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Background: Relatives of Familial Interstitial Pneumonia (FIP) patients are at increased risk for 

pulmonary fibrosis. We assessed the prevalence and risk factors for preclinical fibrosis (PrePF) in 

first-degree relatives of FIP patients and determined the utility of deep learning in detecting PrePF 

on CT.

Methods: First-degree relatives of FIP patients over 40 years of age who believed themselves to 

be unaffected by pulmonary fibrosis underwent CT scans of the chest. Images were visually 

reviewed, and a deep learning algorithm was used to quantify lung fibrosis. Genotyping for 

common IPF risk variants in MUC5B and TERT was performed.

Findings: In 494 FIP relatives from 263 FIP families, the prevalence of PrePF on visual CT 

evaluation was 15.6% (95% CI [12.6,19.0]). Compared to visual CT evaluation, deep-learning 

quantitative CT analysis had 84% sensitivity (95% CI [0.72, 0.89]) and 86% sensitivity (95% CI 

[0.83, 0.89]) for discriminating subjects with visual PrePF diagnosis. PrePF subjects were older 

(65.9, SD: 10.1 years) than subjects without fibrosis (55.8± 8.7), more likely to be male (49% 

versus 37%), more likely to have smoked (44% versus 27%), and to have the MUC5B promoter 

variant rs35705950 (minor allele frequency 0.29 versus 0.21). MUC5B variant carriers had higher 

quantitative CT fibrosis scores (mean difference 0.36%), a difference that remains significant 

when controlling for age and sex.

Interpretation: PrePF is common in FIP relatives. Its prevalence increases with age and the 

presence of a common MUC5B promoter variant. Quantitative CT can detect these imaging 

abnormalities.

Funding: NIH-NHLBI (UH2/3-HL123442, R01-HL097163, R21/R33-HL120770, P01-

HL092870, K23-HL136785, K08-HL130595, F32HL123240), U.S. DOD (W81XWH-17-1-0597).

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF), the most common idiopathic interstitial pneumonia, is a 

poorly understood disease characterized by progressive lung parenchymal scarring, impaired 

gas exchange, loss of lung function, physical debilitation, and shortened life-span. Median 

survival is approximately 3 years from the time of diagnosis [1], and the clinical course is 

unpredictable [1]. There are no curative therapies [2,3] other than lung transplantation.

Recent studies have identified genetic variants, both common and rare, associated with both 

familial and sporadic forms of pulmonary fibrosis [4–7]. A MUC5B promoter variant has 

been shown to be the most important variant associated with familial and sporadic disease 

and with interstitial lung abnormalities (ILAs) [4,5,8]. Numerous rare variants in TERT (and 

other telomerase-pathway genes) have been thought to be critical in familial diseases [6,9–

11]; more recently a common variant in TERT [5] has been associated with sporadic and 

familial disease.

Better understanding and recognition of early pulmonary fibrosis is critical because medical 

therapies have been shown to slow progression, not to reverse existing fibrosis; intervention 

before irreversible fibrosis has become extensive has the potential to improve quality of life 

and decrease morbidity. While IPF affects approximately 5 million people worldwide [1], 

between 1.8 of the general population and 14% of the familial at-risk population ≥50 years 

Mathai et al. Page 2

Thorax. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of age have radiologic findings of undiagnosed pulmonary fibrosis [8,12,13]. Large cohort 

studies indicate that ILAs, postulated to represent early pulmonary fibrosis, are associated 

with increased mortality and generally progress over time [12,13]. Members of families with 

2 or more cases of pulmonary fibrosis (FIP, Familial Interstitial Pneumonia) have been 

identified as an “at-risk” population. In a previous study of FIP relatives, 14% had ILAs on 

high resolution computed tomography (HRCT), and 35% had an abnormal transbronchial 

biopsy indicating interstitial lung disease [14].

HRCT plays a key role in the diagnosis of the Idiopathic Interstitial Pneumonias (IIPs), 

including IPF. Currently, visual pattern diagnosis by thoracic radiologists, in conjunction 

with multidisciplinary clinical conference, is the gold standard for diagnosing IIPs [15]. 

However, visual assessment is imprecise and hampered by inter-observer variation [16]. 

Quantitative HRCT (qHRCT) evaluation provides measures of fibrosis extent that, in 

subjects diagnosed with IPF, correlate with degree of physiologic impairment at baseline, 

and may be more sensitive to subtle changes in disease status than routinely used 

physiological metrics [17,18]. The design and utility of qHRCT methods in the context of 

early forms of fibrotic ILD requires further study [19]. Deep learning methods have been 

increasingly used in imaging to identify and classify CT patterns [20], and may be valuable 

in detection of early lung fibrosis.

