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Summary

In observational studies with censored data, exposure-outcome associations are commonly 

measured with adjusted hazard ratios (HRs) from multivariable Cox proportional hazards models. 

The difference in restricted mean survival times (RMST) up to a pre-specified time point is an 

alternative measure that offers a clinically meaningful interpretation. Several regression-based 

methods exist to estimate an adjusted difference in RMSTs, but they digress from the model-free 

method of taking the area under the survival function. We derive the adjusted RMST by integrating 

an adjusted Kaplan-Meier estimator with inverse probability weighting (IPW). The adjusted 

difference in RMSTs is the area between the two IPW-adjusted survival functions. In a Monte 

Carlo-type simulation study, we demonstrate that the proposed estimator performs as well as two 

regression-based approaches: the ANCOVA-type method of Tian et al1 and the pseudo-observation 

method of Andersen et al.2–4 We illustrate the methods by re-examining the association between 

total cholesterol and the 10-year risk of coronary heart disease in the Framingham Heart Study.
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1 Background

In observational studies with time-to-event outcomes, the adjusted hazard ratio (HR) has 

become the effect measure of choice to quantify exposure-outcome associations when 

adjustment for confounders is required. The adjusted HR is commonly estimated by a 

multivariable Cox proportional hazards model. There are, however, two limitations of the 

adjusted HR. First, the interpretation of survival benefit using HRs is challenging.5,6 The HR 

is a relative measure and does not communicate any information about the absolute effect. It 

is well established that absolute measures are valuable for public health decision-making.7–9 

Second, the HR depends on follow-up duration if the proportional hazards assumption is 

violated. In the case of non-proportional hazards, reporting only the HR may result in 

incorrect conclusions.6,10

An alternative metric that can be used to measure exposure-outcome associations for time-

to-event outcomes is the restricted mean survival time (RMST) up to a pre-specified time 

point, τ.11–14 In a given exposure group, the RMST is the area under the survival probability 

function up to τ. An absolute measure of effect size is the difference in RMST between 

exposure groups. Recent works have shown that the difference in RMST has great potential 

as a meaningful treatment effect measure in the analysis of randomized trials with time-to-

event outcomes.6,15 We propose calculating adjusted RMSTs, and their difference, through 

integration of a Kaplan-Meier estimator of the survival function adjusted for covariates via 

inverse probability weighting.

In the observational setting, several methods have been proposed to adjust the difference in 

RMST for potential confounders. The methods of Karrison,16 Zucker,17 and Chen and 

Tsiatis18 invoke proportional hazards models stratified by exposure group. These methods 

assume proportional hazards for the covariate effects. Other regression-based approaches, 

such as Royston and Parmar’s flexible parametric model,19 Diaz’s targeted minimum loss 

based estimation,20 Andersen’s pseudo-observation model,4 and Tian’s ANCOVA-type 

model,1 rely on regression-based models, which is inconsistent with the model-free method 

of estimating RMST in the unadjusted setting, i.e. taking the area under the survival 

function. In addition, inverse probability weighting has been previously used when 

estimating the adjusted RMST; Wei first applied inverse probability weighting to the Nelson- 

Aalen estimator via stratified Cox models.21 Zhang, Schaubel, and Wei later advanced these 

methods to be doubly robust and incorporate dependent censoring.22–25 Unlike many 

previous methods which are based on the Nelson-Aalen estimator, our method relies on an 

adjustment to the Kaplan-Meier estimator which is more commonly used to represent 

unadjusted survival in the clinical literature. We note though that the Nelson-Aalen and 

Kaplan-Meier estimators are asymptotically equivalent, so we are able to rely on earlier 

works for theoretical properties of our estimator. Unlike many previous methods, our 

proposed method does not rely on regression models to estimate the adjusted RMST, relies 

on the Kaplan-Meier estimator, and is more similar to estimating RMST in the unadjusted 

setting by integrating the survival function.

In Section 2, we describe our proposed method using inverse-probability weighting of the 

Kaplan-Meier estimator. In Section 3, we describe two regression-based methods for 
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estimating adjusted RMST. In Section 4, we compare our method’s performance to the two 

regression-based methods with a Monte Carlo-type simulation study. In Section 5, we 

provide an illustration by reexamining the association between cholesterol and the 10-year 

risk of coronary heart disease (CHD) in the Framingham Heart Study.

2 Covariate adjustment of the Restricted Mean Survival Time using 

Inverse Probability Weighting

We propose an adjusted RMST estimated by integrating an adjusted Kaplan-Meier estimator. 

We adjust Kaplan-Meier estimators with inverse probability weights, also known as 

propensity scores.26,27 Previous works have shown the inverse probability weighting 

method’s robust performance when assumptions, such as proportional hazards, are violated.
26,27

