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Abstract

Structure-based virtual screening (SBVS) relies on classical scoring functions that often fail to 

reliably discriminate binders from non-binders. In this work, we present a high-throughput 

protein-ligand complex MD simulations that uses the output from AutoDock Vina to improve 

docking results in distinguishing active from decoy ligands in DUD-E (directory of useful decoy, 

enhanced) dataset. MD trajectories are processed by evaluating ligand binding stability using 

RMSD (root-mean-square deviations). We select 56 protein targets (of 7 different protein classes) 

and 560 ligands (280 actives, 280 decoys) and show 22% improvement in ROC AUC (area under 

the curve, receiver operating characteristics curve), from an initial value of 0.68 (AutoDock Vina) 

to a final value of 0.83. MD simulation demonstrates a robust performance across all 7 different 

protein classes. In addition, some predicted ligand binding modes are moderately refined during 

MD simulations. These results systematically validate the reliability of physics-based approach to 

evaluate protein-ligand binding interactions.
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Introduction

Structure-based virtual screening (SBVS) is an important early-phase step in drug discovery 

workflow that is widely used in the development of new therapeutic agents.1, 2 Molecular 

docking is a method of choice for SBVS to predict binding mode and binding energy of a 

small molecule compound to the binding site of a target protein. The increasing availability 

of high-resolution three-dimensional structures of holo target proteins and rapid advances in 

computational techniques have contributed to many successful results of SBVS in the past 

two decades. Most recently, Lyu and colleagues ran ultra-large library docking and 

discovered new chemotypes for AmpC β-lactamase and D4 dopamine receptor.3 A few of 

the previous success cases include STX-0119 for lymphoma, novel histamine H4 receptor 

ligands, and novel Pim-1 kinase inhibitors.4–6 In practice, SBVS is attractive because it is 

capable of quickly screening large compound libraries. In addition, SBVS has been shown to 

reasonably reproduce experimental binding modes using standard docking programs: for 

example, AutoDock Vina with 78% success rate in self-docking (i.e., docking of a native 

ligand back to its receptor protein crystal structure).7 Despite this, a major limitation to 

docking methodology is still the scoring function that aims to approximate binding affinity 

and discriminate binders from non-binders.8

Over the past few years, numerous approaches have been developed to improve the scoring 

function in SBVS. The most notable ones are machine-learning-based methods that show 

significant improvements in screening for real binders from a given library of compounds. 

Recently, water and ligand stability were incorporated into machine-learning scoring 

functions that successfully boosted AutoDock Vina docking results.9 Enhanced performance 

in scoring function using machine-learning was persuasively reported by Wojcikowski and 

colleagues using DUD-E (database of useful decoys – enhanced) dataset.10, 11 More 

recently, Yasuo and Sekijima added interaction-energy-based learning to further improve 

scoring functions tested on the same DUD-E benchmark set.12 Another notable case was 

shown by Pereira and colleagues using deep neural network that achieved significant 

improvements on docking results.13 While various types of machine-learning methods have 

shown success cases in improving the scoring function of SBVS, this approach is still 

relatively new and actively growing.14 And a few problems persist in these machine-

learning-based methods, including judicious choice to obtain a balance between model 

overfitting to a training set and keeping it generalizable.15
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Physics-based molecular dynamics (MD) simulations is a powerful methodology in 

biophysical research that provides invaluable structural and dynamics information of 

protein-ligand interactions at the atomic level. D.E. Shaw research lab showed a long and 

unbiased MD simulation that captured the process of a small molecule recognizing and 

binding to a protein target.16 The binding site was correctly identified by the ligand and the 

binding mode was essentially identical to the experimentally determined crystal structure. 

The MD approach effectively includes entropy effects and the role of water molecules 

during the binding process, unlike machine-learning-based methods. MD has also been 

sparingly used before and is continually being used today to evaluate and improve SBVS 

docking results.17 We had previously shown that short equilibration of MD simulations 

could better filtered near-native pose prediction as compared to a docking scoring function 

for MDM2 and MDMX inhibitors.18 Analyzing the ligand stability, we showed that 

correctly predicted binding modes from docking results tend to be more stable than 

incorrectly bound ligands during MD simulations. Similarly, Cavalli and colleagues showed 

that short MD simulations were able to discriminate stable near-native poses from decoy 

poses of propidium on HuAChE (human acetylcholinetransferase).19 MD was also used by 

Park and colleagues to demonstrate the differences in binding site flexibility between CDK4 

and CDK2 that explained selective binding of CDK4 inhibitors.20 Ogrizek and colleagues 

used MD to obtain various snapshots for docking that resulted in better discrimination 

between active from inactive compounds.21 Recently, Radom and colleagues showed that for 

protein-protein docking complexes, MD simulations successfully discriminated correct 

models from decoy models.22 They revealed that correct models were kinetically stable, 

whereas decoys were unstable and detached from each other during MD simulations. 