A key strength of deep learning algorithms, such as convolutional neural networks (CNNs), 

is that they simultaneously optimize feature extraction and calculation of classification rules. 

During training, CNNs “learn” to extract the most effective image features, including 

textural features at multiple scales, for the given classification task. This is in contrast to 

more traditional methods that rely on separate processes to engineer and select features, then 

develop classification rules. Engineered features are designed manually, often by using 

combinations of standard statistical or image processing calculations, and may not be the 

most effective features for a given classification task like the discrimination of pulmonary 

fibrosis.

This study aims to: (1) examine risk factors, including two common fibrosis-associated 

genetic variants in MUC5B and TERT, for undiagnosed pulmonary fibrosis (PrePF) in FIP 

first-degree relatives; and (2) determine the utility of a deep learning, texture-based qHRCT 

method in the detection of PrePF in this cohort.

MATERIALS AND METHODS

FIP Relatives Screening:

At the University of Colorado, National Jewish Health, and Vanderbilt University (COMIRB 

#15–1147; NJH IRB 1441a; Vanderbilt IRB #020343), non-Hispanic white (NHW) first-

degree relatives of FIP patients, defined as those in families with two or more cases of 

pulmonary fibrosis (Figure S1), were contacted. After informed consent, first-degree 

relatives without a known prior diagnosis of pulmonary fibrosis and greater than 40 years of 

age were offered HRCT scans of the chest and peripheral blood draw. Those younger than 

40 years of age or who reported on pre-scan questionnaires to be personally affected by 

pulmonary fibrosis were excluded (Figure 1).
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Visual CT Review:

See Supplement for details. HRCT scans were interpreted by study radiologists using a 

standardized method [21]. “PrePF” was defined as the presence of “probable” or “definite” 

fibrotic ILD on HRCT in FIP relatives who had no known diagnosis of pulmonary fibrosis at 

the time of study enrollment (Figures 1,2).

Quantitative CT:

Inspiratory HRCT series with slice thickness ≤1.25mm and spacing ≤ 20.0mm were selected 

for quantitative analysis. This included 212 volumetric series with thin, contiguous sections 

(slice thickness and spacing both <=1.25mm) and 191 non-volumetric scans (56 with slice 

spacing >1.25mm and <10mm, 65 with slice spacing of 10mm and 70 with slice spacing = 

20mm). Technically inadequate scans were omitted (Figure S2). In addition, 100 inspiratory 

volumetric HRCTs of normal, never-smoker control subjects from the COPDGene cohort 

were analyzed (Table S1) [22,23]. In an initial process, the lungs were segmented using a 

deep learning model that had been trained using CT of subjects with and without fibrosis. 

Details are available in the Supplement. Trained analysts verified lung segmentation visually 

and made edits, if necessary. Examples of the categorization of different parts of CT scans 

are shown in Figure 3. Some studies were acquired with contiguous thin axial sections while 

others used 1 or 2 cm intervals. Reconstruction kernel, a parameter that affects image 

sharpness and noise, was not standardized.

Fibrosis quantification on CT scans was performed using a second deep learning technique, 

called deepDTA, consisting of a convolutional neural network (CNN) algorithm trained with 

image regions of normal and abnormal lung identified by expert radiologists. Training data 

and an earlier algorithm version, called Data-driven Textural Analysis (DTA), were 

described previously [17]. Here, a more complex CNN architecture was employed that 

classifies image regions using pixel and texture features extracted by multiple convolutional 

layers at different scales. The CNN classifies image regions as either normal or fibrotic, with 

the fibrotic category trained using image regions labeled by a radiologist as reticular 

abnormality, honeycombing or traction bronchiectasis. Subject level HRCT fibrosis scores 

were computed as the percentage of total lung volume classified as fibrotic (Figure 3; Figure 

S3). A simpler previously described densitometric analysis of HRCTs, percent high 

attenuation area (%HAA), was also performed for comparison [24] (see supplement).

Blood Processing, Genotyping, and Autoantibody Testing: See supplement.

Statistical Analysis:

Analysis of the effect of specific alleles on PrePF risk was performed using minor allele 

frequency (MAF) for comparison of variant prevalence in the study groups; statistical 

significance was determined with a z-score test for proportions or a mixed effects logistic 

regression model when controlling for other variables (age, sex, smoking history, and family 

[random effect]) in dominant and log-additive models.

