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In part 2 of this clinical commentary, we highlight the conceptual

and methodologic pitfalls evident in current training-load–injury

research. These limitations make these studies unsuitable for

determining how to use new metrics such as acute workload,

chronic workload, and their ratio for reducing injury risk. The main

overarching concerns are the lack of a conceptual framework and

reference models that do not allow for appropriate interpretation

of the results to define a causal structure. The lack of any

conceptual framework also gives investigators too many degrees

of freedom, which can dramatically increase the risk of false

discoveries and confirmation bias by forcing the interpretation of

results toward common beliefs and accepted training principles.

Specifically, we underline methodologic concerns relating to (1)

measure of exposures, (2) pitfalls of using ratios, (3) training-load

measures, (4) time windows, (5) discretization and reference

category, (6) injury definitions, (7) unclear analyses, (8) sample

size and generalizability, (9) missing data, and (10) standards and

quality of reporting. Given the pitfalls of previous studies, we need

to return to our practices before this research influx began, when

practitioners relied on traditional training principles (eg, overload

progression) and adjusted training loads based on athletes’

responses. Training-load measures cannot tell us whether the

variations are increasing or decreasing the injury risk; we

recommend that practitioners still rely on their expert knowledge

and experience.
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In the first part of this viewpoint, we presented a framework

for using training load (TL) for injury prevention. In essence,

the TL can be used to see whether the TL that was planned

was actually done by the athlete. This highlights the central

role of practitioners and their decisions in the injury-

prevention process. Unfortunately, the evidence available is

insufficient for providing practical recommendations on how

to quantitatively modify the TL to reduce the injury risk.

Practitioners should rely on traditional training principles such

as overload progression and adjust the TL based on the

athletes’ responses.1,2 One reason isolated TL measures cannot

be used to prevent injury is the lack of investigation

surrounding the causal relationships between measures of

TL exposure and injury (see part 1). Also, conceptual and

methodologic concerns suggest that prior findings may have

been influenced by HARKing (hypothesizing after the results

were known), P hacking (running several analyses to find

significant results), selective reporting, and confirmation bias.

These problems can increase the chance of false discoveries

and unsupported claims.

Here we present a series of conceptual and methodologic

topics that should be considered when interpreting the results

of any studies before practical applications are extracted and

given too much credit.

LACK OF A REFERENCE CONCEPTUAL
FRAMEWORK AND MODEL: SHARK ATTACKS

Although researchers described their aim as investigating
(occasionally predicting) the association between TL and
injury,3–7 their conclusions and recommendations were
commonly reported as if causality had been assessed. Such
erroneous interpretations are understandable. In part 1, we
used the example of the popular spurious correlation between
shark attacks and the amount of ice cream sold. In this
example, it is easy to see how association wrongfully
interpreted as causality can produce confusion and ultimately
the wrong recommendation, as it would mean that if we sell
less ice cream, fewer shark attacks will occur. The same has
happened with TL and injury studies—that is, if we modify
the TL, the assumption was that we could reduce or increase
injuries, which has never actually been tested. The exclusion
of a causal association is the consequence of our previous
knowledge of and expertise about that phenomenon. With
potential predictors or prognostic factors that are conceptually
or empirically linked to injury occurrence, the absence of a
framework leads to the belief that any measure of TL reflects
some underlying mechanism of injury. Indeed, injuries occur
while training. The conclusion that an association between
shark attacks and ice cream is unreasonable is based on our
knowledge, and determining the role and suitability of a
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measure of exposure and the TL as a proxy of an injury
mechanism should also depend on expert knowledge. For this
reason, a conceptual framework is necessary to avoid
overinterpretation of results. In other words, we need a
plausible, explicit conceptual framework to understand the
factors that may influence injuries, the proxy measures of
these factors, and whether these proxies exist and can be
measured with acceptable accuracy. Not only is this necessary
when we want to manipulate the prognostic factors to
influence the occurrence of the event, but it also may be
required for associational and descriptive-only studies that are
used to develop a theory or etiologic models. Indeed, a
spurious association may provide misleading information on
which a theory may be wrongly based. Whatever the goal, the
use of any measure available to ‘‘try and see’’ is not a
methodologically appropriate way to proceed, given that it
may generate several outcomes because of misclassification of
the predictor, selection bias, mixing of effects (confounding),
intervention effects, and heterogeneity.8 We recently proposed
a conceptual framework9 to describe the causal structure of
acute and overuse injuries, which has some components in
common with the one proposed by Bertelsen et al10 for
running injuries. These are only first steps before attempting to
define the proxies for testing hypothesized causal paths and
the single links forming the framework. Previously proposed
‘‘frameworks’’ are generic and none were detailed enough to
derive the proxy measures or help define a causal structure.11