2.1 Adjusted Kaplan-Meier estimator using inverse probability weighting

Using the notation introduced by Xie and Liu,27 let (Ti; δi; Zi; Xi), i = 1, ⋯, n, denote a 

sample of right-censored survival data, in which Ti is the time to event or censoring, δi is the 

event indicator (which takes value 1 if the observed time corresponds to an event time and 0 

otherwise), Zi is the exposure group index (k = 1, ⋯, K) and Xi is a vector of covariates of 

dimension p × 1. Let the events occur at D distinct times t1, ⋯, tD. At time tj, j = 1, ⋯, D, 

there are dj
k events out of Y j

k individuals at risk in group k. The Kaplan-Meier estimator of 

the survival function at time t in group k is given by Sk(t) = ∏tj ≤ t 1 −
djk

Y jk
. The Greenwood 

estimator of the variance is given by V Sk(t) = [Sk(t)]
2
∑tj ≤ t

djk

Y jk Y jk − djk
.28

We weight subjects according to the inverse of the probability of being in their observed 

exposure group, k. Each subject is assigned a weight, wi = ∑k = 1
K 1 Zi = k

pik
, for which 1 is 

the indicator function, and pik = P Zi = k |Xi  can be estimated with a logistic model, a 

random forest model, or other methods. An individual with a greater probability of being 

exposed is given a smaller weight and vice versa. Although the weights are estimated based 

on the data, we consider the weights as fixed.27,29,30 The weights are then applied to the 

survival distribution to obtain an adjusted Kaplan-Meier estimator and variance which 

incorporates the weights. At time tj, the weighted dj
k and Y j

k in group k are given by 

dj
k = ∑i:Ti = tjwiδi1 Zi = k  and Y j

k = ∑i:Ti ≥ tjwi1 Zi = k , respectively. Then, the adjusted 

Kaplan-Meier estimate at time t in group k is given by Sadj
k (t) = ∏tj ≤ t 1 −

dj
k

Y j
k . Xie and Liu 
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have shown that the variance can be estimated by V Sadj
k (t) = [Sadj

k (t)]
2
∑tj ≤ t

dj
k

Mjk(Y j
k − dj

k)
, 

for which Mj
k =

∑i:Ti ≥ tjwi1 Zi = k 2

∑i:Ti ≥ tjwi21 Zi = k
.27

2.2 Inverse probability weighting estimator of restricted mean survival time

By considering the weighted survival function estimator, the inverse probability weighted 

(IPW) adjusted RMST up to the time point τ in group k is

μadj, τ
k = ∫

0

τ

Sadj
k (t) dt . (2.1)

The variance of the adjusted RMST can be estimated by

V (μ) = ∑
j: tj ≤ τ

∑
i = j

τ
Sadj

k ti ti + 1 − ti
2 dj

Mj Y j − dj
. (2.2)

Proof.

The variance of the IPW adjusted RMST, μ, can be written as

V (μ) = E μ2 − E[μ] 2

= E ∫
0

τ

∫
0

τ

Sadj
k (u)Sadj

k (v)dudv − E ∫
0

τ

Sadj
k (u)du E ∫

0

τ

Sadj
k (v)dv

= ∫
0

τ

∫
0

τ

E Sadj
k (u)Sadj

k (v) − Sk(u)Sk(v) dudv .

(2.3)

Following the notation of Xie and Liu27 we introduce sj =
Sk tj

Sk tj − 1
 and sj = 1 −

dj
Y j

. It 

follows that

E Sadj
k (u)Sadj

k (v) = E ∏
j: tj ≤ u

sj ∏
j: tj ≤ v

sj

= E ∏
j: tj ≤ u

sj
2 ∏

j:u < tj ≤ v
sj if u < v

= ∏
j: tj ≤ u

Ej sj
2 ∏

j:u < tj ≤ v
Ej sj

= ∏
j: tj ≤ u

sj2 + varj sj ∏
j:u < tj ≤ v

sj
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in which Ej denotes the conditional expectation given information up to time tj, and varj 

denotes the conditional variance given information up to time tj. We let u = th and v = tk, and 

have

∏
j:u < tj ≤ v

sj = sℎ + 1 ⋅ sℎ + 2⋯sk =
Sk tℎ + 1

Sk tℎ
⋯

Sk tk
Sk tk − 1

=
Sk tk
Sk tℎ

= Sk(v)
Sk(u)

.

Moreover, Xie and Liu27 showed that ∏j: tj ≤ u sj2 + varj sj = Sk(u) 2∏j: tj ≤ u 1 +
1 − sj
Mjsj

, 

in which Mj =
∑i:Ti ≥ tjwi

2

∑i:Ti ≥ tjwi2
. Thus,

E Sadj
k (u)Sadj

k (v) = Sk(u) 2 ∏
j: tj ≤ u

1 +
1 − sj
Mjsj

Sk(v)
Sk(u)

= Sk(u)Sk(v) ∏
j: tj ≤ u

1 +
1 − sj
Mjsj

.

Following the result of Xie and Liu, 1
Mj

0 under the condition that 
maxi:Ti ≥ tjwi
∑i:Ti ≥ tjwi

0, 

allowing us to ignore 1
Mj

 terms of the second order.27 We then obtain the following 

approximation, in which = denotes approximate equality,

E Sadj
k (u)Sadj

k (v) − Sk(u)Sk(v) = Sk(u)Sk(v) ∏
j: tj ≤ u

1 + 1 − sj
Mjsj

− 1

≐ Sk(u)Sk(v) ∑
j: tj ≤ u

1 − sj
Mjsj

.
(2.4)

We plug (2.4) into (2.3) to obtain the variance of the IPW-adjusted RMST as

V (μ) = ∫
0

τ

∫
0

τ

E Sadj
k (u)Sadj

k (v) − Sk(u)Sk(v) dudv

≐ ∑
i = 0

τ
∑
l = 0

τ
Sk ui Sk vl ∑

j: tj ≤ u

1 − sj
Mjsj

ui + 1 − ui vl + 1 − vl

= ∑
j: tj ≤ τ

∑
i = j

τ
Sk ui ui + 1 − ui ∑

l = j

τ
Sk vl vl + 1 − vl

1 − sj
Mjsj

= ∑
j: tj ≤ τ

∑
i = j

τ
Sk ti ti + 1 − ti

2 1 − sj
Mjsj

.

