Skip to main content
. Author manuscript; available in PMC: 2020 Oct 5.
Published in final edited form as: Stat Med. 2019 May 22;38(20):3832–3860. doi: 10.1002/sim.8206

TABLE 3.

Relative bias in simulation study, sample size n=1000

Proportional hazards Non-proportional hazards, curves cross Non-proportional hazards, early survival difference

Strength of association Proportion exposed, % IPW Pseudo ANCOVA IPW Pseudo ANCOVA IPW Pseudo ANCOVA
Weak,
βz=log(1.25)
0.05 0.070 0.317 0.317 −0.036 0.386 0.386 0.023 0.072 0.072
0.10 0.027 0.273 0.273 −0.027 0.282 0.282 0.011 0.090 0.090
0.20 0.026 0.219 0.219 0.001 0.182 0.182 0.008 0.091 0.091
0.30 0.005 0.166 0.166 −0.006 0.089 0.089 −0.002 0.091 0.091
0.40 0.009 0.116 0.116 −0.015 0.015 0.015 −0.008 0.073 0.073
0.50 −0.009 0.040 0.040 −0.012 −0.054 −0.054 0.009 0.067 0.067
Moderate,
βz=log(1.5)
0.05 0.073 0.233 0.233 −0.033 0.461 0.461 0.038 0.038 0.038
0.10 0.020 0.217 0.217 −0.020 0.356 0.356 0.007 0.044 0.044
0.20 0.011 0.174 0.174 −0.003 0.204 0.204 0.002 0.069 0.069
0.30 0.002 0.124 0.124 0.002 0.096 0.096 0.010 0.075 0.075
0.40 0.010 0.090 0.090 −0.009 0.011 0.011 −0.002 0.067 0.067
0.50 0.015 0.046 0.046 −0.004 −0.072 −0.072 0.009 0.061 0.061
Strong,
βz=log(2.0)
0.05 0.045 0.150 0.150 −0.044 0.877 0.877 0.022 −0.029 −0.029
0.10 0.011 0.146 0.146 −0.056 0.614 0.614 0.020 0.008 0.008
0.20 0.006 0.126 0.126 0.011 0.350 0.350 −0.001 0.036 0.036
0.30 0.005 0.100 0.100 −0.032 0.120 0.120 0.010 0.050 0.050
0.40 −0.001 0.076 0.076 −0.011 −0.026 −0.026 0.004 0.055 0.055
0.50 −0.006 0.041 0.041 −0.005 −0.188 −0.188 0.000 0.053 0.053

IPW: inverse probability weighted Kaplan-Meier estimator of difference in restricted mean survival times, pseudo: pseudo-observation method of Andersen et al,24 ANCOVA: ANCOVA-type method of Tian et al.1