Although these may be useful in providing generic models for
injuries, their utility for developing studies to examine the role
of TL in injury occurrence is very limited.

No specific framework or causal structure has been used in
previous studies, and the only reference ‘‘model’’ mentioned in
the literature1 behind certain common metrics (ie, acute load,
chronic load, and their ratio) is the Banister impulse-response
model. Figure 1 shows how the original model was
oversimplified by the use of time decays as arbitrary values
for acute and chronic TL, and an additive model was
transformed into a ratio without justification.12 The lack of
physiological, biological, and computational rationales to
support these metrics as causal factors in injury has been
recently discussed.13,14 Furthermore, new evidence has called
into question the etiologic roles of chronic load and the
acute : chronic workload ratio (ACWR).9 Therefore, it is
important to underline that the absence of a strong etiologic

rationale for selected TL metrics, such as the ACWR, may be
a sign that the previously reported relationship between TL
and injury is coincidental or due to statistical artifact. Thus,
results should never be accepted as established but should be
scrutinized and challenged with purposeful studies or by
examining the potential methodologic problems. The domino
effect of the ACWR is the proliferation of new metrics,15,16 all
characterized by the lack of any physiological explanation.
This just adds confusion and increases researchers’ degrees of
freedom, thereby leading to P hacking (ie, fishing expeditions)
and the risk of false associations. The consequences of these
bad practices have been extensively presented in the
literature.17,18 Furthermore, this emphasis on TL has caused
an overreliance on a single factor among an array of factors
that may contribute to overuse injuries.19,20 For example,
inappropriate proposals have been generated, such as renam-
ing overuse injuries TL errors.21,22 In summary, in science,
conceptual frameworks matter!

METHODOLOGIC CONCERNS

The lack of any conceptual framework has another
unfortunate consequence: it gives researchers too many
degrees of freedom, which, when combined with suboptimal
analyses and data handling, can dramatically increase the risk
of false discoveries and confirmation bias to support common
training practices, such as the overload progression principle.

Measure of Exposures

Researchers are free to select whatever they want as
measures of exposure in their statistical model. For example,
other than the acute and chronic TL, they can use the ACWR,
week-to-week variation, ratio between low or high chronic
TL, and different categories. Calculating associations from
multiple combinations4,5,23 of TL measures inflates the risk of
type I errors. This was acknowledged by 1 set of authors24

who calculated 350 hazard ratios using varying time windows
(7–28 days) and TL measures (rolling and exponentially
weighted averages, ACWR training monotony, and strain).

Pitfalls of Using Ratios

As mentioned previously, the most common measure of TL
is the ACWR. However, the physiological rationale for
choosing this ratio is unknown, and it is not supported by
the Banister model. Furthermore, the ratio is well known to be
problematic.25–30 Lolli et al31 observed that the ACWR failed
to normalize the numerator for the denominator even after
controlling for the mathematical coupling.32 The ratio is
indeed used to control for a denominator variable (chronic
workload) that is assumed to influence the numerator (acute
workload), which is the variable we consider important.26 This
failure adds unnecessary ‘‘noise,’’ increases the risk of
artifact,33–35 and makes the results difficult to interpret, as
the practitioner cannot determine whether the acute or chronic
TL is driving the ACWR. Despite this fundamental flaw, this
problem has been completely ignored, and few research-
ers33–35 focused on the coupling problem raised by Lolli et
al.32 Unfortunately, these investigators failed in at least 2
aspects: first, they did not use a within-participants analysis, as
should be done for ACWR because this metric is calculated at
the within-participants level over a time series, and second,
they did not understand that the ratio is the problem. Indeed,

Figure 1. Banister model equation and its adaptation in the acute :
chronic workload ratio (ACWR).12
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Lolli et al32 demonstrated that even when uncoupled, the ratio
does not normalize.