Nevertheless, relative to docking techniques, MD simulations are still more computationally 

intensive, challenging, and expensive. These limitations often discourage drug discovery 

researchers to actively incorporate MD simulations into their workflows. However, recent 

advances in computational power, decreasing cost, and user-friendly tools have alleviated 

most of the limitations associated with MD simulations.23 A few examples include the use 

of GPUs (graphics processing units) to accelerate MD simulations and web-based GUI 

(graphical user interface) tools to facilitate system set up.24–26

In this study, we present a high-throughput protein-ligand complex MD simulations method 

that integrates the functionality of CHARMM-GUI (http://www.charm-gui.org) web server 

to improve docking results in discriminating small molecule binders from non-binders.27, 28 

Using AutoDock Vina, we obtain docked protein-ligand complex structures and process 

them using a python script that uses CHARMM-GUI to automate the production of MD 

simulation system and input files for each structure in a high-throughput manner.7 Post-

processing of MD data is simply based on ligand-RMSD (calculating ligand-RMSD relative 

to the initial docking structure by aligning the protein structure but not the ligand) to assess 

ligand stability and distinguish small molecule binders from non-binders. We evaluate our 

method on 56 target proteins of 7 different protein classes selected from DUD-E dataset 

based on their crystal structure resolution.11 For each target, we randomly select 10 

compounds, 5 of which are active and the other 5 are decoys. Our results show consistently 

better AUC ROC (area under the curve, receiver operating characteristics curve) compared 

to docking results. Overall, we achieve AUC of 0.83 compared to 0.68 (AutoDock Vina). In 
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addition, we show that MD simulation can relax and slightly improve the overall binding 

mode predicted from AutoDock Vina, in some cases. These results indicate a promising 

high-throughput MD simulation protocol that can be integrated with docking from SBVS to 

improve its scoring function and binding mode results.

Methods

We conducted all-atom MD simulations in explicit solvents on 56 protein targets from DUD-

E dataset.11 DUD-E dataset consists of 102 diverse protein targets and most of them have 

pharmacological precedence. This dataset has been frequently used as a benchmark to test 

proposed docking/scoring methodologies.10, 12, 13 In this study, we only included protein 

targets that have crystal structure resolutions of 2 Å or better and excluded transmembrane 

protein targets. It reduced our targets to 56 proteins, which still maintain the diversity of 

protein classes from the original dataset, including 7 protein categories with 14 kinases, 10 

proteases, 6 nuclear receptors, 2 ion channels (non-transmembrane domains), 2 cytochrome 

P450, 18 other enzymes, and 4 miscellaneous proteins. For each protein target, we randomly 

selected 5 active compounds and 5 decoy compounds to compare the ability of docking 

program and MD simulation in discriminating active from decoy compounds. The native 

ligand for each target protein was also used as a control for this experiment. The complete 

list of protein targets and selected ligands are listed in Table S1. In addition, we calculated 

Tanimoto coefficients of the active compounds (Table S2) and the decoy compounds (Table 

S3). Tanimoto coefficients were calculated using F2 fingerprint option on Open Babel 

2.4.1.29 Tanimoto score distributions in Figure S1 shows that the majority of compounds 

used in this study are not similar to one another.

The workflow of our method is presented in Figure S2 and further described in the following 

paragraphs. We chose AutoDock Vina as our docking program, because it has been shown to 

be one of the best performing docking programs that is freely available to researchers in 

academia.7, 30 AutoDock Vina provides a scoring function that relies on knowledge-based 

potentials and available empirical information to rank ligands docked to protein structures. 

Protein receptors and ligands were prepared using default criteria from AutoDock Vina.7 

Receptors were treated as rigid, while the ligands were flexible. The search space for 

docking of ligands was determined based on the coordinate of the native ligand from the 

crystal structure. A cubic box search space with 22.5 Å edge in each direction was added for 

ligand docking (i.e., flexible ligand and rigid receptor). For the purpose of running a smooth 

high-throughput workflow, we only selected the top scoring docked output for each protein-

ligand complex.