(2.5)

Finally, we estimate (2.5) by
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V (μ) = ∑
j: tj ≤ τ

∑
i = j

τ
Sadj

k (ti) ti + 1 − ti
21 − s j

Mjs j

= ∑
j: tj ≤ τ

∑
i = j

τ
Sadj

k ti ti + 1 − ti
21 − (1 − dj

Y j
)

Mj(1 − dj
Y j

)

= ∑
j: tj ≤ τ

∑
i = j

τ
Sadj

k ti ti + 1 − ti
2 dj

Mj(Y j − dj)
.

(2.2)

2.3 Effect measures using the adjusted restricted mean survival time

We estimate the difference in adjusted RMST as the area between the adjusted curves up to a 

given time point. In the case of two groups, exposed (Z = i) and unexposed (Z = 0), the 

adjusted difference in RMST between Z = 1 and Z = 0 is μadj, τ
1 − μadj, τ

0 . The weights are 

considered fixed, thus the adjusted RMSTs are independent and the variance of the 

difference in RMSTs is the sum of the individual variances, V (μadj, τ
1 ) + V (μadj, τ

0 ). 

Additionally, the ratio of the RMSTs can be obtained as 
μadj, τ

1

μadj, τ
0 . The variance of the natural 

log of the ratio can be obtained as 
V (μadj, τ

1 )

(μadj, τ
1 )

2 +
V (μadj, τ

0 )

(μadj, τ
0 )

2  by using the Delta method. By the 

Central Limit Theorem, we can construct Z hypothesis tests for the difference in RMSTs and 

log of the ratio of RMSTs.

We programmed an R function, ‘akm.rmst’, based on the ‘adjusted.KM’ function in the 

IPWsurvival package31 and ‘rmst1’ function in the survRM2 package.32 This function can 

be used to plot adjusted survival curves and calculate the adjusted RMSTs and their 

difference in R. The function and a working example are available on GitHub (github.com/s-

conner/akm-rmst). We provide additional guidance in the appendix.

3 Regression-based methods

We describe two regression-based methods proposed previously to estimate the difference in 

RMST adjusted for potential confounders: the ANCOVA-type method of Tian et al1 and the 

pseudo-observation method of Andersen et al.2–4

3.1 ANCOVA-type method

Tian et al have proposed an ANCOVA-type adjusted analysis that relates the RMST directly 

to an exposure of interest Z and additional covariates X.1 The model is given by 

μτ = β′W i = α + βzZi + βx′ Xi, for which β′ = α, βz, βx′  and W′ = (1, Z, X′). In the case of two 

independent groups, exposed (Z = 1) and unexposed (Z = 0), the regression coefficient Pz is 

the adjusted difference in RMST between the two groups.
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An estimate of β is obtained with estimating equations for RMST based on an inverse 

probability censoring weighting technique to handle censored data: 

S(β) = n−1∑i
Δi

G Yi
W i Y i − β′W i = 0, with Y i = min Ti, τ , Δi = 1 Y i ≤ Ci , and G() the 

Kaplan-Meier estimator of the censoring distribution. The asymptotic variance of β  is 

described in the supplementary material of Tian et al.1

3.2 Pseudo-observation method

Andersen et al have proposed a pseudo-observation regression model to assess the effects of 

covariates on the RMST.2–4 Up to a time point τ, μτ
k is the estimator of the RMST from the 

integrated Kaplan-Meier estimator based on all observations in group k; μτ
k( − i) is the leave-

one-out estimator for μτk based on all observations except ith observation. The ith pseudo-

observation is defined as μτ, i
k = n ⋅ μτ

k − (n − 1) ⋅ μτ
k( − i). The mean of the pseudo-observations 

is an estimate of the RMST at time τ for the complete sample.

To examine the effect of an exposure Z on the RMST, while controlling for additional 

covariates X, we use an uncensored generalized linear model for the pseudo-observations 

given by μτ, ik = β′W i = α + βzZi + βx′ Xi.2 Again, the regression coefficient βz is the adjusted 

difference in RMST between groups. An estimate of P can be obtained using generalized 

estimating equations: ∑i
∂

∂β β′W i
′V i

−1 μτ, ik − β′W i = 0. The covariance matrix Vi for the 

solution β  can be estimated by a sandwich estimator described by Andersen et al.2,33

4 Simulation study

We conducted Monte Carlo simulation studies to examine the statistical performance of the 

proposed method in estimating the marginal difference in adjusted RMST. We compared its 

statistical performance to the ANCOVA-type and pseudo-observation methods using four 

criteria: relative bias, mean squared error, empirical coverage rate, and the relative error of 

the model-based standard errors with respect to the empirical standard errors, as defined by 

Morris et al.34

4.1 Data generation process

We simulated 1000 datasets for each scenario. We adapted a previously described data-

generating process.35 For each subject, we first simulated 10 covariates (x1 to x10) from 

independent standard normal distributions. We then randomly generated an exposure status, 

where Z = 1 denotes exposed and Z = 0 denotes unexposed, from a Bernoulli distribution 

with parameter P(Z = 1) defined by a logistic model, logit(P(Z = 1)) = β0 + βwx1 + βwx2 + 
βmx3 + βmx4 + βsx5 + βsx6 + βvsx7, and we considered a range of subjects exposed and 

varying strengths of association between exposure and outcome. We set the intercept β0 to 

generate a desired proportion of exposed subjects. We set βw = log(1.25), βm = log(1.5), βs = 

log(1.75), and βvs = log(2) to denote weak, moderate, strong, and very strong associations, 

respectively. Finally, we generated the time to event measured in years by using a stratified 