It was also shown that when the training schedule was not
taken into account, false relationships between ACWR and
injury were generated. For example, Bornn et al36 created a
1000-season simulation of TL and injury using data from 2
elite sports (Serie A soccer and National Football League
football). The simulation was constructed so that the ACWR
was to have no relationship with injury (ie, injury was
simulated to simply be a function of the training demands on a
given day). When the simulation was statistically evaluated
using ‘‘common approaches,’’ the ACWR outside of the
proposed ‘‘sweet spot’’ (0.8–1.3)37 had a significant relation-
ship with injury (6.8% increase in injury in Serie A soccer and
10.5% increase in injury in National Football League
football)—similar to what has been reported in previous
literature.3,6 Interestingly, this relationship existed despite the
simulation’s being designed to have no relationship at all.
Once the training day was considered in the model,
representing a function of the underlying training schedule,
the relationship between the ACWR and injury no longer
existed. Such results suggest that relationships with the
ACWR in earlier studies might be nothing more than
statistical artifacts. Specifically, the statement ‘‘ACWR
predicts injuries’’ may be better stated as ‘‘ACWR predicts
the upcoming TL.’’

The idea that new metrics such as ACWR are strongly and
consistently associated with injury is not actually supported by
evidence. Even in the first 2 studies, on which the famous U-
shape model presenting the sweet spot was based, Hulin et
al3,4 did not show a U shape between the ACWR and
subsequent injury. The U shape was produced after unpub-
lished data from Australian League Football (AFL) were
combined,37 but other authors have noted completely different
relationships (negative linear,38 positive linear,7 inverted U
shape,39 etc). Given these discrepancies, a request for
retraction of the U-shape model was submitted.40 Although
the retraction was refused (because the model was presented
as illustrative), the errors were confirmed and, at minimum,
suggested that the U-shape model should be dismissed.
Furthermore, although illustrative, this model has been
published more than 7 times in scientific journals, including
in 2 consensus statements, 1 from the International Olympic
Committee.11,37,41–45 The latter presented the model as
validated, and a request for clarification is still pending
(https://bjsm.bmj.com/content/50/17/1030.responses).

The conceptual and methodologic inadequacy of the ACWR
(ie, to ‘‘normalize’’ the acute by the chronic load) has even
been indirectly acknowledged by the proponents of the
ACWR and other authors3,4,46,47 who arbitrarily removed the
training weeks in which the chronic load was 1 or 2 standard
deviations below the mean from the ACWR analysis. This
exclusion was considered necessary to limit ‘‘spikes’’ in the
ACWR, as small absolute increases in acute TL at low chronic
TL values would result in very high ACWR values. Because a
ratio is used when one believes the numerator (ie, acute TL) is
the important factor but wants to control for differences in the
denominator (ie, chronic TL),26 manipulating the denominator
by eliminating data (ie, low chronic TL values) should not be
necessary. Furthermore, removing lower TL values from the
chronic TL measure to limit spikes creates an unrealistic
scenario that does not represent the actual TL exposure.

Finally, in a recent study,48 investigators showed that the
ACWR (ie, the ratio) actually generated statistical artifacts.
The concerns raised in this section should warn researchers
and practitioners to avoid adopting into their practice methods
that have been not properly scrutinized by independent
investigators. Additionally, the methodologic concerns we
have raised can be used to avoid repeating similar mistakes in
the future.

Training-Load Measures

Training load can be assessed using various methods and
devices. Again, without a conceptual framework, researchers
can use whatever is available. Investigators have used
measures of internal TL such as the session rating of
perceived exertion and measures of external TL such as
GPS and inertial sensors, while ignoring (or not considering)
that each of these measure different TL constructs.49

