
Decision Explanation and Feature Importance for Invertible
Networks

Juntang Zhuang1, Nicha C. Dvornek2, Xiaoxiao Li1, Junlin Yang1, James S. Duncan1,2,3

1Biomedical Engineering, Yale University, New Haven, CT USA

2Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT USA

3Electrical Engineering, Yale University, New Haven, CT USA

Abstract

Deep neural networks are vulnerable to adversarial attacks and hard to interpret because of their

black-box nature. The recently proposed invertible network is able to accurately reconstruct the

inputs to a layer from its outputs, thus has the potential to unravel the black-box model. An

invertible network classifier can be viewed as a two-stage model: (1) invertible transformation

from input space to the feature space; (2) a linear classifier in the feature space. We can determine

the decision boundary of a linear classifier in the feature space; since the transform is invertible,

we can invert the decision boundary from the feature space to the input space. Furthermore, we

propose to determine the projection of a data point onto the decision boundary, and define

explanation as the difference between data and its projection. Finally, we propose to locally

approximate a neural network with its first-order Taylor expansion, and define feature importance

using a local linear model. We provide the implementation of our method: https://github.com/

juntang-zhuang/explain_invertible.

1. Introduction

Deep learning models have achieved state-of-the-art performance in multiple practical

problems, including image classification [11, 16], video processing [1] and natural language

processing [4]. However, the black-box nature of the design of most deep learning

architectures [3] has raised issues such as lack of interpretation and being vulnerable to

adversarial attacks [18]. Previous works have found difficulties in recovering images from

hidden representations in the neural network [15, 5], and it is often unclear what information

is being discarded [19].

Various methods have been proposed to interpret neural networks. The mainstream is to

calculate gradient of the loss function w.r.t. the input image [20, 14]. Dosovitskiy et al.

proposed up-convolution networks to invert CNN feature maps back to images [5]. Another

direction for model interpretation is to determine the receptive field of a neuron [21] or

extract image regions that contribute the most to the neural network decision [23, 8, 10].

j.zhuang@yale.edu.

HHS Public Access
Author manuscript
IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October
05.

Published in final edited form as:
IEEE Int Conf Comput Vis Workshops. 2019 October ; 2019: 4235–4239. doi:10.1109/iccvw.2019.00521.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/juntang-zhuang/explain_invertible
https://github.com/juntang-zhuang/explain_invertible

Other works focus on model-agnostic interpretations [17, 2, 13, 12]. Different from previous

works, we consider explainable neural network models.

The recently proposed invertible network [6, 7, 22] is able to accurately reconstruct the

inputs to a layer from its outputs without harming its classification accuracy. For an

invertible classifier, information is only discarded at the final pooling layer and fully-

connected layer, while preceding layers preserve all information of the input. This property

hints at the potential to unravel the black-box and manipulate data both in the input domain

and the feature domain.

In this paper, we introduce a novel method to explain the decision of a network. We show

that an invertible classifier can be viewed as a two-stage model: (1) an invertible transform

from the input space to the feature space; (2) a linear classifier in the feature space. For a

linear classifier, we can determine the decision boundary and explain its prediction; using

the invertible transform, we can determine the corresponding boundary and explanation in

the input space.

After determining the projection onto the decision boundary, we perform Taylor expansion

around the projection, to locally approximate the neural net as a linear function. Then we

define the importance using the same method as in linear classifier cases.

Our main contributions can be summarized as:

• We explicitly determine the decision boundary of a neural network classifier and

explain its decision based on the boundary.

• We use Taylor expansion to locally approximate the neural net as a linear

function and define the numerical importance of each feature as in a linear

classifier.

2. Invertible Networks

The network is composed of different invertible modules, followed by a global average

pooling layer and a fully-connected layer. Details for each invertible module are described in

the following sections.

2.1. Invertible Block

An invertible block serves a similar role as a building block like a residual block, except it is

invertible. For the invertible block in Fig. 1, we follow the structure of the reversible block in

[6]. The input x is split into two parts x1 and x2 by channel, such that x1 and x2 have the

same shape.

Corresponding outputs are y1 and y2 with the same shape as the input. F represents some

function with parameters to learn, and F can be any continuous function whose output has

the same shape as input; an example of F is shown in Fig. 2. F can be convolutional layers

for 2D inputs and FC layers for 1D inputs. The forward pass and inversion is calculated as:

Zhuang et al. Page 2

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

y1 = x2 + F x1
y2 = x1

x1 = y2
x2 = y1 − F x1

(1)

2.2. Invertible Pooling with 2D Wavelet Transform

An invertible pooling can halve the spatial size of a feature map, and reconstruct the input

from its output. We use the 2D wavelet transform at level 1 as shown in Fig. 3. Each channel

of a tensor is a 2D image. A 2D image is transformed into 4 sub-images whose height/width

is half of the original image. Four sub-images are stacked into 4 channels. The inversion can

be calculated by the inverse 2D wavelet transform.