Weibull regression model.36 We first generated a linear predictor, LP = βWx2 + βmx4 + βsx6 
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+ βvsx7 + βwx8 + βmx9 + βsx10. Based on a random number u drawn from a uniform 

distribution on the interval 0 to 1, we then generated the times to event as t = t1z + t0 (1− z) 

with t0 = − logu
λ0expLP

1/v0
, and t1 = − logu

λ1exp βz + LP
1/ν1

. We set the shape and scale 

parameters (v1, λ1) and (v0, λ0) in the exposed and unexposed groups, respectively, to 

obtain specific time-to-event patterns. We also set βz to reflect a desired strength of 

association between the exposure and the hazard of event. In this design, (x2, x4, x6, x7) are 

associated with both the exposure and outcome and thus are confounders. (x1, x3, x5) are 

associated with the exposure only, and (x8, x9, x10) are associated with the outcome only.

4.2 Scenarios

We allowed the following factors to vary: the sample size (250, 500,1000), the proportion of 

exposed subjects (5%, 10%, 20%, 30%, 40%, 50%), and the exposure effect exp(βz) (1.25, 

1.5, 2). In addition, we defined three settings for the time-to-event patterns: proportional 

hazards, non-proportional hazards with crossing survival curves, and non-proportional 

hazards with an early survival difference (Table 1). In the early survival difference scenarios, 

the HR is initially large but approaches the null value of 1 over time. The resulting survival 

functions are visualized in Figure A2, and the corresponding hazard functions are available 

in the Appendix. We thus examined 54 scenarios with 1000 simulated datasets of size 

n=1000, n=500, and n=250 each.

4.3 Statistical analysis in simulated datasets

We pre-specified the time point τ = 10 years for all analyses using the simulated datasets. In 

each simulated dataset, we estimated the difference in adjusted RMST, θi, between exposed 

and unexposed subjects. For the proposed method, we estimated the probability of being 

exposed using a logistic regression model of the exposure z as a function of the 7 covariates 

(x1, x2, x3, x4, x5, x6, x7) that affect the exposure. This allowed us to obtain adjusted Kaplan-

Meier estimates of the survival function in the exposed and unexposed groups, respectively. 

Each adjusted RMST was estimated by integration of the corresponding survival function up 

to τ. The standard error of the difference in adjusted RMST was estimated as described in 

Section 3.2.

We also used the ANCOVA-type and pseudo-observation methods as comparators. Both 

RMST models included the exposure variable z and all covariates associated with the time to 

event (x2, x4, x6, x7, x8, x9, x10) through an identity link function. A key difference between 

our proposed method and the regression-based methods is that the regression-based methods 

can identify covariates predictive of the outcome.

4.4 Assessment of statistical performance

We assessed the statistical performance of each method of estimating the marginal effect in 

terms relative bias, mean squared error, empirical coverage rate, and relative error of the 

model-based standard errors with respect to the empirical standard errors.34 To determine 

the marginal difference in RMST, θ, between exposed and unexposed subjects, we generated 

a dataset consisting of 1,000,000 subjects. We generated the covariates (x1 to x10) and 

exposure z as described previously. We generated times to event t0 first assuming that all 
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subjects were unexposed. We then simulated times to event t1 assuming that all subjects 

were exposed. For the exposed and unexposed populations separately, we estimated the 

RMST by integrating the Kaplan-Meier estimate of the survival function up to τ and we 

calculated the difference in the resulting RMSTs to obtain the marginal effect θ.

We estimated the mean difference in adjusted RMST as θ = 1
1000 ∑i = 1

100 θ i. We examined four 

performance criteria in estimating the true marginal difference in RMST: the mean relative 

bias, (θ − θ
θ ); the mean squared error of the estimated effect, 1

1000 ∑i = 1
1000 (θ i − θ)2; the 

empirical coverage rate, estimated as the proportion of 95% confidence intervals that 

covered 6; and the relative error of the model-based standard errors (ModSE) 
1

nsim
∑i = 1

nsim V (θ i) with respect to the empirical standard errors (EmpSE), 

1
nsim − 1 ∑i = 1

nsim (θ i − θ), defined as ModSE − EmpSE
EmpSE .34

4.5 Results

In the proportional hazard setting, our proposed method using inverse probability weighting 

performed consistently across settings, with negligible bias. The generated marginal effects 

are presented in Table 2. In the proportional hazard and non-proportional hazard with early 

survival difference settings, the difference in restricted mean survival time increases as the 

marginal effect of exposure increases. However, in the non-proportional hazard setting 

where survival curves cross, the difference in restricted mean survival time decreases as the 

marginal effect of exposure increases. Figure A1 gives the hazard function and Figure A2 

gives the survival curves under each setting.

With sample size n=1000, the relative bias of the pseudo-observation and ANCOVA 

methods increased as the proportion of exposed decreased, reaching 32% under weak 

(βz=log(1.25)) effects, 23% under moderate (βz=log(1.5)) effects, and 15% under very 

strong (βz=log(2.0)) effects at 5% exposure (Table 3, Figure A3). In the non-proportional 

hazard setting where survival curves cross, the trend in relative bias using the pseudo-

observation and ANCOVA methods was more dramatic: the relative bias reached 38% with 

weak association between exposure and outcome, 46% with moderate association, and 88% 

with very strong association at 5% exposure. In the non-proportional hazard setting with 

early survival difference, all methods performed similarly in terms of relative bias.