Distribution of qHRCT fibrosis scores was left skewed, as was %HAA, so these values were 

log transformed prior to analyses (Figures S4–7). Log of qHRCT fibrosis score (hereafter, 
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“fibrosis score”) and log (%HAA) were compared with visual scores using ANOVA and 

Tukey’s honest significant difference test. To determine the ability of qHRCT scores to 

predict visual diagnosis of PrePF, receiver-operating characteristic (ROC) analysis was 

performed. Optimal threshold for discriminating visual diagnosis of fibrotic ILD was 

determined with Youden’s method. Five-fold cross-validation was performed to test 

detection accuracy, sensitivity and specificity, and consistency of optimal threshold. Linear 

regression was performed to test association between the MUC5B genotype and qHRCT 

fibrosis score and log (%HAA).

A p-value of <0.05 was considered statistically significant for differences between groups as 

well as for associations between individual variables and outcomes in linear and logistic 

regression modeling. Statistical analyses were performed using RStudio (v.0.99.473).

RESULTS

Study cohort characteristics

1,090 familial interstitial pneumonia (FIP) first-degree relatives were contacted; 523 eligible 

subjects underwent HRCT screening (Figure 1). Of the 521 subjects, 26 were excluded due 

to technical inadequacy of images and one for an equivocal consensus read by study 

radiologists. The remaining 494 subjects from 263 families were included in the analyses. 

Subjects’ mean age was 57 years (SD: 9.6), 189 (38%) were male, and 148 (30%) were 

either current or former smokers. The minor allele (T) frequency of the MUC5B promoter 

variant rs35705950 was 0.22 in this cohort; 42% of the subjects in this cohort had one or two 

copies of the minor allele (Table 1). The minor allele (C) frequency of the TERT variant 

rs2736100 was 0.47 in the entire cohort; 69% of the subjects in the cohort having one or two 

copies of the minor allele (Table 1).

Prevalence of preclinical pulmonary fibrosis (PrePF) in FIP relatives

Of the 494 HRCT scans, 399 showed no CT evidence of interstitial lung disease (ILD), and 

93 showed evidence of ILD, either fibrotic (27 probable and 50 definite) or non-fibrotic 

(n=16). Therefore, among these 494 subjects who reported being personally unaffected by 

pulmonary fibrosis, the PrePF prevalence was 15.6% (n=77) (Figure 1).

The CT patterns noted in visually identified PrePF subjects (Table 2) show that possible, 

probable, or definite UIP pattern was the most commonly considered (n=59, 77% of all 

PrePF cases). NSIP was considered in 45 subjects (58% of all PrePF cases). The fibrotic 

changes were most commonly lower-lobe predominant and subpleural in nature, consistent 

with a UIP pattern (Table 2). Non-fibrotic ILD scans, on the other hand, generally had more 

diffuse, upper-lobe predominant abnormalities (Table S2–3).

There were 402 study subjects with HRCT scans that were technically adequate for 

quantitative assessment (Figure S2). 212 of the scans had both slice thickness and spacing 

<=1.25mm (thin, contiguous); of the remaining 191 scans, 56 had slice spacing >1.25mm 

and <10mm, 65 had slice spacing = 10mm, and 70 had slice spacing = 20mm. Volumetric 

HRCT scans on an additional 100 COPDGene subjects were included as normal controls 

(Table S1; Figure S3). HRCT CNN fibrosis score means were significantly different 
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(p<0.0001) across groups defined by visual diagnosis (Figure 4). Comparison of means 

showed fibrosis score were significantly different comparing each group (all between-group 

comparisons p<0.01). Means of log (%HAA) scores were also significantly different across 

visual scoring groups (p<0.0001), and individual between-group comparisons showed log 

(%HAA) was significantly different in most comparisons (p<0.0001), except between the 

“probable” and “definite” visual scores (p=0.35, Figure S7).

ROC analyses showed that fibrosis score discriminates subjects with visual diagnosis of 

PrePF (Figure 5B). Average area under the curve (AUC) in five-fold cross validation was 

0.92 (range 0.91–0.93) and average accuracy, sensitivity, and specificity in the test partitions 

were 0.85 (range 0.81–0.88), 0.81 (range 0.71–0.92), and 0.86 (range 0.79–0.90), 

respectively. Optimal threshold for log fibrosis score was 0.60 (range 0.53 – 0.71), 

corresponding to 1.8% fibrotic area in examined lung. Utilizing a cutoff of 0.60 for log 

fibrosis score on the entire dataset, the sensitivity was 84% (95% CI [72, 92]), specificity 

was 86% (95% CI [83, 89]); and accuracy was 86%; while the positive predictive value of 

this test was only 46% (95% CI [36, 55]), the negative predictive value was 97% (95% CI 

[95, 99]) (Figure 5B–C).