2.3. Inverse of Batch Normalization

The forward pass and inverse of a batch normalization layer are listed below:

y = x − E(x)
Var(x) + ϵγ + β, x = y − β

γ Var(x) + ϵ + E(x) (2)

where γ and β are parameters to learn, E(x) and Var(x) are approximated as the sample-

mean and sample-variance respectively, and all operations are channel-wise.

2.4. Linear Layer

The feature space usually has a high dimension compared to the number of classes for final

prediction. The mapping from high-dimension to low-dimension is typically performed with

an average pooling and a fully-connected (FC) layer in a convnet. These two steps combined

is still a linear transform and can be denoted as:

y = ABz = W z, wℎere W = AB (3)

where z is a C × h × w feature vector reshaped to 1D, h, w are spatial sizes, and C is the

channel number; B is a block-wise constant matrix of size C × Chw, representing the

average pooling operation; A is the weight of a FC layer with size K × C, where K is the

number of classes; and W = AB combines the two steps into 1 transform matrix.

2.5. Structure of Invertible Network

The structure of a classification network is shown in Fig. 4. The network is invertible

because its modules are invertible. The input image is fed into a batch normalization layer

followed by an invertible pooling layer. The invertible pooling layer increases the channel

number by 4 and is essential to make the tensor have an even number of channels in order to

keep the same shape for x1 and x2 as in formula 1.

The network is divided into stages, where an invertible pooling layer connects two adjacent

stages. Within each stage, multiple invertible blocks are stacked. The output from the final

stage is fed into a linear layer defined in Sec. 2.4. The probability of current data belonging

to a certain class is calculated as a softmax of the logits.

Zhuang et al. Page 3

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.6. Reconstruction Accuracy of Inversion

We build an invertible network of 110 layers. We train the network on the CIFAR10 dataset

[9], and reconstruct the input image from the output of the final invertible block. Results are

shown in Fig. 5. The l2 distance between reconstruction and input is on the order of 10−6,

validating the accuracy of inversion.

3. Interpret Model Decision

3.1. Notations of Network

The invertible network classifier can be viewed as a two-stage model:

t = T (x), y = Class(t) (4)

(1) The data is transformed from the input space to the feature space by an invertible

function T. (2) Features pass through a linear classifier Class, whose parameters W and b are

defined in Sec. 2.4.

The operation of y = Class(t) is defined as:

yk = 〈 t , w k〉 + bk, k = 1, 2, …K

P(k ∣ x) = exp yk
∑i = 1

K exp yi

(5)

where w k is the weight vector for class k, also is the kth row of W in Sec. 2.4; bk is the bias

for class k; 〈·, ·〉, is the inner-product operation and K is the total number of classes.

3.2. Determine the Decision Boundary

Note that on the decision boundary probabilities of two classes are the same. Using the same

notation as in formula (4) and (5), the decision boundary between class i and j in the feature

domain is:

〈 t , w i〉 + bi = 〈 t , w j〉 + bj (6)

The solution t to formula (6) lies on a high-dimensional plane, and can be solved explicitly.

Since T is invertible, we can map the decision boundary from the feature space to the input

domain.

3.3. Model Decision Interpretation

3.3.1 Interpret linear models—We first consider a linear classifier for a binary

problem as in Fig. 6. For a data point X and its projection Xp onto the decision boundary, Xp

is the nearest point to X on the boundary; the vector (Xp, X) could be regarded as the

explanation for the decision, as shown below:

Explanation = X − Xp (7)

Zhuang et al. Page 4

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.3.2 Interpret non-linear model—The last layer of a neural network classifier is a

linear classifier, and we can calculate Xp from X as in linear case. With invertible networks,

we can find their corresponding inputs, denoted as T−1(X) and T−1(Xp) respectively, where

T is the transform function as in equation (4). Vector (T−1(X), T−1(Xp)) is the explanation in

the input domain. The explanation can be denoted as:

Explanation = T −1(X) − T −1 Xp (8)

where X = T(x) is the point in the feature space, corresponding to x in the input space; Xp is

the projection of X onto the boundary in the feature space; and xp is the inversion of Xp, as

shown in Fig. 7.