The mean squared error was similar using all methods at 50% exposure (equal size groups) 

(Table 4, Figure A4). However, the mean squared error increased as the proportion of 

exposed decreased across all settings and methods. The mean squared error was larger with 

the proposed method, as compared to the pseudo-observation and ANCOVA methods in the 

non-proportional hazards with early survival difference and proportional hazards settings, 

reaching 0.83 and 0.4 respectively at 5% exposure. All methods performed well in terms of 

MSE in the non-proportional hazards settings where survival curves cross.

In most settings, the coverage of our method slightly surpassed 95% (Figure A5). In the non-

proportional hazards settings where survival curves cross, the coverage of the pseudo-
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observation and ANCOVA methods decreased as the proportion of exposed decreased, 

reaching 67% under weak and moderate effects. These results were similar in the 

proportional hazards settings.

The patterns of the relative errors for our proposed method were consistent with under or 

over coverage, where a positive relative error indicates overcoverage and a negative relative 

error indicates undercoverage (Figure A6).34 Morris et al suggested bias as another possible 

reason for under or overcoverage, however our proposed method displayed little bias.34 For 

the pseudo-observation and ANCOVA methods, coverage appears to improve as bias 

decreases. However, patterns between relative errors and coverage did not hold for the 

pseudo-observation and ANCOVA methods. We note that our proposed method 

demonstrated higher relative error than the pseudo-observation and ANCOVA methods in 

many scenarios, sometimes reaching 20%.

Finally, results followed a similar pattern when the sample size was n=500 and n=250. The 

mean squared error of our proposed method increased as sample size decreased and the 

proportion of exposed decreased. Figures for all results are available in the appendix 

(Figures A3-A14).

5 Illustrative example: Framingham Heart Study

5.1 Methods

We illustrate the proposed method with the Framingham CHD 10-year risk score model. The 

Framingham Heart Study is a long-term prospective study of the etiology of cardiovascular 

disease in the community of Framingham, Massachusetts. Wilson et al examined the 

association between total cholesterol and 10-year risk of CHD in the Original and Offspring 

Cohorts.37 Participants attended either the 11th examination in the Original cohort or the 

first examination in the Offspring cohort, and were free of CHD at baseline. Participants 

were followed for up to 12 years for the incidence of CHD. The exposure of interest was 

total cholesterol categorized as low (< 200 mg/dL), moderate (200 – 239 mg/dL), and high 

(≥ 240 mg/dL). The model was adjusted for age, hypertension, smoking status, diabetes, and 

HDL-cholesterol. Hypertension was categorized into four groups based on systolic and 

diastolic blood pressure, consistent with JNC-V definitions: normal including optimal 

(systolic <130 mmHg and diastolic <85 mmHg), high normal (systolic 130–139 mmHg or 

diastolic 85–89 mmHg), hypertension stage I (systolic 140–159 mmHg or diastolic 90–99 

mmHg), and hypertension stages II-IV (systolic ≥ 160 mmHg or diastolic ≥ 100 mmHg).38 

Analyses were performed in men and women separately without formally testing for 

interaction. Risk factors were considered significant at a 5% two-sided level of significance. 

We fit the same multivariable Cox regression model for CHD, and used the same predictors 

to estimate the adjusted difference in RMSTs for CHD between total cholesterol groups.

We obtained adjusted HRs for high versus low total cholesterol and moderate versus low 

total cholesterol. We further assessed the proportional hazards assumption by the Grambsch-

Thernau test at α = 0.10.39 We also estimated differences in adjusted RMST between the 

cholesterol groups. We defined τ as 10 years for RMST measures, as Wilson et al predicted 

the 10-year risk of CHD. We applied our proposed method, the pseudo-observation 
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approach, and the ANCOVA-type method to obtain the adjusted RMST. For our method, we 

obtained weights by fitting a multinomial logistic model to determine the individual 

predicted probabilities of being in each total cholesterol group according to the participant 

profile of all other covariates.

5.2 Results

The adjusted Kaplan-Meier cumulative incidence curves and adjusted RMSTs by total 

cholesterol level obtained from our proposed method are presented in Figures 1 and 2, where 

the cumulative risk, Cadj
k (t), is the complement of the Kaplan-Meier estimator and given by 

1 − Sadj
k (t). The adjusted differences in RMSTs and HRs are presented in Table 5. In both 

men and women, the adjusted HRs show that higher versus lower total cholesterol level is 

associated with CHD. The HRs of moderate versus low total cholesterol and high versus low 

total cholesterol were 1.3 [95% CI:1.0, 1.7] and 2.0 [95% CI:1.5, 2.6] in men and 1.7 [95% 

CI:1.1, 2.6] and 2.1 [95% CI:1.4, 3.2] in women.

For both moderate versus low total cholesterol and high versus low total cholesterol, the 

proportional hazards assumption was met among men (p=0.41 and p=0.68), but not among 

women (p=0.04 and p=0.04). This suggests that the adjusted HRs for women should be 

interpreted with caution.

With our proposed method, the adjusted mean times to CHD (RMST) for low, moderate, and 

high total cholesterol were 9.5, 9.4, and 9.2 years in men over a 10 year time span. In 

women, the adjusted mean times to CHD were 9.7, 9.7, and 9.6 years, respectively.