Furthermore, different TL indicators have also shown different
relationships with injury risk, as demonstrated, for example,
by Bowen et al5,23 or Jaspers et al.50 One obvious limitation of
GPS is that it cannot be used to quantify any indoor training
(eg, gym training). Why most authors who used GPS failed to
quantify or acknowledge this point is unknown. We contend
that it is highly unlikely that the teams studied did not
complete any gym sessions, as preventive exercise programs
are fundamental training activities. Because these programs
may reduce the risk of injuries,51 this should be considered, at
minimum, a potential effect-measure modifier. Conversely,
such programs may be thought of as confounders because
activity completed in the gym can affect the previous or next
field training. Although we acknowledge that not all
contextual factors can be measured, gym training is a part of
the TL and not a contextual factor. Finally, much of the
literature is vague as to how to account for nontraining days
(eg, days off) in calculating the ACWR. Lack of clarity in
reporting makes it difficult to understand the influence of
nontraining days on the chronic load, as these days would
technically be listed as a TL of 0.52

During soccer, the match activities of the highest-level
professional teams are commonly measured using semi-
automated camera systems. Combining data coming from
different player-tracking systems is then necessary. Indeed, in
a recent study of Premier League players, Bowen et al5 used
both GPS and camera-system data to represent the same load
indicator, referring to a study by Buchheit et al53 to support the
interchangeability. However, Buchheit et al53 not only used a
different GPS device but they also found a moderate
systematic error after applying necessary customized correc-
tion algorithms (which reduced systematic bias). An additional
concern is that some matches in team sports, in which GPS is
frequently used during competition, are also played indoors,
where GPS cannot be used. For instance, in AFL, some
matches are played indoors, and the activity profile of certain
official matches is measured using a radio-frequency identi-
fication–based, active real-time location system and not GPS
(which is used in the other matches). However, none of the
authors who examined the AFL mentioned whether the
analyzed data were combined from the 2 systems or the
radio-frequency identification measures were excluded. Col-
lectively, these examples indicate that data from different
player-tracking systems must be analyzed with care, as
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systematic measurement differences between systems may
create artifacts or influence the results.

Time Windows

Researchers have used a plethora of time windows without
providing any justification. They appear to have applied an
exploratory trial-and-error approach, in which various combi-
nations may be considered ‘‘just to see what happens.’’
Investigators have used 1 to 8 weeks as the indicator of
chronic (or cumulative) TL and 1 to 2 weeks for acute TL and
added ACWRs calculated with as many time windows.46,47,54

Carey et al55 designed a study aimed at defining the best time
windows. They explored 336 combinations and determined
the results differed depending on the windows (and the TL
measure). Indeed, for moderate-speed running, the ‘‘best’’
window was 3 days for acute load and 21 days for chronic
load, whereas for total distance, the ‘‘best’’ windows were 6
and 24 days, respectively. Results of these studies are difficult
to reconcile to a logical framework, especially in the absence
of a reference conceptual model. However, this adaptation of
the time windows to the available data is methodologically
unreasonable and a form of overfitting.56

Another concern is the lack of consistency in the methods
used to calculate acute weekly TL. Figure 2 shows 4 ways to
calculate the acute load using the session rating of perceived
extertion as the TL measure. We have presented these
methods using Monday-to-Sunday blocks, which is common
in many studies.3–5,23,57,58 Each method clearly produces
different acute load figures (from 1340 to 3450 arbitrary
units), which in turn affect other derived measures of changes
such as the ACWR. Method 4 in Figure 2 is the most
common,3–5,23,38,50,59–65 which implies an important assump-
tion: the load immediately preceding an injury is not a relevant
risk factor. The time lags in the literature between injury
occurrence and the first week or days used to calculate the
acute or chronic load typically ranged from 1 day to 1 week
(subsequent-week injuries).3–5,23,38,47,50,59–65 This means that
the authors, for reasons not reported, considered the TL
completed in the days immediately before the injury as not

influencing the injury risk. Also of concern is that the model
combined athletes who experienced an injury immediately
after the weekly load used for the calculations and athletes
who might have been injured as much as 7 days later. This
frequent use of time lags is worrying not only for the lack of
biological and plausible explanations but also because, if those
studies are correct, from a practical point of view, this would
mean that no matter what the athlete does after that week, the
injury cannot be prevented. Furthermore, when no time lag has
been specified, it is not often possible to know how or whether
the TL until the moment of the injury was entered in the
analysis (method 2). Method 1 (usually referred to as ‘‘current-
week injuries’’) is influenced by when the injury occurred but
has been used in only a few studies.3,4 Again, some of these
methods are confusing, illogical, and often not properly
explained or justified. We recommend that, when practitioners
read these articles, they ask themselves whether the research-
ers’ choices were reasonable and supported by any evidence.