Protein-ligand complex structures were processed using a python script (Script S1) to 

automate browser actions for the production of MD system and input files using CHARMM-

GUI.27, 28 This script was inspired by a script that utilizes the Solution Builder module for 

building systems that contain various combinatorial ligand structures from the CHARMM-

GUI Ligand Reader and Modeler module.31 Topology and parameter files for the ligands 

were generated using the latest CGenFF via CHARMM-GUI.32, 33 Protein-ligand structures 

were solvated in a cubic box using TIP3P water models that extended 10 Å from the protein.
34 The systems were neutralized using K+ and Cl− ions. Periodic boundary conditions were 
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applied to the systems in the NPT (constant particle number, pressure, and temperature) 

ensemble using Langevin thermostat.35 The particle-mesh Ewald method was used for 

electrostatic interactions.36 Force-based switching function was used to truncate nonbonded 

interactions over 10 and 12 Å.37 Hydrogen atoms were constrained using the SHAKE 

algorithm.38 We selected to use CHARMM36m force field for all of the simulations.39 

Equilibration and production runs were carried out using OpenMM program.40 Our systems 

were minimized for 5,000 steps using the steepest descent method followed by 1-ns 

equilibration with NVT (constant particle number, volume, and temperature) setting. During 

equilibration, the ligands were positionally restrained while the proteins were allowed to 

relax. Restraints were removed for subsequent production runs that were carried out at 303.5 

K and 1 atm with an integration time step of 2 fs. For each protein-ligand complex, we ran 3 

× 100-ns production runs, each started with the same initial structure but using different 

initial velocity random seeds. To evaluate binding stability of a ligand to its receptor protein, 

for each snapshot, we first aligned the protein structure only and calculated the ligand 

RMSD to capture RMSD from ligand’s translation and rotation during the simulation. The 

proteins were superimposed based on their entire heavy atom coordinates using CHARMM. 

For each protein-ligand complex we averaged the ligand RMSD throughout the simulation 

time (100 ns) and obtained a single ligand RMSD value.

We used PBEQ Solver (Poisson-Boltzmann equation solver) in CHARMM-GUI to calculate 

and visualize electrostatic potential surface for proteins.27, 41, 42 Subsequently, we overlaid 

the native ligand binding mode from each crystal structure as well as decoy ligands to 

visually assess their binding modes and interactions.

In order to evaluate the conformational changes underwent by the active ligands during MD 

simulation, we performed binding pose comparisons with available crystal structures. Since 

we had randomly chosen ligands for this study without considering the availability of their 

experimental structures, we had to conduct another set of simulations that include protein-

ligand complexes with crystal structures. We chose one protein from each of the 7 different 

protein classes and randomly selected 5 active ligands for each target structure. However, for 

Cytochrome P450, we could only find crystal structures with 3 different ligands. The 

complete list of the 7 protein targets and their ligand crystal structures are listed in Table S4. 

We obtained additional 33 ligands and docked these ligands using AutoDock Vina to the 7 

selected protein targets. In Vina, ligands were flexible and receptors were rigid. The search 

space for ligand docking was based on the crystal structure coordinate of the ligand in the 

target protein. The search space was determined with 22.5 Å edge cubic box from the center 

of mass of the crystal ligand. After docking, we calculated ligand RMSD relative to 

available crystal structures (Table S4), by aligning protein structures only and calculating 

their ligand RMSD (crystal structure against predicted docking pose). After MD simulations, 

we obtained the last MD trajectory snapshot (a single protein-ligand complex structure) and 

calculated the ligand RMSD relative to the crystal structure (crystal structure against MD 

result), by superimposing the protein structures only and calculating their ligand RMSD.

Our simulations were conducted using 1 RTX 2080TI GPU (graphics processing unit) and 1 

CPU (core processing unit). The simulation time for the smallest system with 107 residues 

(23,310 atoms total) was 11.9 hours for 100 ns. The biggest system with 540 residues 
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(57,164 atoms) required 26.6 hours for 100 ns (Table S5). MD simulation’s speed is orders 

of magnitude higher than computational docking, where AutoDock Vina docked a molecule 

to a target within 2 minutes using 4 CPUs.