Compared to the classification achieved with the CNN as described above, ROC analysis of 

log %HAA had lower mean AUC 0.80 (range 0.79–0.81) and average accuracy, sensitivity, 

and specificity of 0.67 (range 0.63–0.70), 0.82 (range 0.75–0.91), and 0.64 (range 0.62–

0.70), respectively (Figure 5A). Mean optimal threshold for log %HAA ranged from 1.49–

1.57.

Utilizing a cutoff of 1.49 for log %HAA, the sensitivity was 89% (95% CI [78,95]), 

specificity was 62% (95% CI [57,66]), and accuracy was 60%; while the positive predictive 

value of this test was only 24% (95% CI [19,30]), the negative predictive value of this test 

was 96% (95% CI [95,99]).

Risk Factors for PrePF

Subjects with PrePF were older (mean age 65.9 years, SD 10.1) than those without fibrosis 

(mean age 55.8, SD 8.7; p = 6.36 × 10−13) (Table 1, Figure S8); they were also more likely 

to have ever smoked (44% versus 27%, p=0.004), and to be male (49% versus 37%, p=0.05). 

However, there was no difference in breathlessness between the PrePF and subjects without 

fibrosis (mean score 0.5 versus 0.6, p=0.24, Table 3). Quantitative fibrosis score was 

positively associated with breathlessness score (p=0.007), even after controlling for age 

(0.65), male sex (p=0.52), and smoking history (p=0.59). When fibrosis was defined by 

quantitative fibrosis score cutoff (0.60), there was a trend towards higher breathlessness 

score in scans demonstrating lung fibrosis (0.44 versus 0.65, p=0.08).

Screening for autoantibodies in this cohort revealed that there were no differences between 

PrePF and unaffected subjects in terms of overall seropositivity or specific antibodies’ 

testing in this cohort (Table S4). For quantitatively defined lung fibrosis, there was also no 

significant difference between groups, with similar overall seropositivity rates (11% versus 

16%, p=0.30).
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The MUC5B promoter variant rs35705950 was associated with the visual diagnosis of 

PrePF (present in 40% of those without fibrosis versus 53% with PrePF; MAF 0.29 versus 

0.21, respectively, OR=2.14 (95% CI [1.00, 4.63], p=0.02, Table 1). After age 60, there was 

a statistically significant difference in the proportion of subjects with visually diagnosed 

PrePF when the cohort was stratified by MUC5B genotype (23.8% versus 39.8% prevalence, 

p=0.02); prior to age 60, PrePF prevalence is not significantly different by genotype (Figure 

6).

MUC5B variant carriers, regardless of their visual CT diagnosis, had significantly higher 

qHRCT fibrosis scores (mean difference 0.36, p=0.006). The association between MUC5B 
genotype and fibrosis score was significant even when controlling for age, sex and smoking 

history in a linear regression (p=0.017, Table 4). Age (p<2.0×10−16) was significantly 

associated with fibrosis score, but male sex (p=0.26) was not; the association of smoking 

and fibrosis score was borderline (p=0.05). The simpler quantitative scoring method, log 

%HAA, was not significantly different in MUC5B variant carriers (p=0.4).

When the 341 subjects with a visual inspection negative for fibrosis were separated further 

by whether or not qHRCT score indicated fibrosis, 59 were identified to have lung fibrosis 

by the deep learning method and 282 were found to be unaffected. In those that were 

classified negative by both visual and computational methods, mean age was 54.7 (95% CI 

[53.8, 55.6]), 101 (35.8%) were male, and 271 had genotyping available (MAF of 0.21 for 

the MUC5B promoter variant). Of those that were classified negative visually but fibrotic by 

deep learning (n=59), the mean age was 61.2 (95% CI [58.4, 65.0]), 22 were male (37.3%), 

and all had genotyping available which revealed a MAF of 0.26 for the MUC5B promoter 

variant. Those that were identified as having lung fibrosis by deep learning were older (61.2 

vs. 54.7 years; p=4.2×10–5) and were more likely to have the MUC5B variant (MAF=0.26 

vs. 0.21; p=0.18); however the MUC5B promoter variant association in this sub-analysis did 

not reach statistical significance.

In contrast to the MUC5B variant, the common IPF-associated TERT variant (rs2736100) 

was not significantly associated with PrePF assessed either qualitatively (MAF 0.47 in 

PrePF versus 0.46 in unaffected, p = 0.77) or quantitatively (MAF 0.50 fibrotic versus 0.47 

not fibrotic, p=0.40).