Discretization and Reference Category

Most authors66–71 have categorized continuous measures of
exposure and ratios. The limitations of discretization have
been reported in the literature. Nevertheless, investigators who
used this approach commonly did not explain the reasons for
creating those specific categories, which is important consid-
ering their influence on the results. No clear rationale
describes why researchers have used between 2 (dichotomi-
zation)72 and 7 categories of ACWR and up to 11 bins.47,61,68

Also unknown is why authors have discretized the data using
group and not individual values. Such an approach may cause
some players to be underrepresented in certain categories and
overrepresented in others—and this affects the interpretability
of the results. Authors54,63,73,74 have analyzed the data using
different methods of categorization in the same study (eg, z-
score or quartile). Furthermore, the creation of discrete
variables may lead to additional problems. For example,
Carey et al66 showed that 3 discretization approaches
producing different categories caused 16 to 21 false discovery
rates in 100 simulations (assuming no relation with injury
risk). At least 1 of the 3 discrete methods showed a false
discovery 42 times out of 100. Another major concern
highlighted by Carey et al66 was that freedom of choice in
selecting a reference category almost doubled the risk of a
false discovery. In most, if not all, TL-injury studies, neither
the categories nor the references have been clearly justified.
The main justification for such approaches appears to arise
from authors who simply copied the methods and statistical
approaches of previous researchers.

Furthermore, the categories and their meaning should be
considered in the interpretation, and we are afraid that most
did not consider the implications of the selected reference
categories. For instance, Fanchini et al,74 in a study of football
players, demonstrated an increased injury risk at a ‘‘high’’
ACWR (.1.26). Specifically, the injury risk was higher for an
ACWR .1.26 versus an ACWR ,0.78. Thus, the risk was
higher in those with an increased load compared with a
decreased load. When athletes with an ACWR .1.26 were
compared with those who increased their acute load from 2%
to 26% (ACWR¼ 1.02–1.26), the risk was not higher. In other
words, if we want to apply these findings assuming a causal
relationship that doesn’t exist, we should avoid spikes only if
the players’ TL decreased (ACWR , 1) during the preceding

Figure 2. Methods used for calculating the acute training load in
published studies examining the relationship between training load
and injury. In this example, the session rating of perceived exertion
is the training-load measure. The load is calculated as the sum of
the daily training loads for the selected windows (eg, 1 week).
Method 1 commonly refers to injuries occurring in the current week,
and method 4 to injuries occurring in subsequent week. The
chronic load (eg, preceding 4-week average) is usually calculated
including and starting from the weeks of acute load. Abbreviations:
AWCR, acute : chronic workload ratio; AU, arbitrary units.
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week. But once the ACWR is .1.02, even doubling or tripling
TL would not increase the injury risk. This finding is exactly
the same as in the first study using the ACWR: Hulin et al3

showed that at ACWR .1.5 and ACWR .2.0, the injury rate
was higher than with an ACWR ,0.99 but not different than
with an ACWR between 1 and 1.49.

Injury Definitions

Various classification systems are available, and the
International Olympic Committee75 has recently presented a
consensus document on standardizing injury data collection.
However, the possibility that a researcher will arbitrarily select
an injury definition without providing an appropriate rationale
to justify the choice (again because of the lack of a reference
framework and etiologic model) is another source of degrees of
freedom that can change both the study results and the
interpretation.76 Injuries have been defined and used in many
ways, including contact, combined contact and noncontact,
match loss, both training and match loss, complaints requiring
medical attention, complaints requiring training session
modification, and combined upper and lower body injuries,
often with unspecified severities or days lost. In addition, some
investigations involved self-reported injuries, whereas others
relied on the medical staff to record injuries. The specific
reasons or mechanisms for selecting a particular definition that
clearly determines the number of predicted events have never
been presented. Some researchers used definitions based on
complaints, whose nature may underlie different, if any, TL-
related injury mechanisms. Even more concerning were studies
that included noncontact injuries such as bruises, hematomas,
or cramps with no theoretical link to TL errors.5,23 Moreover,
other authors5,7 who used TL measures derived from locomotor
activities included neck and upper extremity injuries. Although
we acknowledge that some investigators5,23 transparently
reported these details, most have not provided this information,
making interpretations challenging. Furthermore, research-
ers5,23,77 have combined noncontact and contact injuries to
increase sample sizes or applied the same measures of
exposure commonly used for noncontact injuries to contact
injuries. Both choices are questionable.