In men, the difference in RMSTs between moderate and low total cholesterol was similar 

across the three methods suggesting a small decrease in the mean time to CHD with an 

increase in total cholesterol: −1.6 months [95% CI: −3.6, 0.4] using our proposed method, 

−1.6 months [95% CI: −3.4, 0.3] with the pseudo-observation method, and −1.4 months 

[95% CI: −3.2, 0.5] with the ANCOVA-type method. In women, the difference in RMSTs 

was slightly different between methods but small to negligible: 1.0 months [95% CI: −1.0, 

3.0] using our proposed method, −0.1 months [95% CI: −1.5, 1.3] with the pseudo-

observation method, and 0 months [95% CI: −1.4, 1.4] with the ANCOVA-type method.

As for high versus low total cholesterol, the difference in RMSTs in men was −3.7 months 

[95% CI: −6.2, −1.1] using our proposed method, −3.5 months [95% CI: −6.0, −1.0] with 

the pseudo-observation method, and −3.1 months [95% CI: −5.6, −0.6] with the ANCOVA-

type method. In women, the difference in RMSTs was −0.01 months [95% CI: −2.4, 2.3] 

using our proposed method, −1.1 months [95% CI: −2.9, 0.7] with the pseudo-observation 

method, and −1.0 months [95% CI: −2.8, 0.9] with the ANCOVA-type method.

Among both men and women, the differences in RMSTs between moderate and low total 

cholesterol were not significant. As for high versus low total cholesterol, the differences in 

RMSTs were significant among men but not in women. However, all adjusted HRs were 

significant. Whereas the adjusted HRs convey significant relative effects, examination of the 

absolute effects via difference in RMSTs gives a different picture: the mean difference in 
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time to CHD is approximately 6 weeks in men and negligible in women, comparing 

moderate to low total cholesterol. The HRs and difference in RMSTs are consistent among 

men, but it appears that the significant HRs among women may not be clinically meaningful.

6 Discussion

We developed a method to derive adjusted RMSTs and their differences, which can be used 

to measure the effect of exposures or treatments in observational studies. In our simulation 

study, the proposed method had similar statistical performance as compared to regression-

based methods previously described; all methods performed well in terms of relative bias, 

mean squared error, and coverage, but their advantages differed by scenario. For example, 

our method had lower relative bias compared to the regression-based methods in the non-

proportional hazards setting where survival curves cross. However, the regression-based 

methods had lower mean squared error than our method in the non-proportional hazards 

with early survival difference setting, particularly for proportions of exposure below 30%. In 

our Framingham Heart Study example, all methods produced consistent RMST-based 

measures in men, whereas our method differed slightly from the regression-based methods 

in women.

Because observational studies must adjust for confounding factors, epidemiologists 

frequently use the Cox proportional hazards model or related approaches and typically 

report only adjusted hazard ratios.10 However, measures of effect based on adjusted RMST 

offer a different perspective. We submit that the RMST should be reported systematically 

alongside hazard ratios. The adjusted RMST is on the time scale, which provides clinicians 

and patients with background information (the adjusted RMST in the unexposed group) as 

well as the absolute effect of the exposure (the difference in adjusted RMST between the 

exposed and unexposed groups). In the Framingham Heart Study example, the adjusted HRs 

suggested that higher total cholesterol had a significant impact on the time to CHD, with 

HRs ranging from 1.3 to 2.1. In contrast, the differences in RMST between those with high 

versus low total cholesterol were less than 4 months in men and less than 1 month in 

women, over a 10 year time span. We illustrate how the difference in RMSTs can provide a 

different interpretation of the effect of cholesterol level on CHD risk. This is consistent with 

the recent work of Finegold et al, which found interventions such as statins had a mean 

lifespan gain of 7 months, and 95% of participants had no gain in lifespan.40 We emphasize 

that the difference in RMSTs is truncated to a 10 year time span, and is not to be interpreted 

as a gain or loss over the lifespan. Additionally, the adjusted Kaplan-Meier curves indicate 

that the difference in RMSTs would continue to increase with a larger time span. If the 

RMSTs are reported as complementary to the HR, they would offer a tool to compare the 

potential of different exposures in similar target populations.41 This will assist researchers 

and clinicians in interpreting the impact of such exposures on outcomes.

In contrast with regression-based methods, our method is consistent with the typical RMST 

approach in the unadjusted framework: calculating the area below the curve. This is 

congruent with the visualization offered by the adjusted Kaplan-Meier curves. In 

randomized trials, the Kaplan-Meier graph frequently complements the reported HR due to 

the shortcomings of the HR’s interpretation and assumptions.10 Our approach and its 
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implementation in R allow producing the adjusted Kaplan Meier curves. By reporting both 

the adjusted Kaplan-Meier curve and RMST, it is easier to gain a sense of an effect’s 

intensity because of the time domain. Adjusted RMST-based measures bring value to 

interpreting time-to-event outcomes, especially in the field of epidemiology. Additionally, 

randomized trials commonly report unadjusted Kaplan-Meier curves alongside unadjusted 

hazard ratios, yet observational studies do not report adjusted Kaplan-Meier curves. An 

advantage of our method is the visualization of the adjusted RMST with the adjusted 

Kaplan-Meier curves.

In general, Kaplan-Meier curves are not feasible with continuous covariates. Since we used 

adjusted Kaplan-Meier curves to calculate RMST, our method does not allow the estimation 

of the effect of a continuous covariate on the RMST. If the objective is to express the effect 

for a continuous covariate, one can use the pseudo-observation method, ANCOVA-type 

method, or other regression-based methods.