Results and Discussion

Short Molecular Dynamics Simulations effectively distinguish decoys from active binders

Docking results from randomly selected 280 active compounds and 280 decoy compounds 

on 56 target protein (10 compounds per target) show a ROC AUC of 0.683 in its ability to 

distinguish active from decoy compounds using the AutoDock Vina scoring function (Figure 

1). The histogram distribution of active and decoy compounds across the docking scores 

shows that both have a roughly unimodal distribution. There is a lot of overlap between 

active and decoy docking scores, where both have similar peaks at −8.5 and −8 kcal/mol, 

respectively (Figure 1A). As a result, it is difficult to discriminate active from decoy 

compounds just based on their docking scores. ROC plot suggests an optimal cutoff (to 

minimize false positive while maximizing true positive rate) at a docking score of −8 kcal/

mol. At this cutoff, the true positive rate (of correctly identifying active compounds with < 

−8 kcal/mol) is 61%, while false positive rate (of incorrectly identifying decoy compounds 

as active with < −8 kcal/mol) is 36% (Figure 1C).

The best complex model (with the highest docking score from Vina) for each protein-ligand 

pair is used as a starting structure for 100-ns MD simulation. In order to set up this process 

in a high-throughput manner, only the best docking output is used. MD data are processed 

by calculating the ligand RMSD (from the starting structure) to evaluate binding stability. 

The ROC AUC result from ligand RMSD is 0.832 (Figure 1). The histogram shows that 

active compounds have a unimodal distribution centering at 4 Å, while decoy compounds 

have a skewed-right distribution, showing a lot of ligands leaving the binding site during 

MD simulations (Figure 1B). It is clear that the majority of decoy ligands can be 

distinguished from active ligands based on the distribution of their ligand RMSDs. The 

optimal ROC plot cutoff is at a RMSD of 5.5 Å, where the true positive rate is 79% with a 

false positive rate of 24%. AUC improvement from AutoDock Vina scoring function (AUC 

of 0.683) to MD simulation ligand RMSD (AUC of 0.832) is 22%. Using a deep convolution 

neural network, Pereira and colleagues performed their method on 8 randomly chosen 

protein targets from DUD-E dataset. Their overall result showed the same AUC from 

AutoDock Vina as ours (0.68), and their method only improved that to 0.77, which 

amounted to 13% improvement.13

The early stage of our workflow, which is directly using the output binding mode from 

docking, is similar to any other machine-learning-based methods to improve protein-ligand 

model complex structures.10, 12, 13, 22 The limitation of this approach is that incorrect 

binding modes from docking for active compounds have the potential to deteriorate the 

ability of MD simulation to correctly identify active compounds. Our results show that a few 

active ligands are detached from the binding site during the simulation, suggesting that they 

might have been docked incorrectly at the binding site (Figure 1B). This problem has also 

been mentioned in machine-learning-based methods. For example, Pereira and colleagues 
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reported that some poor quality docking output binding modes negatively affected the 

performance of their method to improve docking results.13

Ligand RMSD scoring from MD shows robust performance across different protein classes

In total, we have 56 target proteins from 7 protein classes that include 14 kinases, 10 

proteases, 6 nuclear receptors, 2 ion channels, 2 cytochrome P450, 18 other enzymes, and 4 

miscellaneous proteins. Table 1 summarizes the AUC for each protein class and Figure 2 

shows their ROC plots. Through MD simulations and ligand RMSD evaluation, we observe 

similar distribution of ROC AUC values (around an average value of 0.832) across different 

protein classes. All but one of the protein classes have AUC values of 0.8 and above. The 

exception is the nuclear receptor protein class that has an average AUC of 0.783. One 

possible explanation is that nuclear receptor proteins have binding pockets that are closed 

and buried, making them difficult to be evaluated using ligand RMSD through MD 

simulations. Deeply buried (active or decoy) ligands in closed binding pockets tend to stay 

in the binding sites throughout the simulations, making it more difficult to distinguish 

between active and decoy ligands. Nevertheless, ligand RMSD improves the overall AUC of 

nuclear receptor proteins from 0.622 (docking scoring) to 0.783 (Table 1, Figure 2).

The AutoDock Vina scoring function combines knowledge-based potentials with available 

empirical data, so it relies on a machine-learning predictive nature to discriminate active 

from decoy compounds.1, 7 An apparent disadvantage to this approach is that the scoring 

function can be biased toward certain protein classes with the most available empirical data 

and/or most popular drug target classes. Our results show that docking outputs from 

AutoDock Vina tend to favor kinase (AUC of 0.812) and ion channels (AUC of 0.950) in 

terms of discriminating active from decoy compounds using its scoring function. 

Meanwhile, miscellaneous proteins (including fatty acid binding protein, heat shock protein, 

leukocyte adhesion glycoprotein, and inhibitor of apoptosis) have an average AUC of 0.482. 