Although the available systems frequently used in profes-
sional sport settings were developed mainly for injury
surveillance, in order to determine associations with prognos-
tic factors and given the different responsiveness of tissues
and structures, either more specific classifications may be
needed or it would at least be advisable to examine
associations with specific injuries and specific tissues, as
was done in 1 study.65 Instead, the use of broad injury
categories as outcomes assumes common qualitative and
quantitative links between all these injuries and TL measures,
which is not reasonable.

Unclear Analyses

The use of suboptimal statistical analyses in TL-injury
studies has been reported in the literature.78,79 However, some
authors appear to have intermingled various methods for
calculating injury risk, relative risk, and likelihood of risk,
which makes interpretation very difficult for the reader. For
example, in their seminal papers, Hulin et al3,4,61 calculated
the injury risk as ‘‘the number of injuries sustained relative to
the number of exposures to each workload classifica-
tion.’’4(p233) They reported this as both injury risk (in tables)

and likelihood of risk (in figures). Yet this is not an injury risk
but rather an injury rate.80 They also calculated the relative
risks using these rates, which means they actually calculated
rate ratios. The researchers provided values for what they
labeled injury risk in tables but highlighted significance levels
using P values determined from odds ratios (with logistic
regression as a post hoc test). This method is inappropriate
because the P value referred to the odds ratio and not the
injury risk. These authors recently replicated the same errors.33

This is not only confusing but a questionable reporting of
statistics.3,4,61 Unfortunately, the methods from these studies
were used as reference for later studies, and the inaccuracies
were replicated by others.5,23,58,81,82

Further, although confidence intervals have often been
reported, uncertainty has rarely been discussed or considered.47

The investigators38,47 who found extremely large confidence
intervals at the extremes of the TL-injury relationship (ie,
outside the ‘‘sweet spot’’) suggested that few injuries occurred
in these ranges (also indicating sparse data bias) and the results
were compatible with any kind of association.

Finally, we should always consider that a common
characteristic of these studies is that the analysis was
performed on data from athletes who sustained repeated
injuries and, therefore, injury recurrence should have been
taken into account. Although some researchers attempted to
use statistical methods to handle correlated outcomes within
individuals (eg, mixed models and generalized estimating
equations), a consistent reporting strategy has yet to be
adopted. Inconsistent reporting of such complex models makes
their interpretation and comparison of outcomes across studies
challenging for the practitioner. Recurrence is an important
factor when analyzing data in injury research; simply ignoring
it is not the best approach.83 Also, most exposures, outcomes,
confounders, and moderators are time-varying variables.
Nielsen et al79,84 provided gentle introductions to this topic,
and interested readers are advised to refer to these articles.

Sample Size and Generalizability

Because in most of the TL-injury research, authors
examined data from single teams in a myriad of sports, the
studies have low generalizability and should probably be
viewed as case studies. Accordingly, the findings cannot be
confidently extended to other teams or populations. Most of
the investigations also lacked adequate sample sizes,85 which
was amplified when the samples were split into subcategories
(eg, a high ACWR combined with low or high chronic
load).4,5,23,46 Adequate sample size should not be calculated
using only the events-per-variable approach because this
method has limitations,86,87 but authors often do not report any
justification for the chosen sample size. Even worse, some
researchers reported the post hoc power analysis, which is well
known to be inappropriate.88 Moreover, no authors reported
the number of injuries for each category, and we are
concerned that some categories had as few as 1 or 2 injuries.
In addition, the number of athletes who sustained repeated
injuries was rarely supplied.

