 252 0
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