This AUC value means that docking scoring function cannot discriminate active from decoy 

compounds for this set of proteins. Other enzymes, proteases, nuclear receptors, and 

cytochrome P450 have an average AUC of 0.665, 0.626, 0.622, and 0.550, respectively 

(Table 1, Figure 2). This problem of scoring functions being biased toward specific protein 

families have been acknowledged and discussed in a few previous reports.10, 43, 44 Schneider 

discussed that specific scoring function calibrated for a data set is usually preferred, because 

of their varying predictive accuracy across different protein families.43 Recently, using 

AutoDock, Ramirez and Caballero showed that its scoring function favored B-Raf kinase 

over MAO-B and thrombin.44 Taken together, having MD simulations as a step after docking 

to re-assess docked complexes using physics-based theoretical considerations appears to be a 

more objective and attractive approach. MD simulations incorporate the effects of solvation, 

flexibility of both protein target and ligand, and better evaluation of non-bonded interactions, 

which ultimately account for induced fit.

Shorter MD simulation runs can still consistently improve docking results

We observe that most ligands with incorrect binding modes and decoy compounds show 

signs of binding instability when evaluating their ligand RMSD over simulation time (Figure 

3). In general, ligands that have to undergo major binding adjustments of their initial docked 
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conformation end up leaving the binding site. During MD simulation, docked ligands change 

their binding interactions with the proteins to adjust to physics-based potential energy 

functions from MD force field. Unfavorable electrostatics and van Der Waals interactions 

result in unbinding of ligands from the proteins. We calculate the AUC ROC by only taking 

shorter MD trajectory and compare with the AUC from the full 100 ns. Interestingly, shorter 

MD simulations, 10 ns (AUC of 0.807) and 50 ns (AUC of 0.840), show similar ability to 

distinguish active from decoy compounds based on ligand RMSD (Table 1). It has been 

observed before that short simulations can more effectively evaluate the stability of bound 

ligand than the scoring functions from docking.17–20 We previously showed that several 

hundreds of picoseconds simulations could evaluate ligand binding stability in MDM2 better 

than AutoDock Vina scoring function.18 It is encouraging to notice that shorter simulations 

can effectively improve docking results, because it can save resources, time, and be 

efficiently incorporated into a high-throughput workflow.

We use DUD-E dataset, which provides decoy compounds that have similar physical 

properties to known active compounds, but are different in their 2D-topology.7 One of the 

advantages of using MD simulation is that the protein-ligand interactions are depicted as a 

function of simulation time. In Figure 3, ligand RMSD of representatives from each of the 7 

protein classes show clear differences in ligand binding stabilities between active and decoys 

compounds. During the simulation, we observe that false/weak interactions between decoy 

ligands and protein targets tend to be short-lived, and some ligands detach from their binding 

sites. In contrast, stronger interactions between active ligands (and native ligands self-

docked back to its binding site) and their protein receptors stay stable throughout the 

simulation. For example, in the case of tyrosine protein kinase (PDB 2of2), a representative 

of the kinase class, ligand RMSDs for 4 active compounds are stable, while all but one 

decoy compounds are detached from the protein during the simulation (Figure 3A). Binding 

instabilities are more pronounced as the simulation proceeds to 100-ns, where decoy ligands 

only start to drift away from the binding site at around 40 ns. Native ligand, furanopyridine 8 

binds to tyrosine protein kinase (PDB 2of2) with its pyridine and piperidine rings filling the 

negative potential binding pocket (Figure 4).45 Ligand decoy 5 that detaches from the 

binding site at 40 ns shows unstable binding with carbonyl group that fills the negative 

potential binding pocket (Figure 3A, S3).

Protease representative (PDB 1w7x) shows good results of discriminating active from decoy 

compounds based on their ligand RMSD. All 5 active ligands and the native ligand show 

stable binding throughout the simulation. However, only one of the decoy compounds is 

stable, 3 of them detach from the binding pocket and one shows high fluctuations toward the 

end of the simulation (Figure 3B). Protease binding site contains an evolutionary conserved 

S1 pocket that accommodates big ring structures from small molecules.46 The native ligand 

contains a benzamidine that fits in S1 pocket and forms a salt bridge with Asp189 at the base 

of the binding pocket (Figure 4).47 This binding mode stabilizes the native ligand binding 

throughout the simulation time. In contrast, ligand decoy 2 does not contain a moiety that 

binds at S1 pocket (Figure S3), resulting in weaker binding affinity and unbinding in MD 

simulation.
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Other enzymes class is represented by thymidine kinase (PDB 2b8t) that shows clear 

distinctions between active and decoy compounds binding stability. All 5 of active 

compounds are stable, showing similar fluctuations to the native ligand. However, all 5 of 

decoy compounds get displaced from the binding pocket within the first 10 ns of the 

simulation time (Figure 3C). Thymidine kinase has a specific lasso-like loop in its binding 

site that stabilizes the binding of thymidine moiety (Figure 4).48 This binding specificity 

does not seem to tolerate decoy compounds with different topology to bind at the binding 

pocket (Figure S3).