Missing Data

The literature contains extensive explanations89,90 of how to
handle missing data, but these have been ignored by many TL-
injury investigators. To be imputed, data should be demon-
strated to be (or reasonably assumed to be) missing completely
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at random or at least at random. Today, single imputation is an
infrequent practice, and when possible, multiple imputations
are suggested as an alternative for completing a case
analysis.91 In sport science, simple imputation is quite
common, with mean group values typically used as the
imputation. Unfortunately, this approach has many limitations,
and other solutions (eg, substitution, hot and cold deck
imputation, regression) should be considered.89–93 However,
more concerning extreme imputation strategies, such as
estimating the data of an entire season using the data of
subsequent seasons,5 have been used in some TL-injury work,
which clearly severely biases the results. To improve on these
practices, we suggest that researchers report on the proportion
of missing data, assess whether any missing values were
missed at random, describe how data imputations were made,
and provide a justification of the method. A sensitivity
analysis to show the effect of imputations would also be
desirable and good practice.

Standard and Quality of Reporting

Several international guidelines are available for standard-
izing reporting in scientific studies (www.equator-network.
org). These guidelines have been developed to promote
standardization, transparency, and high quality of reporting.
Such information is necessary to provide readers and other
researchers pertinent information about the rationale, design,
methods, analysis, and interpretation. These guidelines also
allow for accurate evaluation of the risk of bias.
Unfortunately, as described earlier, the studies on TL and
injuries are heterogeneous in their design and methods.
Reporting of methods is also unclear in many studies, which
makes interpretation and comparison of findings difficult. For
example, rigorously developed and well-established reporting
guidelines94,95 recommend presenting both the absolute and
relative risk because the relative risk alone can be misleading
and influence interpretation and subsequent decisions.96

Relative risk can overestimate the effect of the association
between exposure and outcome. For this reason, both relative
and absolute risk (eg, risk differences) must be supplied.96,97

Unfortunately, with few exceptions,98 the authors of TL-injury
studies commonly provide only the relative risk. Based on the
absolute risk differences reported by Colby et al,98 even when
trying to contextualize these numbers, the absolute changes in
the injury risk appear to be very small or negligible. Other
than designing adequate studies, it is important to clearly
report each study’s methods. Given the increasing interest and
research in injury prediction, the transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis99 is a valuable tool whose implementation would
improve the reporting so that the risk of bias can be assessed
and the methods replicated.

CONCLUSIONS

The lack of any TL conceptual frameworks or reference
models has facilitated the search and selection of results that
align with traditionally accepted training principles and
common sense, thus biasing our view and interpretation of
the results. The bias in this field is unfortunately very evident.
A recent review100 supported use of the ACWR (session rating
of perceived exertion) but focused on only 2 of 13 identified
studies. The authors failed to advise readers that the
associations were in opposite directions, with Hulin et al3

reporting a higher injury risk at high ACWR (.1.5) and
Jaspers et al50 showing a lower risk (ACWR .1.12). This kind
of biased interpretation is regrettably quite common. The
retrospective nature of the analysis and the several sources of
researchers’ degrees of freedom facilitate false discoveries, P

hacking, selective reporting, and HARKing. Unfortunately,
based on the aforementioned methodologic concerns and the
inability of studies to examine potential causal associations,
practitioners should be cautious when deriving practical
recommendations.

Although practitioners may be surprised and feel discour-
aged by our critical analysis, some good can come from our
critique. Given the limitations presented in this 2-part series,
we recommend that practitioners still rely on their clinical
experience and intuition, combined with logical training
principles and knowledge of physiological mechanisms and
stimulus-inducing adaptations. Although theoretically under-
training, ‘‘excessive’’ training, or both may be reasonably (but
generically) considered predisposing factors to injury, this
cannot be ascertained and quantified based on the literature.
Training load-injury researchers should slow down and focus
instead on producing higher-quality studies, even if this means
many fewer studies (see Table for recommendations),
including exploring more fundamental topics such as injury
mechanisms in order to define frameworks that can be used to
develop appropriate studies that are conducted according to
established epidemiologic methods.

Note: During the preparation of this manuscript, new
evidence and methodologic concerns have been present-
ed.13,14,48 In light of these arguments, the Australian Institute
of Sports has recently released a communication advising that
the ACWR not be used as an indicator of injury risk (http://
subscribe.ausport.gov.au/t/r-2CAD3E99D6C6144D2540EF23
F30FEDED).
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