A limitation of adjusting Kaplan-Meier curves with inverse probability weights or 

propensity scores is the potential for very large or small weights.42 Extreme weights 

typically occur when there is a rare patient profile that is frequent in the adjusting 

population; a large weight will be assigned to this subgroup. In consequence, the survival 

curve will have a large variance. Therefore, the adjusted RMST also will have a large 

standard error. There are solutions to address extreme weights. One can stabilize weights via 

trimming or truncation.30,43 Additionally, one can potentially improve the adequacy of the 

model by using interaction terms or exploring other model types. In our analysis, we used 

logistic models to estimate the propensity scores. However, there are other many options to 

estimate weights. For instance, models can be fit with a probit or log link rather than a logit 

link, or with random forest methods. However, the chosen derivation of the weights may 

make model-based assumptions.

A second limitation of our estimator is that we consider the weights to be fixed when 

deriving the variance, but in practicality, the weights may be estimated from the data. 

Estimating weights will introduce sampling variability, which is not accounted for in the 

variance. To consider the weights as random and account for the the weights being estimated 

from data, it is common to use adjusted sandwich variance estimators or the bootstrap.29,44 

Typically, the sandwich estimator adjusted for estimation of weights will give smaller 

standard errors.29 Finally, Xie and Liu compared the estimated variance using estimated 

weights with the variance estimated from Monte Carlo simulation, and found they were 

comparable under various censoring scenarios.27

Our simulation study compared three methods of obtaining the adjusted difference in RMST, 

however other methods exist which were not included in our simulation study. For example, 

it is possible to use piecewise exponential models, proportional hazards models, or 

augmented inverse-weighted Nelson-Aalen estimators.16–18,21–25 Although some 

approaches use proportional hazards models, they do not all assume proportional hazards of 

the exposure of interest, i.e. via stratification.17,18,21–25 The ANCOVA-type and pseudo-

observation methods do not utilize Cox proportional hazards models. Another approach is 

the Royston-Parmar model that relates the log cumulative hazard function to the covariates, 
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and in which the log baseline cumulative hazard is modeled as a cubic spline function of log 

time.12 This model can be further extended for non-proportional hazards, by including an 

interaction term between the spline function and the covariates. Future work will entail 

comparing these methods as well.

Finally, we note that the Kaplan-Meier estimator is asymptotically equivalent to the Nelson-

Aalen estimator. Previous works have derived the restricted mean survival time by applying 

inverse probability weighting to the Nelson-Aalen estimator with augmentation terms to 

improve efficiency. Therefore, the asymptotic results of our proposed method are a special 

case of previous methods using inverse-weighted Nelson-Aalen estimators if the 

augmentation terms are set to zero.22–25

In conclusion, our proposed method for RMST using adjusted Kaplan-Meier curves 

produces results consistent with existing methods for adjusted RMST. In addition, it is 

congruent with the visualization of the exposure’s effect with adjusted Kaplan-Meier curves. 

Due to the challenging interpretation of the HR and proportional hazards assumption, we 

submit that the RMST should be reported systematically alongside hazard ratios. We 

advocate the use of RMST-based measures because of their clinically relevant 

interpretations. Our method offers both easily-interpreted summary measures and 

visualization of absolute effects through adjusted Kaplan-Meier curves, which are missing 

from the observational literature. It also does not rely on model assumptions, such as 

proportional hazards.
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Appendix

A.1 Implementing the method in R

We programmed an R function, ‘akm.rmst’, based on the ‘adjusted.KM’ function in the 

IPWsurvival package31 and ‘rmstl’ function in the survRM2 package.32 This function can be 

used to plot adjusted survival curves and calculate the adjusted RMSTs and their difference 

in R. The function and a working example are available on GitHub (github.com/s-conner/

akm-rmst). The ‘akm.rmst’ function requires the following arguments:

time: time to event

status: 0 if censored, 1 if event

group: factor variable for the exposure of interest

weights: user-specified weights (can be obtained through logistic models or other methods)
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tau: truncation point for RMST. The default is the minimum of the each groups’ last event 

time.

Below, we provide a working example using the lung data from the survival package. The 

example is also available on GitHub.

library (survival)

data(lung)

# Drop individual with missing covariates, recode variables.

# Karnofsky performance scale index dichotomized according to clinical 

definitions.

lung2 <- lung [complete.cases(lung[, c (2:7, 9)]),]

lung2$male <- 2-lung2$sex

lung2$status2 <- lung2$status−1

lung2$ph.karno.low <- 0

lung2$ph.karno.low[lung2$ph.karno <=70] <- 1

# Obtain weights with logistic model, adjust for age, sex, PH.ecog, and 

meal.cal

logit <- glm (ph.karno.low ~ male + age + meal.cal + ph.ecog, data=lung2,

family=binomial (link= ’logit’))

pred <- predict(logit, type=’response’)

lung2$weight <- lung2$ph.karno.low/pred + (1 - lung2$ph.karno.low)/(1-pred)

# AKM RMST adjusted for age

akm_rmst(time=lung2$time, status=lung2$status2, group=as.factor 

(lung2$ph.karno.low),

weight=lung2$weight, tau=600)
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FIGURE A1. 
Weibull hazard functions defining simulation scenarios
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FIGURE A2. 
Weibull survival functions defining simulation scenarios
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FIGURE A3. 
Relative bias in simulation study for inverse probability weighting, ANCOVA-type, and 

pseudo-observation methods, sample size n=1000

Note: The ANCOVA and pseudo-observation approaches perform similarly, which is why 

the lines appear overlapping.
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FIGURE A4. Mean squared error in simulation study for inverse probability weighting, 
ANCOVA-type, and pseudo-observation methods, sample size n=1000
Note: The ANCOVA and pseudo-observation approaches perform similarly, which is why 

the lines appear overlapping.
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FIGURE A5. 
Coverage in 95% confidence intervals in simulation study for inverse probability weighting, 