Ion channel protein class is represented by the ionotropic glutamate receptor (PDB 1vso) 

that demonstrates clear differences in binding stability of active and decoy compounds. All 

decoy compounds are detached from the binding site by 40 ns. Two of them leave in the first 

5 ns (Figure 3E). In contrast, all active compounds stay in the binding site. Although, most 

of the active compounds appear to undergo binding adjustments at the binding pocket with 

fluctuations in their ligand RMSDs. We observe that the binding pocket has an opened 

architecture that allows for more movements of bound ligand. The binding site of the ligand-

binding-domain from glutamate receptor adopts a clamshell-like conformation with S1 and 

S2 amino acid sequences that loosely sandwich a bound ligand (Figure 4).49, 50 Ligand 

decoy 5 contains a big three-ring structure that ends up detaching from the binding site 

(Figure S3).

The next two classes of proteins, nuclear receptors and cytochrome P450, are represented by 

RXR retinoid receptor (PDB 1mv9) and CYP3A4 (PDB 3nxu), respectively. The binding 

pockets in both structures are closed and buried, which substantially limit the ability of 

bound ligands to escape (Figure 4). The ligand binding site of a nuclear receptor is enclosed 

in a deep pocket that is formed by stable structures of the surrounding helices.51 In addition, 

ligand binding has been shown to be largely stabilized by strong hydrophobic interactions 

and extensive hydrogen-bonding networks that closely contour the shape of specific native 

ligands. The binding pocket of cytochrome P450 is closed up, but of a significantly bigger 

volume as compared to nuclear receptor.52 In general, bound ligands in these binding 

pockets show smaller and more stable ligand RMSD relative to other protein classes (Figure 

3D, 3F). At the same time, they show that active ligands have better ligand stability relative 

to decoy ligands, making it possible to discriminate the two. Ligand decoy 1 for nuclear 

receptor and decoy 3 for cytochrome P450 appear to bind loosely at the binding site and 

show more fluctuations during MD simulation (Figure S3).

The remaining proteins are classified into the miscellaneous class, which is represented by 

an inhibitor of apoptosis, IAP (PDB 3hl5). It is a relatively small protein (136 residues) with 

a flat and shallow binding site.53 Its native ligand CS3 shows a hydrogen bond that forms 

between the terminal amine group of the ligand and Asp320 on the surface binding grove of 

IAP (Figure 4). At the same binding groove, ligand decoy 1 positions a hydroxyl terminal 

that results in unstable binding (Figure S3). The AutoDock Vina scoring function cannot 

discriminate active from decoy compounds for this protein (and others in this class), but MD 

simulation can effectively discriminate binders from non-binders for this protein (Table 1, 

Figure 3G). All decoy ligands are shown to escape the binding site, and all but one of the 

active ligands show stable binding throughout the simulation.
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Short MD simulations show limited improvement of ligand binding modes for active 
compounds

Self-docking is the practice of computational docking of native ligand back to its receptor 

protein crystal structure. And, cross-docking is the practice of docking a ligand to a receptor 

protein that originally contains a different ligand. It is commonly accepted that most docking 

programs can produce good self-docking results across different dataset. A successful 

docking result generally pass the criterion of having ligand RMSD < 2 Å.54 AutoDock Vina 

was shown to have 78% success rate in self-docking for 190 protein-ligand complex 

structures in the PDBbind dataset.7 Recently, we tested AutoDock Vina self-docking on 40 

structures from Astex list and showed 82.5% success rate.55 Here, 79% success rate is 

obtained from self-docking of 56 DUD-E proteins. However, success rate for cross-docking 

has been low due to the specific variations in the local shape of the binding site crystal 

structure that fits its native ligand.44

Here, we explore the ability of MD simulations to refine the predicted ligand binding modes 

from cross-docking results. Unfortunately, most of the active ligands from DUD-E dataset 

do not have crystal structures that we can use as reference. To solve this, we collected active 

ligands with available crystal structures. Using the same workflow, we selected 7 proteins, 

each one from the 7 different protein classes (Table S4). For each target, we selected 5 

ligands, except for CP450 that only has 3 ligands with crystal structures. For cross-docking, 

we extracted ligands from these crystal structures and performed docking of these ligands to 