When these factors were examined for their contributions to risk of PrePF in our study 

cohort, we used a mixed effects logistic regression model to test the independent effects of 

age sex, smoking, and MUC5B or TERT genotypes while controlling for family. Age 

remained significantly associated with PrePF (OR 1.15, 95% CI [1.09, 1.21], p=6.74×10−7] 

and the MUC5B variant was more common in PrePF (OR 2.14, 95% CI [1.00, 4.63], 

p=0.05) (Table 1). The common TERT variant (rs2736100) associated with fibrotic 

idiopathic interstitial pneumonia [5] was not associated with PrePF in simple comparison of 

allele frequency (MAF was 0.45 in PrePF versus 0.45 in unaffected, p = 0.92) or in a log-

additive model controlling for age, sex, smoking history, and family relatedness (p=0.38) 

(Table 1).
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Secondary Subgroup Analyses

Given the presence of non-fibrotic ILD (n=16, Figure 1) in the “No Fibrosis” cohort, 

secondary analyses were performed that: 1) excluded non-fibrotic ILDs (Table S5); and 2) 

compared all ILD (inclusive of non-fibrotic ILD) to those without any ILD (Table S6). When 

non-fibrotic ILDs were excluded from analyses, PrePF subjects were older (p=1.7×10−12), 

more commonly male (p=0.05), more often had a smoking history (p=0.003) and had a 

higher prevalence of the MUC5B promoter variant (MAF 0.29 versus 0.20, p=0.02). 

However, when controlling for family relatedness and the other risk factors in a mixed 

effects logistic regression, age was associated with PrePF (OR 1.15, 95% CI [1.09, 1.21], 

p=8.8×10−7), and the MUC5B promoter polymorphism had a borderline association with 

PreP (OR 2.15, 95% CI [0.99, 4.69], p=0.05) (Table S5). Another secondary analysis of the 

data was performed in which all subjects with CT findings of ILD (fibrotic or non-fibrotic) 

were compared to those without any evidence of ILD (Table S6). Those with CT evidence of 

any ILD were older (mean age 64.5 years, SD: 10.2) compared to those without any 

evidence of ILD (mean age 55.7 years, SD: 8.7, p=7.2×10−12), more likely to be male 

(p=0.02), more likely to have smoked (p=0.0003), and more likely to carry the MUC5B 
promoter variant (MAF 0.29 versus 0.21, p=0.01). When controlling for family relatedness 

in a mixed effects logistic regression model, age (OR 1.11, 95% CI [1.07, 1.15], 

p=5.58×10−9) and the MUC5B promoter variant (OR 1.87, 95% CI [1.04, 3.36], p=0.04) 

were significantly associated with risk of ILD; smoking history had a borderline association 

(OR 1.81, 95% CI [1.01, 3.25], p=0.05).

DISCUSSION

Interstitial lung abnormalities have been studied in FIP relatives [14]; our present study 

builds on these initial findings by presenting data from a larger cohort, focusing specifically 

on evidence of fibrotic radiologic abnormalities, and utilizing qHRCT analysis. PrePF is 

common among FIP first-degree relatives, and a texture-based qHRCT analysis is useful in 

identifying these abnormalities in this population, and key risk factors predict those at risk of 

this disease. PrePF subjects are older, more likely to be male, and more likely to have 

smoked than the unaffected subjects [1]. Additionally, the gain-of-function MUC5B 
promoter variant rs35705950, which is associated with established pulmonary fibrosis 

[4,5,7,25–29], is more common in PrePF subjects when compared to their unaffected family 

members. Given the high prevalence of findings suggestive of the UIP pattern on HRCT 

scan among subjects with PrePF and the association of IPF risk factors (age, gender, 

cigarette smoking, and MUC5B promoter variant) with PrePF, our findings suggest that 

PrePF subjects are at risk of developing progressive fibrosis and that quantitative CT 

imaging represents a sensitive means of detecting these radiographic abnormalities.

Even in a population such as FIP first-degree relatives that is at baseline enriched for the 

MUC5B variant compared to the general NHW population [4,8], the MUC5B variant was 

more common in those with PrePF. Study of this variant in larger at-risk populations is 

necessary to determine if the genotype could be used to target prospective screening, 

especially in those over the age of 60 (Figure 6). It is important to note, however, that the 

prevalence of PrePF was relatively high even in those without the MUC5B variant, 
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suggesting that the absence of this variant alone may not indicate that a particular individual 

in this at-risk cohort would not warrant screening. Notably, we examined another IPF-

associated common variant in TERT in this cohort and did not find that variant to be 

associated with PrePF; it is possible that due to the high MAF of this variant in the general 

population that this study was underpowered to detect its relationship to risk of PrePF.