ANCOVA-type, and pseudo-observation methods, sample size n=1000

Note: The ANCOVA and pseudo-observation approaches perform similarly, which is why 

the lines appear overlapping.
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FIGURE A6. 
Relative error in model-based standard errors in simulation study for inverse probability 

weighting, ANCOVA- type, and pseudo-observation methods, sample size n=1000

Note: The ANCOVA and pseudo-observation approaches perform similarly, which is why 

the lines appear overlapping. The relative error is defined as ModSE − EmpSE
EmpSE , where 

ModSE = 1
nsim

∑i = 1
nsim V (θ i) and EmpSE = 1

nsim − 1 ∑i = 1
nsim (θ i − θ).
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FIGURE A7. 
Relative bias in simulation study for inverse probability weighting, ANCOVA-type, and 

pseudo-observation methods, sample size n=500
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FIGURE A8. Mean squared error in simulation study for inverse probability weighting, 
ANCOVA-type, and pseudoobservation methods, sample size n=500
Note: The ANCOVA and pseudo-observation approaches perform similarly, which is why 

the lines appear overlapping.
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FIGURE A9. 
Coverage in 95% confidence intervals in simulation study for inverse probability weighting, 

ANCOVA-type, and pseudo-observation methods, sample size n=500
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FIGURE A10. 
Relative error in model-based standard errors in simulation study for inverse probability 

weighting, ANCOVA- type, and pseudo-observation methods, sample size n=500

Note: The relative error is defined as ModSE − EmpSE
EmpSE , where ModSE = 1

nsim
∑i = 1

nsim V (θ i)

and EmpSE = 1
nsim − 1 ∑i = 1

nsim (θ i − θ).
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FIGURE A11. 
Relative bias in simulation study for inverse probability weighting, ANCOVA-type, and 

pseudo-observation methods, sample size n=250
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FIGURE A12. 
Mean squared error in simulation study for inverse probability weighting, ANCOVA-type, 

and pseudoobservation methods, sample size n=250
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FIGURE A13. 
Coverage in 95% confidence intervals in simulation study for inverse probability weighting, 

ANCOVA-type, and pseudo-observation methods, sample size n=250
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FIGURE A14. 
Relative error in model-based standard errors in simulation study for inverse probability 

weighting, ANCOVA- type, and pseudo-observation methods, sample size n=250

Note: The relative error is defined as ModSE − EmpSE
EmpSE , where ModSE = 1

nsim
∑i = 1

nsim V (θ i)

and EmpSE = 1
nsim − 1 ∑i = 1

nsim (θ i − θ).
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FIGURE 1. 
Adjusted Kaplan-Meier curves for coronary heart disease by total cholesterol level in men 

from the Framingham Heart Study
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FIGURE 2. 
Adjusted Kaplan-Meier curves for coronary heart disease by total cholesterol level in 

women from the Framingham Heart Study
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TABLE 1

Simulation scenarios

Unexposed Exposed

Setting v0 λ0 v1 λ1

Proportional hazards 2 0.0083 2 0.0100

Non-proportional hazards, survival curves cross 1 0.0667 15 0.0003

Non-proportional hazards, early survival difference 1 0.0100 10 0.2207

v and λ denote the shape and scale parameters of the Weibull distributions.
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TABLE 2

Marginal differences in restricted mean survival times for each simulation scenario

Exposure effect

Setting Weak
βz=log(1.25)

Moderate
βz=log(1.5)

Very Strong
βz=log(2.0)

Proportional hazards −0.65 yrs. −0.96 yrs. −1.45 yrs.

Non-proportional hazards, survival curves cross 0.97 yrs. 0.74 yrs. 0.36 yrs.

Non-proportional hazards, early survival difference −1.36 yrs. −1.76 yrs. −2.36 yrs.

βz denotes the strength of the association between the exposure and outcome.
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TABLE 5

Adjusted hazard ratios and differences in restricted mean survival times between total cholesterol levels in the 

Framingham Heart Study

Men Women

Method Est. 95% CI p Est. 95% CI p

Total cholesterol, 200–239 mg/dL vs. <200 mg/dL

HR 1.34 (1.03, 1.74) 0.031 1.68 (1.09, 2.57) 0.018

IPW difference in RMSTs −1.58 mo. (−3.58, 0.42) 0.118 1.02 mo. (−0.98, 3.02) 0.316

Pseudo-observation difference in RMSTs −1.57 mo. (−3.43, 0.29) 0.097 −0.10 mo. (−1.51, 1.32) 0.888

ANCOVA-type difference in RMSTs −1.36 mo. (−3.22, 0.49) 0.151 0.00 mo. (−1.42, 1.40) 0.998

Total cholesterol, >239 mg/dL vs. <200 mg/dL

HR 1.95 (1.49, 2.56) <.001 2.06 (1.35, 3.15) 0.001

IPW difference in RMSTs −3.66 mo. (−6.22,−1.10) 0.005 −0.01 mo. (−2.36, 2.34) 0.994

Pseudo-observation difference in RMSTs −3.46 mo. (−5.95, −0.96) 0.006 −1.09 mo. (−2.93, 0.74) 0.244

ANCOVA-type difference in RMSTs −3.07 mo. (−5.56, −0.58) 0.016 −0.95 mo. (−2.78, 0.88) 0.309

HR: hazard ratio, IPW: inverse probability weighting, RMST: restricted mean survival time
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