7 target proteins from DUD-E. The resulting ligand binding poses are assessed by 

calculating their ligand RMSDs from their crystal structures. Our results show that short MD 

simulations can moderately improve the predicted ligand binding modes from docking 

(Figure 5). The average improvement is 0.85 Å (from initial value of 5.21 to a final value of 

4.36 Å). Predicted ligand binding modes from docking that have < 2 Å ligand RMSD 

relative to their crystal structures do not show significant changes in binding modes during 

MD simulations. Their average change is an increase of 0.08 Å from docking to MD 

simulation, suggesting that ligands with good initial binding modes tend to stay stable 

throughout MD simulation runs. Ligands with initial predicted binding modes between 2–5 

Å relative to their crystal structures show moderate improvements of 0.69 Å on average. The 

rest of the ligands with > 6 Å RMSD away from their crystal structures do not show any 

significant improvements that can bring them below 5 Å RMSD, suggesting that the changes 

in their ligand RMSDs during MD simulations are random and not significant.

Overall, most of the changes in ligand RMSDs are small. Each protein-ligand complex was 

simulated for 100 ns, which is not enough to refine significantly incorrect binding poses 

(e.g., ligand RMSD > 5 Å). This is because ligand binding modes in MD simulations can get 

trapped in a local minimum (in energy landscape), which requires a significant amount of 

time to escape. In particular for cross-docking binding pose, two conformations need to 

change to allow for the correction of binding pose, including the protein binding site and the 

ligand. Binding site structures of the same protein that binds different ligands can be 

significantly different due to induced fit.56 In a rugged energy landscape with many 

available local minima, it can be quite difficult for a short MD simulation to correctly 

identify the global minimum. We expect that significantly longer simulations may result in 
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better improvements, as suggested by previous MD runs by DE Shaw group that 

successfully docked ligand dasatinib on its target Src kinase.16

Ligand binding modes from docking show a significant majority at 64% with incorrect 

binding poses (> 2 Å). At the same time, ROC AUC values are reasonably good from both 

Vina (0.68) and MD (0.83) methods to discriminate active from inactive compounds, 

suggesting that reproducing crystal-like binding poses is not necessary. In our simulations, 

we observe that most incorrect binding poses of active compounds contain some favorable 

interactions between the ligand and the binding site residues that are maintained during the 

simulations. Conversely, most decoy compounds lack favorable interactions and unbind 

during the simulations (Figure S3). In general, cross-docking results have been shown to be 

relatively poor compared to self-docking.44, 56 Ramirez and Caballero recently showed that 

cross-docking of 30 ligands to 3 different targets (B-Raf, thrombin, and monoamine oxidase 

B) resulted in bad ligand poses with > 3 Å RMSD relative to their crystal structures.44 Our 

results suggest that severely incorrect predicted binding modes cannot be sufficiently refined 

during 100 ns MD simulation. However, some moderately incorrect binding modes can be 

refined with short MD simulation. There are a few approaches that can be taken to avoid 

poor cross-docking results. One approach is to filter ligands based on their similarity to the 

bound ligand in the target structure (similarity selection) suggested by Sutherland and 

colleagues.56 They found that cross-docking accuracy increased when ligands that are 

similar to the native ligand are used for docking. Another approach is to include side chain 

residue flexibility in docking experiments to allow for flexible receptor docking. Adding 

receptor flexibility has been shown to increase docking success rate using AutoDockFR.57 A 

different approach that considers receptor flexibility is ensemble docking, where an 

ensemble of representative structures is used to account for differences in binding site 

structures.58 Ensemble docking has also been shown to improve cross-docking outputs.59

Conclusions

It is widely accepted that standard scoring functions from molecular docking programs are 

still having difficulties in discriminating binders from non-binders. Here, we propose a high-

throughput protein-ligand complex MD simulations method to improve docking results and 

more accurately distinguish binders from non-binders. MD simulation effectively 

incorporates the flexibility of both receptor and ligand, more accurately describes their 

interactions, and adds solvation effects, which more realistically depicts protein-ligand 

binding process. Therefore, MD simulation is an attractive method that has been shown to 

improve docking results for a few protein targets.17–20, 22, 60 To the best of our knowledge, 

this is the first study using MD simulations that systematically use a large set of 56 diverse 

target proteins and 560 ligands from DUD-E dataset. Our high-throughput method shows 

consistent improvements in discriminating active from decoy compounds compared to 

docking scores. Using 100-ns MD simulation as a step after AutoDock Vina docking 

produces an average AUC of 0.83 from its initial value of 0.68 using docking score. MD 

results show robust performance across different protein classes without favoring a particular 

protein class as observed in docking results. Shorter MD simulations of 50 ns and 10 ns 

show similar improvements compared to running 100 ns simulations. Furthermore, we show 

Guterres and Im Page 11

J Chem Inf Model. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that some of the ligand binding modes of active compounds can be moderately refined 

during MD simulations.