Deep learning method is capable of detecting and quantifying fibrotic ILD patterns on CT in 

this cohort. Prior studies using a similar method [17] utilized established IPF cases and 

correlated quantitative scores with pulmonary function testing, suggesting that a quantitative 

HRCT score reflect physiologic change in addition to CT change. The current study 

supports the use of quantitative HRCT analysis to detect PrePF in a cohort of high-risk 

subjects without known disease since it is associated with breathlessness and the MUC5B 
promoter variant [4,5,30], a known IPF risk factor. However, the negative predictive value 

(97%) of using a quantitative fibrosis score cutoff was noted to be much higher than its 

positive predictive value (46%), suggesting that it may be particularly useful in terms of 

identifying higher risk scans that may require more careful visual inspection by radiologists. 

Recent studies illustrating that interstitial lung abnormalities are underreported in real-world 

settings suggest that technology-aided evaluation of routine chest imaging could improve 

timeliness of patient referral and evaluation [31].

This deep learning method based on textural analysis appears to be superior to %HAA, a 

simpler densitometry-based method that has been applied to quantitative CT assessment of 

ILDs [24]. Compared to the deep learning fibrosis score, the %HAA method was less 

accurate, had a lower positive predictive value, and was not associated with the MUC5B risk 

variant. While the %HAA method of HRCT analysis may capture some forms of PrePF, 

more advanced methods of quantifying subtle fibrosis are needed to quantify these features 

consistently. A limitation of deep learning is the need for a significant amount of labeled 

training data. The CNN used for the present study was trained using an independent dataset 

comprised of subjects enrolled in a clinical trial for IPF [17]. These subjects had more 

advanced lung fibrosis than those in this cohort, and their HRCT technical parameters were 

more consistent

Though this study was performed on a cohort of FIP first-degree relatives, we hypothesize 

that the findings could be relevant to first-degree relatives of sporadic IPF patients. Given 

that genome-wide studies have shown that FIP and sporadic IPF are indistinguishable in 

terms of common risk variants [5], a hypothesis that should be tested is that the genetic and 

genomic markers identified through the study of PrePF in FIP families could be applicable 

to first-degree relatives of sporadic IPF. Additional genetic variants, both common and rare, 

associated with fibrotic ILD could be examined in this cohort to determine how they 

contribute to risk of PrePF. Due to lack of power especially for common variants, larger 

cohorts would be required to determine additive effects of multiple genetic variants.

We hypothesize that PrePF could represent an early form of IPF. Prior studies suggest that 

interstitial lung abnormalities are associated with progressive loss of lung function and 

increased mortality [12,13], suggesting that the abnormalities we observe here, like ILAs 

studied in other cohorts [8,32,33], may have clinical consequences. However, longitudinal 
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observation of these subjects is required to determine at what rate and with what frequency 

PrePF progresses among FIP relatives in particular and whether it behaves like IPF. In 

addition, our ability to determine whether PrePF progresses to clinical IPF (versus other 

progressive fibrotic lung diseases) is limited by the fact that we do not have verified data 

regarding the subjects’ previous environmental and occupational exposures—a clinical 

diagnosis of IPF would necessitate exclusion of environmental or occupational exposures 

associated with fibrosis with extensive interviewing. Given the differing age distributions of 

those with and without PrePF, it is likely that a substantial proportion of study subjects that 

had HRCTs without evidence of fibrosis at this one point in time may develop pulmonary 

fibrosis as they age. Further characterization of PrePF is necessary before we can determine 

how these findings should be applied to counseling and potential screening of FIP patient 

relatives.

Currently, the MUC5B promoter variant and quantitative methods of CT analysis are not 

utilized to assist in the clinical detection of PrePF. Future studies will further phenotype 

PrePF in this population. Other genetic variants (rare and common) associated with 

pulmonary fibrosis will be examined to determine the relative importance of different risk 

alleles in this population. Longitudinal study is required to determine the ability of the deep 

learning method of HRCT analysis to detect parenchymal changes that may precede fibrosis 

identified by standard visual examination.

In conclusion, PrePF is common in FIP relatives and associated with age as well as the 

MUC5B promoter variant. Quantitative HRCT scoring utilizing deep learning is capable of 

detecting PrePF and is associated with the MUC5B promoter variant, breathlessness 

symptoms, and visual diagnosis of fibrotic ILD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Messages:

What is the key question?

What are the risk factors for undiagnosed pulmonary fibrosis in first-degree relatives of 

Familial Interstitial Pneumonia Patients and can deep learning methods be utilized to 

detect it?