3.3.3 Feature importance

Linear case: For a linear model, ignoring the bias, the function for log-probability is:

f(x) = ∑
i

d
wi xi − xp, i (9)

where d is the dimension of x; xp is the projection of x onto the boundary, which is also the

nearest point on the boundary; and wi is the weight for dimension i.

The explanation in dimension i is xi − xp,i; the contribution to f(x) is wi(xi − xp,i). Therefore,

we define |wi(xi − xp,i)| as the importance of feature i for data x.

Non-linear case: We use Taylor expansion around xp to approximate the neural network

with a linear model locally:

f(x) = f xp + ∇f xp
T x − xp + O(x − xp 2

2) (10)

For a local linear classifier, the importance of each feature is:

Importance = ∇f xp ⊙ x − xp (11)

where ⨀ is the element-wise product, and Importance is a vector with the same number of

elements as x.

4. Experiments

4.1. Decision Boundary Visualization

For a d-dimensional input space, the decision boundary is a (d − 1)-dimensional subspace.

For the ease of visualization, we perform experiments on a 2D simulation dataset, whose

decision boundary is a 1D curve.

The data points for two classes are distributed around two interleaving half circles. As

shown in Fig. 8, two classes are colored with red and green. The decision boundary is

Zhuang et al. Page 5

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

colored in blue. We visualize the decision boundary in both the input domain and the feature

domain.

Visualization of the decision boundary can be used to understand the behavior of a neural

network. We give an example to visualize the influence of training set size on the decision

boundary in Fig. 8. From left to right, the figure shows the decision boundary when training

with 1% and 100% of data, respectively. As the number of training examples increases, the

margin of separation in the feature domain increases, and the decision boundary in the input

domain gradually captures the moon-shaped distribution. Furthermore, the decision

boundary can be used to determine how the network generalizes to unseen data.

4.2. Feature Importance

We validated our proposed feature importance method on a simulation dataset using

make_classification in scikit – learn. We created a 2 class, 10-dimensional dataset, of which

only 3 dimensions are informative.

We train an invertible network and computed the importance of each dimension. Results are

shown in Fig. 9. An oracle model should give equal importance to 3 informative variables

(indexed by 1, 3 and 9), while set 0 to other variables. Our invertible network successfully

picks informative features, and generates feature importance comparable to random forest.

Both models select the correct features.

4.3. Explain a Convolutional Invertible Network

We train a convolutional invertible classifier, achieving over 99% accuracy on the MNIST

test set. For an input image, we select classes with the top 2 predicted probabilities,

determine the decision boundary between these two classes as in Sec. 3.2, calculate the

projection onto the boundary, and interpolate between the input image and its projection

onto the boundary in the feature domain.

Results are shown in Fig. 10. Note that for each row, only one input image (left most) is

provided; the projection (right most) is calculated from the model, instead of searching for a

nearest example in the dataset. So the projection demonstrates the behavior of the network.

As discussed in Sec. 3.3, the difference between a data point and its projection onto the

boundary can be viewed as the explanation. For example, for an image of 8, its left half

vanishes in the interpolation, which explains why it’s not classified as 3; for an image of 7, a

bottom line appears in the interpolation, which explains why it’s not classified as 2.

5. Conclusion

We propose a method to explicitly determine the decision boundary of an invertible neural

network classifier and define the explanation for model decision and feature importance. We

validate our results in experiments, and demonstrate that the transparency of invertible

networks has great potential for explainable models.

Zhuang et al. Page 6

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

[1]. Baccouche M, Mamalet F, Wolf C, Garcia C, and Baskurt A. Sequential deep learning for human
action recognition. In International Workshop on Human Behavior Understanding, pages 29–39.
Springer, 2011 1

[2]. Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, and Samek W. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015 1 [PubMed: 26161953]

[3]. Castelvecchi D. Can we open the black box of ai? Nature News, 538(7623):20, 2016 1

[4]. Collobert R and Weston J. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pages 160–167. ACM, 2008 1

[5]. Dosovitskiy A and Brox T. Inverting visual representations with convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4829–
4837, 2016 1

[6]. Gomez AN, Ren M, Urtasun R, and Grosse RB. The reversible residual network: Backpropagation
without storing activations. In Advances in Neural Information Processing Systems, pages 2214–
2224, 2017 1, 2

[7]. Jacobsen J-H, Smeulders A, and Oyallon E. i-revnet: Deep invertible networks. arXiv preprint
arXiv:1802.07088, 2018 1