We expect that our high-throughput protocol will make it easier to prepare simulation 

systems and inputs for virtual screening of protein-ligand complexes using CHARMM-GUI.
27, 28 Our results can serve as a benchmark that showcase the ability of physics-based MD 

simulations in helping to discriminate binders from non-binders across a large number of 56 

target proteins in DUD-E. At the same time, a few limitations persist, including the accuracy 

of ligand force field parameters and computational cost in running virtual screening using 

MD simulations for thousands of ligands. As described in the introduction, many machine-

learning-based methods have been applied to docking results to boost their scoring 

functions.10, 12–14 Going forward, it appears that we can take advantage of our benchmark 

MD dataset for machine-learning training that can be applied to the rest of the ligand dataset 

in DUD-E. For example, we can include receptor flexibility information from MD to 

discriminate binders from non-binders. Various types of regularly occurring stable 

interactions throughout MD simulations can also be useful information for machine-

learning. We expect that this next step will effectively alleviate limitations that we have with 

our current protocol.
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Figure 1. 
Histogram distributions of (A) docking scores and (B) ligand RMSD for 560 protein-ligand 

complex structures. Proteins bound to decoy compounds are shown in red and active 

compounds are shown in blue. (C) ROC plots comparing docking scores with ligand 

RMSDs from MD simulations. The AUC values are 0.832 (ligand RMSD) and 0.683 

(docking score).
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Figure 2. 
ROC plots comparing docking scores with ligand RMSDs from MD simulations for 14 

protein kinases, 10 proteases, 18 other enzymes, 6 nuclear receptors, 2 ion channels, 2 

Cytochrome P450 proteins, and 4 miscellaneous proteins.
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Figure 3. 
Stability of bound ligands evaluated using ligand RMSD for representative proteins from 7 

different protein classes. (A) kinase: PDB 2of2, (B) protease: PDB 1w7x, (C) other enzyme: 

PDB 2b8t, (D) nuclear receptor: PDB 1mv9, (E) ion channel: PDB 1vso, (F) cytochrome 

P450: PDB 3nxu, and (G) miscellaneous: PDB 3hl5.
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Figure 4. 
Surface representations showing electrostatic potentials of holo structures with their native 

ligand binding modes for representative proteins from 7 different classes. Kinase: tyrosine 

protein kinase, PDB 2of2. Protease: blood coagulation factor VIIa, PDB 1w7x. Other 

enzyme: thymidine kinase, PDB 2b8t. Nuclear receptor: retinoid x receptor, PDB 1mv9. Ion 

channel: glutamate receptor, PDB 1vso. Cytochrome P450: human CP450 3A4, PDB 3nxu. 

Miscellaneous: inhibitor of apoptosis, PDB 3hl5. A transparent surface is used to show 

ligands that are buried in nuclear receptor and cytochrome P450.
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Figure 5. 
Ligand RMSD values comparing initial docking results with final conformations obtained 

from MD simulations against their crystal structures for 33 protein-ligand complexes. In 

many cases, MD simulations improve the predicted ligand binding modes from docking 

results. The average improvement is 0.85 Å.
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Table 1.

Summary of AUC ROC from docking results using AutoDock Vina and ligand RMSD using MD for DUD-E 

dataset
†

total ligands AUC

protein class total proteins actives decoys docking 100-ns MD 50-ns MD 10-ns MD

total 56 280 280 0.683 0.832 0.840 0.807

kinase 14 70 70 0.812 0.806 0.836 0.800

protease 10 50 50 0.626 0.824 0.822 0.805

other enzymes 18 90 90 0.665 0.834 0.826 0.801

nuclear receptor 6 30 30 0.622 0.783 0.778 0.804

ion channel 2 10 10 0.950 0.970 0.980 0.910

cytochrome P450 2 10 10 0.550 0.890 0.900 0.835

miscellaneous 4 20 20 0.482 0.910 0.963 0.803

†
Improved cases of AUC values using MD simulations are highlighted in bold
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