What is the bottom line?

Undiagnosed pulmonary fibrosis in first-degree relatives of Familial Interstitial 

Pneumonia Patients is common, associated with the MUC5B promoter variant, and deep 

learning methods can be utilized to detect it.

Why read on?

Our manuscript describes in detail the radiologic findings of early pulmonary fibrosis in 

at-risk subjects, genetic and clinical risk factors for it, and the application of a deep-

learning algorithm on CT imaging of these subjects.
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Figure 1. Enrollment and Screening Flowchart
Description of enrollment process and results for study subjects.
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Figure 2. Representative Images from Cohort Subjects
A. High-resolution CT (HRCT) image of the chest from a study subject whose scan was 

read as normal, without signs of interstitial lung disease or fibrosis. B. HRCT image from 

subject who was categorized as having “Probable Fibrotic ILD.” C. Representative HRCT 

image from subject who was characterized as having “Definite Fibrotic ILD.” D. HRCT 

image from a case of previously diagnosed, established Idiopathic Pulmonary Fibrosis (IPF) 

in one of the study families.
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Figure 3. Categorization of Regions of HRCT Images using Quantitative Methodology
Representative axial HRCT images visually assessed as “No Fibrosis” (A), “Probable 

Fibrotic ILD” (B) and “Definite Fibrotic ILD” (C). Below each is the corresponding 

quantitative HRCT results for the above scan; regions classified as fibrotic are shown in red. 

(A) “No Fibrosis” fibrosis extent 0.10% (log(fibrosis score) = −2.30); (B) “Probable Fibrotic 

ILD” fibrosis extent 12.46% (log(fibrosis score) = 2.52); (C) “Definite Fibrotic ILD” fibrosis 

extent 24.05% (log(fibrosis score) 3.18).
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Figure 4. Fibrosis Score by Visual Diagnosis
Boxplots of fibrosis scores based on quantitative HRCT assessment for each visual diagnosis 

category. Fibrosis score means were significantly different (ANOVA, p<0.0001) across 

groups defined by visual diagnosis. Comparison of fibrosis score between groups showed 

significant differences for all individual comparisons (p<0.01 for all).
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Figure 5. Receiver Operating Characteristic (ROC) Curves for Quantitative Imaging Measures 
of Fibrosis and PrePF
A. ROC curves for visual diagnosis compared to log %HAA. For this quantitative method, 

mean AUC was 0.80 (range 0.79–0.81). B. ROC Curves for visual diagnosis compared to 

fibrosis scores. ROC analysis showed that fibrosis score discriminates subjects with visual 

diagnosis of PrePF. Average area under the curve (AUC) in five-fold cross validation was 

0.92 (range 0.91–0.93) and average accuracy, sensitivity, and specificity in the test partitions 

were 0.85 (range 0.81–0.88), 0.81 (range 0.71–0.92), and 0.86 (range 0.79–0.90), 

respectively. Optimal threshold for log fibrosis score was 0.60 (range 0.53 – 0.71), 

corresponding to 1.8% fibrotic area in examined lung. (C) Density plots of fibrosis scores 

for visually diagnosed PrePF (pink) and No Fibrosis (blue) scans—the fibrosis score optimal 

threshold is indicated with the red line (0.60).
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Figure 6. Prevalence of PrePF in FIP Siblings Cohort by Age and MUC5B Genotype
PrePF prevalence in this FIP siblings cohort increases by age, as shown in this graph. By age 

> 60 years, the prevalence of PrePF differed significantly based on MUC5B genotype 

(*p=0.02). Subjects with the variant are depicted by the red line, while those without it are 

depicted with the blue line.
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Table 1.

Screening Cohort Subject Characteristics.

No Fibrosis 
(n=417)

PrePF 
(n=77) p-value

OR [95% CI], 
controlling for family**

Mixed effects 
logistic regression 

p-value

Age, mean (SD), years 55.8 (8.7) 65.9 (10.1)
2.35 × 
10−12 1.15 [1.09, 1.21] 6.74×10−7

Male, % 37% 49% 0.05 1.86 [0.91, 3.80] 0.09

Ever smoker, % 27% 44% 0.004 1.52 [0.74, 3.14] 0.26

MUC5B Promoter Variant 
(rs35705950), MAF (% subjects 

with variant) *
0.21 (40%) 0.29 (53%) 0.02 2.14 [1.00, 4.63] 0.05***

TERT Common Variant 
(rs2736100), MAF (% subjects with 

variant) *
0.45 (69%) 0.45 (67%) 0.92 0.69 [0.302,1.58] 0.38****

*
DNA available on a total of 489 subjects (402 No Fibrosis and 75 PrePF subjects).

**
Odds ratios reported in this table were calculated comparing PrePF to no lung fibrosis in a mixed effects logistic regression model including age 

(as a continuous variable), male sex, ever smoker (yes/no), and MUC5B promoter variant (rs35705950) genotype. In the final row, the OR and p-
value reported here are for the model with only the TERT common variant included (without the MUC5B variant).

***
In the reported model, rs35705950 was coded as a dominant allele; in log-additive genetic model, p=0.05, as well.

****
In this analysis, rs2736100 was coded as a dominant allele.
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Table 2.

Visually identified patterns of CT Abnormalities in Scans with Probable or Definite Fibrotic ILD

Total with Fibrotic ILD 77

Cranio-caudal distribution

Upper 11 (14%)

Middle 5 (7%)

Lower 54 (70%)

Diffuse 4 (5%)

Not noted 3 (4%)

Axial distribution

Subpleural 67 (87%)

Diffuse 5 (6.5%)

Peribronchovasular 2 (2.5%)

Not noted 3 (4%)

Honeycombing? 12 (15.6%)

CT pattern *

UIP 59 (77.7%)

Possible 41 (70%)

Probable 9 (15%)

Definite 9 (15%)

NSIP 45 (58.4%)

Possible 41 (91%)

Probable 2 (4%)

Definite 2 (4%)

Sarcoidosis 3 (3.9%)

Hypersensitivity Pneumonitis (Possible) 14 (18.2%)

*
Because a confident single diagnosis was relatively uncommon, most cases included consideration of several patterns. For this reason, the 

percentages add up to more than 100%.
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Table 3.

Dyspnea Questionnaire Data

A. Breathlessness Reponses for Cohort: Yes No No answer

Are you troubled by shortness of breath when hurrying on the level or walking up a slight hill? 121 344 31

Do you have to walk slower than people of your age on the level because of breathlessness? 46 422 28

Do you ever have to stop for breath when walking at your own pace on the level? 32 442 22

Do you ever have to stop for breath after walking about 100 yards (or after a few minutes)? 36 439 21

Are you too breathless to leave the house or breathless dressing or undressing? 7 470 19

B. Breathlessness Responses by Visual CT Diagnosis: PrePF (n=77) No Fibrosis (n=419)

Are you troubled by shortness of breath when hurrying on the level or 

walking up a slight hill?* 43 no 26 yes (37%) 8 no answer
301 no 95 yes (24%) 23 no 

answer

Do you have to walk slower than people of your age on the level 
because of breathlessness? 60 no 9 yes (13%) 8 no answer

362 no 37 yes (9.3%) 20 no 
answer

Do you ever have to stop for breath when walking at your own pace 
on the level? 64 no 6 yes (8.6%) 7 no answer

378 no 26 yes (6.4%) 15 no 
answer

Do you ever have to stop for breath after walking about 100 yards (or 
after a few minutes)? 66 no 6 yes (8.3%) 5 no answer

373 no 30 yes (7.4%) 16 no 
answer

Are you too breathless to leave the house or breathless dressing or 
undressing? 71 no 1 yes (1.4%) 5 no answer 399 no 6 yes (1.4%) 14 no answer

*
For this question, p=0.02 for proportion responding “Yes” of those who answered question; all other questions have no significant difference 

between groups.
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Table 4.

Subject Characteristics Based on Quantitative Fibrosis Score.

Fibrosis score negative 
(n=292)

Fibrosis score positive 
(n=110)

Unadjusted p-
value*

Adjusted, p-value

Age, mean (SD), years 54.8 (7.7) 64.1 (10.6) 2.97×10−14 <2.0×10−16

Male, n (%) 104 (36%) 49 (45%) 0.10 0.26

Ever smoker, n (%) 79 (27%) 40 (37%) 0.05 0.16

MUC5B Promoter Variant 
(rs35705950), MAF (% subjects with 

variant)**

0.21(38%) 0.27 (51%) 0.006 0.017

Clinical characteristics and genotype breakdown of subjects with quantitative HRCT analyses. The cutoff of 0.60 for the logarithm of fibrosis score 
is based on analyses presented in the text.

*
Unadjusted p-value compares characteristic between groups refer to t-tests (age) and Pearson’s chi-square test (proportions). Adjusted p-values 

refer to p-rvalues derived from regression of fibrosis score on age, male sex, smoking history, and MUC5B promoter variant.

**
In the reported model, rs35705950 coded as a dominant allele given small number of TT subjects. (MAF = minor allele frequency)
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