[8]. Kindermans P-J, Schütt KT, Alber M, Müller K-R, Erhan D, Kim B, and Dähne S. Learning how
to explain neural networks: Patternnet and patternattribution. arXiv preprint arXiv:1705.05598,
2017 1

[9]. Krizhevsky A and Hinton G. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009 2

[10]. Kumar D, Wong A, and Taylor GW. Explaining the unexplained: A class-enhanced attentive
response (clear) approach to understanding deep neural networks. In IEEE Computer Vision and
Pattern Recognition (CVPR) Workshop, 2017 1

[11]. LeCun Y, Bengio Y, and Hinton G. Deep learning. nature, 521(7553):436, 2015 1 [PubMed:
26017442]

[12]. Li X, Dvornek NC, Zhou Y, Zhuang J, Ventola P, and Duncan JS. Efficient interpretation of deep
learning models using graph structure and cooperative game theory: Application to asd biomarker
discovery. In International Conference on Information Processing in Medical Imaging, pages
718–730. Springer, 2019 1

[13]. Lundberg SM and Lee S-I. A unified approach to interpreting model predictions. In Advances in
Neural Information Processing Systems, pages 4765–4774, 2017 1

[14]. Mahendran A and Vedaldi A. Understanding deep image representations by inverting them. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5188–
5196, 2015 1

[15]. Mahendran A and Vedaldi A. Visualizing deep convolutional neural networks using natural pre-
images. International Journal of Computer Vision, 120(3):233–255, 2016 1

[16]. Schmidhuber J. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015 1 [PubMed: 25462637]

[17]. Sundararajan M, Taly A, and Yan Q. Axiomatic attribution for deep networks. arXiv preprint
arXiv:1703.01365, 2017 1

[18]. Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, and Fergus R. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199, 2013 1

[19]. Tishby N and Zaslavsky N. Deep learning and the information bottleneck principle. In 2015 IEEE
Information Theory Workshop (ITW), pages 1–5. IEEE, 2015 1

[20]. Zeiler MD and Fergus R. Visualizing and understanding convolutional networks. In European
conference on computer vision, pages 818–833. Springer, 2014 1

[21]. Zhang Q, Nian Wu Y, and Zhu S-C. Interpretable convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8827–8836, 2018 1

Zhuang et al. Page 7

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[22]. Zhuang J, Dvornek NC, Li X, Ventola P, and Duncan JS. Invertible network for classification and
biomarker selection for asd. arXiv preprint arXiv:1907.09729, 2019 1

[23]. Zintgraf LM, Cohen TS, Adel T, and Welling M. Visualizing deep neural network decisions:
Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017 1

Zhuang et al. Page 8

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Structure of the invertible residual block.

Zhuang et al. Page 9

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
An example of F in the invertible block.

Zhuang et al. Page 10

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
2D wavelet transform as an invertible pooling.

Zhuang et al. Page 11

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Structure of an invertible network.

Zhuang et al. Page 12

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
From left to right: input image, reconstructed image from outputs of last invertible block.

Zhuang et al. Page 13

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
For a linear classifier, Xp is the projection of X onto the decision plane, and the vector (Xp,
X) is the explanation for decision.

Zhuang et al. Page 14

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
Explanation of invertible non-linear classifiers. Left figure is the input space, right figure is

the feature space. Black line is the decision boundary, Xp is the projection of X onto the

decision boundary. Vector (X, Xp) is perpendicular to the boundary in feature space. Dashed

vector can be viewed as the explanation for model decision.

Zhuang et al. Page 15

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:
Visualization of the decision boundary varying with the size of training set on a 2D toy

dataset. Top row shows results in input domain, and bottom row shows results in feature

domain. Columns left (right) shows training with 1% (100%) of data.

Zhuang et al. Page 16

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9:
Left: feature importance from invertible network. Right: feature importance from random

forest.

Zhuang et al. Page 17

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10:
Interpolation (performed in the feature domain) between input (left most) and its projection

on the boundary (right most). Top two rows shows 8 transforms to 3, bottom two rows show

7 to 2.

Zhuang et al. Page 18

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2020 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Invertible Networks
	Invertible Block
	Invertible Pooling with 2D Wavelet Transform
	Inverse of Batch Normalization
	Linear Layer
	Structure of Invertible Network
	Reconstruction Accuracy of Inversion

	Interpret Model Decision
	Notations of Network
	Determine the Decision Boundary
	Model Decision Interpretation
	Interpret linear models
	Interpret non-linear model
	Feature importance
	Linear case
	Non-linear case

	Experiments
	Decision Boundary Visualization
	Feature Importance
	Explain a Convolutional Invertible Network

	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:

